用户名: 密码: 验证码:
冷诱导相关基因SlCZFP1和SlCMYB1的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温胁迫引起作物大幅度减产是世界范围内普遍存在的问题。植物在长期的进化过程中形成了多种适应机制,其中包括胁迫条件下一些基因被诱导表达,并通过直接或间接的方式调控下游靶基因的表达,从而在提高植物抗逆性中发挥重要作用。为深入了解冷敏感植物如番茄、水稻低温逆境胁迫反应的分子机理和发现新的耐冷调控基因,我们在前期利用番茄cDNA芯片(约含8700个基因)分析番茄低温转录谱基础上,发现一些受低温高度诱导的新型转录因子,它们均不受番茄CBF转录因子调控。根据这些基因在低温逆境胁迫下的表达水平及表达模式,筛选出2个受低温诱导高表达的基因,番茄SlCZFP1(Solanum lycopersicum Cold Zinc Finger Protein 1)和SlCMYB1(Solanum lycopersicum Cold MYB 1)。本文通过对其序列、表达及生物学功能的研究,探索了SlCZFP1和SlCMYB1与植物抗逆性之间的关系,以期阐明利用低温诱导转录调控因子提高番茄、水稻等冷敏感型作物抗低温胁迫的分子机理和可能的调控路径,为转录调控因子在农作物抗冷基因工程的应用提供理论依据及基因资源。
     1.本研究从番茄中克隆了1个编码C2H2型锌指蛋白基因SlCZFP1。该基因受低温、高盐和干旱胁迫诱导表达,但不受ABA诱导,说明SlCZFP1在应答低温、高盐、干旱胁迫时的表达可能是不依赖于ABA途径的。洋葱表皮亚细胞定位研究表明SlCZFP1为核定位基因。将SlCZFP1基因分别在拟南芥和水稻中过表达,可显著提高转基因拟南芥及水稻植株的抗冻、抗冷性,但不能提高植株的抗旱性和耐盐性,此外,过表达SlCZFP1转基因植株中低温等非生物胁迫应答基因如COR15a,COR6.6,COR47,OsGOLS3,OsCOR413等基因的表达水平明显增加,推测SlCZFP1可能是植物抗低温胁迫的正调节因子,可能调控与CBF途径平行的低温信号转导过程。这些研究结果为通过遗传工程的方法操控低温信号通路改良冷敏感植物抗冷性提供了理论依据。
     2.本文还克隆了1个属于MYB转录因子家族R2R3-MYB亚类的番茄SlCMYB1基因。该基因不仅受低温和高盐诱导高表达,而且还受干旱和ABA胁迫诱导表达,说明SlCMYB1在应答低温、高盐、干旱胁迫时的表达可能是依赖于ABA途径的。洋葱表皮亚细胞定位研究表明SlCMYB1为核定位基因。为了深入了解所克隆转录因子的生理功能及与非生物逆境应答的关系,构建了SlCMYB1基因过表达载体并成功转化了番茄和水稻,筛选到12个转基因番茄和16个转基因水稻株系。对番茄转基因纯系的筛选和耐逆性鉴定正在进行中。对过表达SlCMYB1水稻转基因植株初步功能分析结果表明,转基因水稻植株的苗期抗冷性显著高于对照,一些低温胁迫应答基因(脯氨酸合成的关键酶基因OsP5CS1,膜转运蛋白基因OsWCOR413)的表达水平明显增加,说明SlCMYB1可能和OsP5CS1,OsWCOR413基因在同一低温调控信号转导路径上,关于SlCMYB1基因对干旱、高盐等其他逆境胁迫的作用机理正在进一步研究中。
Low temperature stresses cause major losses in crop productivity worldwide. Plants vary greatly in their abilities to survive freezing temperatures. At one extreme are plants from tropical and subtropical regions including tomato and rice, which suffer injury when exposed to chilling temperature. In sharp contrast, plants from temperate regions are not only chilling-tolerant, but many of them, such as Arabidopsis and wheat, can survive freezing after exposure to low nonfreezing temperatures. Understanding what accounts for the differences in low temperature tolerance between those plant species and the molecular basis of cold acclimation is a fundamental biology question and has the potential to provide new approaches to improve cold tolerance in crop plants. We identified two cDNAs by analyzing the previous microarray data of the low temperature transcriptome of tomato. In this study, we present isolation and functional characterization of these two genes, designated SlCZFP1 (for Solanum lycopersicum Cold Zinc Finger Protein 1) and SlCMYB1 (for Solanum lycopersicum Cold MYB1). We provide evidence that two genes play important roles in cold stress tolerance in plants. The information will be added to our basic understanding of plant biology and have the protential to suggest a novel approaches to improve the cold tolerance of crops.
     1. We isolated a cDNA clone, designated SlCZFP1 (for Solanum lycopersicum Cold Zinc Finger Protein 1), from tomato by analyzing the previous microarray data of the low temperature transcriptome of tomato. SlCZFP1 encodes a novel TFIIIA-type zinc finger protein, which contains two typical zinc finger motifs, CX2-4 CX3FX3QALGGHX3-5H, and a potential nuclear localization signal (NLS). The SlCZFP1-GFP fusion protein was localized to the nucleus in a transient expression assay. Expression of SlCZFP1 was strongly induced by cold stress, dehydration and salt treatment, but not by abscisic acid (ABA). Overexpression of SlCZFP1 in transgenic Arabidopsis and rice induced constitutive expression of cold-regulated (COR) or cold-responsive genes and conferred enhanced tolerance to freezing or cold treatments for non-acclimate transgenic plants, compared with wild type plants. However, there was no obvious enhancement observed in drought and salt tolerance. Our data suggest that SlCZFP1 plