用户名: 密码: 验证码:
竹子组织培养与毛竹愈伤组织分化中基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹类是全球重要的森林资源之一,具有较高的经济价值和生态价值,在生产、生活中起着不可或缺的作用。近年来,植物组织培养和细胞培养已成为细胞诱变、细胞融合、遗传转化途径培育新品种的基础技术。建立竹类植物从种苗微繁、离体再生到细胞、原生质体培养、遗传转化一套完整的组织培养技术体系,将为竹类植物生理学、分子生物学乃至遗传育种研究提供良好平台。目前,竹类植物离体再生和细胞培养存在褐化、再生困难等问题;其中,散生竹离体再生成功的报道较少,毛竹未见离体再生成功报道。
     本研究以毛竹、空竹和孝顺竹为材料进行了愈伤组织培养;并对筛选出的具有分化潜力的毛竹愈伤组织进行了基因表达分析,研究结果如下:
     1.毛竹高度脱分化愈伤组织(黄色松散型愈伤组织)在MS大量+B5微量+B5有机物+MS铁盐+500 mg/L脯氨酸+500 mg/L谷氨酰胺+300 mg/L胰蛋白胨+0.5-1.0 mg/L 2,4-D+30 g/L蔗糖+6 g/L琼脂上可大量增殖;在未添加2,4-D的培养基中会发生褐化、死亡。
     2.对毛竹愈伤组织的分化特性进行了观察和分类。从毛竹愈伤组织中筛选出紫色致密、紫色松散、黄色致密、绿色致密4类有分化潜力的愈伤组织。其中,紫色致密、紫色松散和黄色致密愈伤组织可在未添加2,4-D的培养基上继代和分化出不定芽、不定根或组织、器官原基;绿色致密愈伤组织继代培养易发生褐化、死亡。
     3.分别将毛竹紫色致密、黄色致密和绿色致密愈伤组织与高度脱分化愈伤组织cDNA组合,进行双色荧光标记后与水稻cDNA芯片杂交。芯片分析结果表明,与高度脱分化愈伤组织比较,紫色致密愈伤组织共检测到513个差异表达基因;黄色致密愈伤组织检测到412个差异表达基因;绿色致密愈伤组织检测到567个差异表达基因。对差异表达基因中的unigene进行GO分析表明,与高度脱分化愈伤组织比较,以上3类有分化潜力的毛竹愈伤组织中编码与细胞分化、发育、胚胎发生、植物激素相关基因以及编码信号转导相关的激酶基因均有不同程度的差异表达。在绿色致密愈伤组织中检测到促进细胞死亡基因的差异表达。
     4.通过与水稻cDNA芯片杂交,比较了在不添加2,4-D培养基上培养15 d的毛竹愈伤组织与高度脱分化愈伤组织间基因表达的差异。其中,编码乙烯合成、茉莉酸合成、胁迫应答、DNA修复和抗坏血酸过氧化物酶等基因存在差异表达。
     5.孝顺竹愈伤组织增殖培养基为MS大量+B5微量+B5有机物+MS铁盐+500 mg/L脯氨酸+500 mg/L谷氨酰胺+300 mg/L胰蛋白胨+ 1.0 mg/L 2,4-D+30 g/L蔗糖+6 g/L琼脂。黄色致密型愈伤组织可分化不定芽,其中部分为白化苗。白化苗和正常苗在未添加植物生长调节剂的培养基中均可正常增殖和生根。
     6.毛竹和空竹愈伤组织在MS+500 mg/L脯氨酸+500 mg/L谷氨酰胺+300 mg/L胰蛋白胨+1.5 mg/L 2,4-D+30 g/L蔗糖液体培养基中振荡培养后可获得质地均一、分散性良好的悬浮细胞。悬浮细胞继代周期为9 d。选择20 g/L接种密度,将悬浮细胞进行平板培养,可获得愈伤组织,用于悬浮细胞遗传转化后阳性单克隆的筛选。
Bamboo is one of the most important forest resources, which has a high commercial value and ecological function. Bamboo is indispensable in manufacture industry and our daily life. However, genetic improvement researches on bamboo are lag now. In recent years, plant tissue culture and suspension cell culture have been the basic technologies on breeding new varieties by the approaches of somatic cells mutation, cell fusion and genetic transformation. The construction of a tissue culture technology system of bamboo on in vitro micropropogation, regeneation, culture of suspension cell and protoplast, and genetic transformation will provide a research platform for the researches on physiology, molecular biology, and genetics and breeding of bamboo. Browning and hard to regenerate are huge problems on tissue culture of bamboo. The scattered bamboos such as Phyllostachy edulis, are especially hard to regenerate.
     In this study, Phyllostachys edulis, Cephalostachyum fuchsianum and Bambusa multiplex were sued as materials to establish the culture system of callus or suspension cell lines. The gene expressions of Phyllostachys edulis calli with differentiation potentials were detected by cDNA microarray. The research contents and results are as follows:
     1. The calii of Phyllostachys edulis can proliferation on the medium of MS macro salt +B5 micro salt +B5 organic +MS ferric salt +500 mg/L proline +500 mg/L glutamine +300 mg/L tryptone +0.5-1.0 mg/L 2,4-D+30 g/L sucrose +6 g/L agar. The highly dedifferentiation calli can not survive on the medium without 2,4-D.
     2. Four types of calli were seemed as calli with differentiation potential. They were purple campact calli, purple friable calli, yellow compact calli and green compact calli. The purple campact calli, purple friable calli and yellow compact calli can survive on the medium without 2,4-D and differentiate adventitious buds or some tissues wiith structure. However, the green compact calli would brown during subculture.
     3. The purple campact calli, yellow compact calli and green compact calli were made a pair with yellow friable calli respectively to hybridize to the probes in cDNA microarraies. There were 412 differentially expressed genes detected in the microarray of purple compcat calli VS yellow friable calli. There were 412 differentially expressed genes detected in the microarray of yellow compcat calli VS yellow friable calli. And 567 differentially expressed genes were detected in the microarray of green compcat calli VS yellow friable calli. The unigenes of the differentially expressed genes were analyzed by GO. Genes related to cell differentiation, development, somatic embryogenesis, plant hormones and kinases in signal transduction of differentiation were differentially expressed respectively in 3 types of calli comparing to yellow friable calli. And genes stimulated cell death were upregulated in green compact calli.
     4. Genes related to ethylene synthesis, JA synthesis, stress response, DNA repair and Ascorbate peroxidase were detected differently expressed in the calli cultured on the medium without 2,4-D for 15 d.
     5. The calii of Bambusa multiplex could proliferation on the medium of MS macro salt +B5 micro salt +B5 organic +MS ferric salt +500 mg/L proline +500 mg/L glutamine +300 mg/L tryptone + 1.0 mg/L 2,4-D+30 g/L sucrose +6 g/L agar. Adventitious buds could differentiate from yellow compact calli. And amonts of albino buds were acquired. Both normal buds and albino buds could proliferation and rooting.
     6. Fine suspension cell line could be acquired respectively by inoculation the calli of Phyllostachys edulis and Cephalostachyum fuchsianum into the liquid medium of MS+500 mg/L proline +500 mg/L glutamine +300 mg/L tryptone +1.5 mg/L 2,4-D +30 g/L sucrose. The subculture cycle were 9 d. Calli could be acquired after the cells being cultured in the solid medium by the inoculation density of 20 g/L.
引文
安丰英,郭红卫.乙烯信号转导的分子机制[J].植物学通报,2006,23 (5):531-542
    陈军营,马平安,赵一丹等.小麦成熟胚脱分化过程中生长素相关基因的表达分析[J].作物学报,2009,35(10):1798-1805
    陈新建,杨艳会,陈军营等.植物新型肽类生长调节物质植物磺肽素[J].植物生理学通讯,2005,41(5):669-673
    陈硕,陈珈.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学通报,2001,18(2):143-148
    崔凯荣,邢更生,周功克等.植物激素对体细胞胚胎发生的诱导与调节[J].遗传,2000,22(5):349-354
    董云洲,贾士荣.基因抢转化小麦悬浮细胞参数的优化[J].中国农业科学,1998,31(6):79-81
    董云洲,段胜军.谷子胚性悬浮细胞系植株再生体系的建立及转基因技术研究[J].应用基础与工程科学学报,1999,7(1):43-40
    段红英,丁笑生,卢龙斗. WD-repeat蛋白及其在植物中的作用[J].安徽农业科学,2007,35(4):1007-1008
    龚力波,郑思乡,肖龙骞等.马来西亚甜龙竹的组织培养繁殖试验[J].云南林业科技,2003,102(1):5-7
    顾小平,苏梦云,岳晋军等.几种丛生竹愈伤组织诱导与防褐变技术研究[J].林业科学研究,2006,19(1):75-78
    黄海杰,陈雄庭.植物泛素/26S蛋白酶体途径研究进展[J].中国生物工程杂志,2008,28 (7):127-132
    黄剑,沈海龙,刘长莉等.植物不定芽离体再生分子调控的评述[J].遗传,2007,29(5):528-536
    黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构与功能[J].遗传,2004,26(3):414-418
    贾小霞,王汉宁,孔维萍等.玉米幼胚和成熟胚愈伤组织诱导过程中内源激素的比较[J].核农学报,2009,23(4):555-560
    江泽慧,世界竹藤[M].辽宁:辽宁科学技术出版社,2002.
    李在留,辉朝茂.珍稀竹种巨龙竹组织培养研究[J].林业科学,2006,42(2):43-48
    李兴伟,王裕霞,古定球等.毛竹实生苗选育的初步研究[J].广东林业科技,2000,16(4):14-18
    李艳红,马小娟,柴小清. H2O2诱导烟草悬浮细胞的凋亡[J].首都师范大学学报(自然科学版),2002,23(4):60-63
    李毓,洪国琴,庄伟建等.水稻胚性愈伤组织诱导极其遗传转化的几个技术参数研究[J].核农学报,2008,22(4):394-398
    李士生,张玉玲.小麦愈伤组织及其再生植株的染色体变异[J].遗传学报,1991,18(4):332-338
    李惠英,张献龙.陆地棉体细胞胚胎发生过程中的mRNA差异显示分析[J].棉花学报, 2003,15(5):264-268
    刘军,袁自强,刘建东等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因[J].科学通报,2000,45 (13):1392-1397
    刘强,张贵友,Shinpzaki Kazuo.植物促分裂原活化蛋白(MAP)激酶[J].植物学报,2000,42(7):661-667
    罗志勇,陆秋恒,刘水平等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35 (6):554-560
    鲁明波,林岚,余斐等.红豆杉细胞植板方法的研究[J].华中理工大学学报,1997,27(1):93-96
    马艳梅,何远康,何琼英等.麻竹愈伤组织的诱导培养[J].华南农业大学学报,1993,14(3):131-140
    马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J].植物生理与分子生物学学报,2005,31 (4):331-339
    潘学峰,庄伟,关朝优等.马来甜龙竹组培快繁技术研究[J].贵族科学,2003,21(4): 81-83
    阙国宁,诸葛强.黄竹细胞悬浮培养和原生质体分离[J].林业科学研究,1994,7(1):44-47
    舒庆艳.羊草细胞差异表达基因分析与遗传转化方法研究.中国科学院植物研究所,硕士学位论文,2005
    王光萍,丁雨龙,黄敏仁等.观赏竹的试管快繁研究[J].林业科学,2005,41(5):51-55
    王裕霞,曾庆圣,陈远玲等.丛生观赏竹组培微繁殖与诱变的初步研究[J].竹子研究汇刊,2007,26(4):11-16
    王裕霞,张光楚.麻竹实生苗无性系的组培繁殖及其生长[J].广东林业科技,2000,16(3):1-5
    王俐,刘英,姜洋等.烟草叶片愈伤组织形成过程中的细胞程序性死亡[J].植物研究,2007,27(5):582-587
    王磊,宿红艳,王媛等.温度对烟草愈伤组织细胞凋亡的影响[J].湖南农业大学学报(自然科学版),2008,34(1):44-46
    王海波,魏景芳,葛亚新等.小麦愈伤组织状态调控与原生质体培养[J].中国农业科学,1996,29(6):8-14
    吴益民,边红武,王君晖等.竹子悬浮细胞系的建立和组织培养试管苗移栽观察[J].竹子研究汇刊,2000,19(1):52-56
    夏启中,张明菊,张献龙等.高浓度细胞分裂素诱导棉花悬浮细胞程序性死亡[J].华中农业大学学报,2005,24(4):334-338
    夏燕莉.玉米愈伤组织分化的遗传分析及相关基因克隆[D].四川农业大学,博士学位论文,2006
    谢庆华,谭宏超,尹芳等.云南方竹外植体组织培养成苗技术[J].云南林业调查规划设计,1998,23(4):61-63
    续九如,黄智慧.林业试验设计[M].北京:中国林业出版社,1995
    杨本鹏,昝丽梅.龙竹的组织培养[J].热带作物学报,2003,24(3):82-87
    袁金玲,张朵,顾小平等.孝顺竹种胚愈伤组织悬浮培养条件优化[J].分子植物育种,2009,7(4):839-844
    袁金玲,顾小平,李潞滨等.孝顺竹愈伤组织诱导及植株再生[J].林业科学,2009,45(3):35-40
    岳晋军.毛竹再生体系的初步构建[D].硕士学位论文,中国林业科学研究院,2008
    张光楚,王裕霞.杂种撑麻7号竹的组织培养研究[J].林业科学研究,2003,16(3):245-253
    张光楚,王裕霞.竹子试管苗开花的初步研究[J].竹子研究汇刊,2001,20(1):1-4
    张光楚,王裕霞,谭源杰等.丛生竹的组培快繁技术[J].竹子研究汇刊,2004,23(1):13-20
    张俊娥. 2,4-D对柑橘愈伤组织DNA含量变异及其再生能力的影响[J].河北农业大学学报,2009,32(4):57-59
    赵利锋,柴团耀. AP2/EREBP转录因子在植物发育和胁迫应答中的作用[J].植物学通报. 2008,25 (1):89-101
    周宏,何钢.毛竹愈伤组织培养研究[J].湖南林业科技,2005,32(4):41-42
    Alexander M P,Rao T C. In vitro culture of bamboo embryos[J]. Current Science,1968,37:415-417
    Anas A E L H,Pierre D. Embryogenesis and plantlet development in the bamboo Phyllostachys viridis (Young) McClure[J]. Plant Cell, Tissue and Organ Culture,1987,10(1):73-77
    Arya S,Sharma S,Kaur R et al. Micropropagation of Dendrocalamus asper by shoot proliferation using seeds[J]. Plant Cell Reports,1999,18(10):879–882
    Bao Y,Dharmawardhana P,Mockler T C et al. Genome scale transcriptome analysis of shoot organogenesis in Populus[J]. BMC Plant Biology,2009,9(1):132-146
    Bhumica S,Jitendra P K,Paramjit K. Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa) [J]. International Journal of Plant Genomics,2009,2009:539402.
    Bowtell D,Sambrook J. DNA Microarrays: A Molecular Cloning Manual[M]. Cold Spring Harbor Laboratory Press: 1st edition. 2002
    Castellarin S D,Di G. Transcriptinal control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines[J]. BMC Plant Biol, 2007,7: 46-55
    Chambers S M,Heuch J H R,Pirrle A. Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltonii Munro[J]. Plant Cell, Tissue and Organ Culture,1991,27(1):45-48
    Chkanikov D I , Pavlova N N. Proteins responsible for 2,4-D detoxication in resistant plants[J]. Agrokhimiya,1966,5:115-119
    Clark S E,Jacobsen S E,Levin J Z et al. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis[J]. Development,1996,122(5):1567-1575
    Cseke L J,Cseke SB,Podila GK. High efficiency poplar transformation[J]. Plant Cell Reports,2007,26(9):1529-1538
    Delledonne M,Zeier J, Marocco A et al . Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. PNAS,2001,98 (23):13454-13459
    Diatchenko L,Lau Y F,Campbell A P et al. Suppression subtractive hybridization: a method for generation differentially regulated or tissue-specific cDNA probes and libraries[J]. PNAS,1996,93 (12): 6025-6030
    Doebley J,Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature,1997,386:485-488
    Elisabeth T,Jim H. Arabidopsis thaliana outer ovule integument morphogenesis: ectopic expression of KNAT1 reveals a compensation mechanism[J]. BMC Plant Biology,2008,8:35-49
    Elliott R C,Betzner A S,Huttner E et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell,1996,8(2):155-168
    Gou X,He K,Yang H et al. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana[J]. BMC Genomics,2010,11:19-33
    Grabowska A,Wisniewska A,Tagashira N et al. Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis[J]. Journal of Plant Physiology,2009,166(3):310-323
    Greenberg J T,Guo A,Klessigd F et al. Programmed cell death in plant: A pathogent riggered response activated coordinately with multiple defense function[J]. Cell,1994,77(4):551 - 563
    Hibara K,Takada S,Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal,2003,36(5):87-96
    Hiroaki K,Hisako O,Hitomi Y et al. Microarray analysis of gene expression at initial stages of rice seed devolopment[J]. Breeding Science,2006,56(3):235-242
    Huang L C, Murashige T. Tissue culture investigation of bamboo I. Callus culture of bambusa, Phyllostachys and Sasa[J]. Botanical Bulletin of Academia Sinica,1983,24:31-52
    Huang L C,Chen W I,Huang B I. Tissue culture investigations of bamboo II. Liquid suspension cultures of bambusa, Phyllostachys and Sasa cells[J]. Botanical Bulletin of Academia Sinica,1988,29:177-l82
    Huang L C. Tissue culture for the bamboo industry(1989). In: Yang J C,Lin T P,Wang W Y et al. Proceedings Sino American Workshops on Forest Biotechnology and Molecular Biology. National Science Council,Taipai,Taiwan,1991:9-13
    Huang L C,Huang B I,Chen W I. Tissue culture investigations of bamboo IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices[J]. Environmental and Experimental Botany,1989,29(3):307-315
    Huang L C,Chen W L,Huang B L. Tissue cultrue investigations of bamboo. a method for viable protoplast isolaion from Bambusa cells of liquid suspension culture[J]. Botanical Bulletin of Academia Sinica,1989,30:49-57
    Huang L C, Huang B L, Chen W L. Tissue culture investigation of bamboo I. Recovery of from protoplast of suspension-culturered Bambusa cells[J]. Botanical Bulletin of Academia Sinica,1990,31:29-34
    Huang L C,Huang B L. Loss of the species distinguishing trait among regenerated Bambusa ventricosa McClure plants[J]. Plant Cell, Tissue and Organ Culture,1995,42(1):109-111
    Hsu Y H,Annamalai P,Lin C S et al. A sensitive method for detecting bamboo mosaic virus (BaMV) and establishment of BaMV-free meristem-tip Cultures[J]. Plant Pathology,2000,49(1):101-107
    Ikeda Y,Banno H,Niu Q W et al. The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development[J]. Plant and Cell Physiology,2006,47(11):1443-1456
    Jofuku K D,den Boer B G,Van M M et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell,1994,6(9):1211-1225
    Jorge M V R,Aurora L. Cyclins D, phytoregulators and cell cycle onset in germinating maize[J]. Plant Signaling and Behavior,2008,3:578-579
    Jose A A M,Cesar P C,Pilar C. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell,2007,19(2):458-472.
    Kapoor P,Rao I U. 2006. In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var. gigantea Bennet and Gaur by using growth regulators and sucrose[J]. Plant Cell, Tissue and Organ Culture,2006,85(2):211-217
    Kazutoshi Y,Noriko N,Kelly M Y et al. TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis[J]. Plant Physiology,2005,139:163-173
    Kerr J F R,Wyllie A H,Currie A R. Apoptosis: a basic biological phenomenon with wide- ranging implications in tissue kinetics[J]. British Journal of Cancer,1972,26(4):239-257
    Koen G,Johan G,Hilde P et al. Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboos[J]. Plant Cell Tiss Organ Cult,2007,91(2):115–123
    Larkin P,Scowcroft W R. Somaclonal variation-a novel source of variability from cell cultures for plant improvement[J]. Theoretical and Applied Genetics,1981,60(4):197-214
    Lampard G R,Lukowitz W,Ellis B E et al. Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations[J]. The Plant Cell,2009,21(11):3506-3517
    Lin C S,Chen C T,Lin C C et al. A menthod for inflorescence proliferation[J]. Plant Cell Reports,2003,21(9):838-843
    Lin C S,Lin C C,Chang W C. In vitro flowering of Bambusa edulis and subsequent plantlet survival[J]. Plant Cell, Tissue and Organ Culture,2003,72(1):71-78
    Lin C S,Vidmar J,Chang W C. Effects of growth regulators on inflorescence proliferation of Bambusa edulis[J]. Plant Growth Regulation,2004,43(3):221-225
    Lin C S,Lin C C,Chang W C. Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis[J]. Plant Cell, Tissue and Organ Culture,2004,76(1):75-82
    Lin C S,Liang C J,Hsaio H W et al. In vitro flowering of green and albino Dendrocalamus latiflorus[J]. New Forests,2007,34(2):177-186
    Lin C S,Chang W C. Micropropagation of Bambusa edulis through nodal explants of field grown culms and flowering of regenerated plantlets[J]. Plant Cell Reports,1998,17 (8):617-620
    Madhulika S,Uma J, Vijai S J. In vitro selection of NaCl-tolerant callus lines and regeneration of plantlets in a bamboo (Dendrocalamus strictus Nees.) [J]. In vitro Cellular & Developmental Biology - Plant,2003,39(2):229-233
    Malay D,Amita P. In vitro regeneration of Bambusa balcooa Roxb.: Factors affecting changes of morphogenetic competence in the axillary buds[J]. Plant Cell, Tissue and Organ Culture,2005,81(1):109-112
    Matsuo N,Mase H,Makino M et al. Identification of ENHANCER OF SHOOT REGENERATION-1 upregulated genes during in vitro shoot regeneration[J]. Plant Biotechnology,2009,26(4):385-393
    Mayer K F,Schoof H,Haecker A et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell,1998,95(6):805-815
    Mehata U,Rao V R,Ram H Y M. Somatic embryogenesis in bamboo. Proc. the 5th International Congress of Plant Tissue and Cell Cultures,1982:109-110
    Mitchell L W,Hassan K S,Ronald W S et al. Biosynthesis of avenanthramides in suspension culture of oat (Avena sativa)[J]. Plant Cell, Tissue and Organ Culture,2009,97(1):81-90
    Kim M,Lim J H,Chang S A et al. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana[J].Plant Cell,2006,18(9):2341–2355
    Mukunthakumar S,Mathur J. Artificial seed production in the male bamboo Dendrocalamus strictus L[J]. Plant Science,1992,87(1):109-113
    Nadgauda R S,Parasharami V A,Mascarenhas A F. Precocious flowering and seeding behavior in tissue cultured bamboos[J]. Nature,1990,344:335-336
    Nadgauda R S,John C K,Parasharami V A et al. A comparison of in vitro with in vivo flowering in bamboo: Bambusa Arundinacea[J]. Plant Cell, Tissue and Organ Culture,1997,48(3):181-188
    Naoki S,Yutaka S,Makoto M. Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants[J]. Developmental Biology,2000,220(2):358-364
    Navarro M,Ayax C,Martinez Y et al. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development[J]. Plant Biotechnology Journal,2010,May published online
    Ndiaye A,Diallo M S,Niang D et al. In vitro regeneration of adult trees of Bambusa vulgaris[J]. African Journal of Biotechnology,5 (13):1245-1248
    Ogita S. Callus and cell suspension culture of bamboo plant, Phyllostachys nigra[J]. Plant Biotechnology,2005,22(2):119-125
    Ogita S,Kashiwagi H,Kato Y. In vitro node culture of seedlings in bamboo plant, Phyllostachys meyeri McClure[J]. Plant Biotechnology,2008,25(4):381-385
    Ohrnberger D. The bamboos of the world - annotated nomenclature and literature of the species and the higher and lower taxa[M]. Elsevier Science.1999
    Porat R,Lu P,O'Neill S D. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells[J]. Planta,1998,204(3):345-351
    Ramanayake S M S D, Wanniarachchi W A V R, Tennakoon T M A. Axillary shoot proliferation and in vitro flowering in an adult giant bamboo, Dendrocalamus giganteus Wall. ex Munro[J]. In vitro Cellular & Developmental Biology-Plant,2001,37:667-671
    Rajneesh K A,Janhvi M,Shyamal K N. Improved in vitro shoot multiplication and rooting of Dendrocalamus hamiltonii Nees et Arn. Ex Munro: production of genetically uniform plants and field evaluation[J]. Acta Physiologiae Plantarum,2009,31(5):961-967
    Rao U,Rao I V R,Narang V. Somatic embryogenesis and regeneration of plants in the bamboo Dendrocalamus strictus[J]. Plant Cell Reports,1985,4(4):191-194
    Rout G R,Das P. Somatic embryogenesis and in vitro flowering of three species of bamboo[J]. Plant Cell Reports,1994,13(12):683-686
    Rout G R,Das P. In vitro plant regeneration via callogenesis and organogenesis in Bambusa vulgaris[J]. Biologia Plantarum,1997,39(4):515-522
    Sandal I,Kumar A,Bhattacharya A. Gradual depletion of 2,4- D in the culture medium for indirect shoot regeneration from leaf explants of Camellia sinensis(L.) O. Kuntze[J]. Plant Growth Regulation,2005,47(2-3):121-127
    Santner A,Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling[J]. The Plant Journal,2010,61(6):1029-1040
    Savita G,Anil S,Rajesh T et al. Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro[J]. Current Science,2002,83(7):885-889
    Saxena S. In vitro propagation of the bamboo ( Bambusa tulda Roxb. ) through shoot proliferation[J]. Plant Cell Reports,1990,9(8):431-434
    Saxena S,Dhawan V. Regeneration and large-scale propagation of bamboo (Dendrocalamus strictus Nees) through somatic embryogenesis[J]. Plant Cell Reports,1999,18(5):438-443
    Schena M,Shalon D,Davis R W et al. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray[J]. Science,1995,270 (5235):467-470
    Smith M K,Drew R A. Current applications of tissue culture in plant propagation and improvement[J]. Australian Journal of Plant Physiology,1990,17(3):267-289
    Sorina C P,George V P,Shawn B et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays[J]. Genes & Development,2009,3(1):80–92
    Takatsuka H,Ohno R,Umeda M. The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation[J]. The Plant journal : for cell and molecular biology,2009,59(3):475-487
    Tsay H S,Yeh C C,Hsu J Y. Embryogenesis and plant regeneration from anther culture of bamboo (Sinocalamus latiflora (Munro) McClure) [J]. Plant Cell Reports,1990,9(7):349-351
    Tavares R, Vidal J, van Lammeren A et al. A plant homologue of SGG/GSK-3 marks developing tissues in Arabidopsis thaliana[J]. Plant Molecular Biology,2002,50(2):261-71
    Tseng T C,Liu D F,Shaio S Y. Isolation of protoplasts from crop plants[J]. Botanical Bulletin of Academia Sinica,1975,16:55-60
    Victor M J,Jhamna C,Elena T et al. In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation[J]. Plant Cell, Tissue and Organ Culture 2006,86(3):389-395
    Victor M L V,Felipe V F. Plant cell culture protocols [M]. New Jersey:Humana press,2006:55
    Vollbrecht E,Reiser L,Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1[J]. Development,2000,127(14):3161-3172
    von Stein O D,Thies W G,Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes[J]. Nucleic Acids Research,1997,25 (13):2598-2602
    Wang K,Peng H Z,Lin E P et al. Identification of genes related to the development of bamboo rhizome bud[J]. Journal of Experimental Botany,2009,10:1-11
    Wong C E,Bhalla P L,Ottenhof H et al. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance[J]. BMC Plant Biology,2008,8:73-86
    Woods S H,Phillips G C,Woods J E et al. Somatic embryogenesis and plant regeneration from zygotic embryo explants in mexican weeping bamboo, Otatea acuminata aztecorum[J]. Plant Cell Reports,1992,11(5-6):257-261
    Wu X,Li F,Zhang C et al. Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis[J]. Journal of Plant Physiology,2009,166(12):1275-1283
    Yasodha R,Kamala S,Kumar S P A et al. Effect of glucose on in vitro rooting of mature plants of Bambusa nutans[J]. Scientia Horticulturae,2008,116(1):113-116.
    Yogeshwar M,Pradeep K P,Suman Y et al. A micropropagation system for cloning of Bambusa tulda Roxb[J]. Scientia Horticulturae,2008,115(3):315–318
    Yeh M L,Chang W C. Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro) [J]. Theor Appl Genet,1986,73(2):161-163
    Yeh M L,Chang W C. Somatic embryogenesis and subsequent plant regeneration from inflorescence callus of Bambusa beecheyana Munro var. Beecheyana[J]. Plant Cell Reports,1986,5(6):409-411
    Zhu T,Chang H S,Schmeits J et al. Gene expression microarrays, improvements, and applications towards agricultural gene discovery[J]. Journal of the Association for Laboratory Automation,2001,6:95-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700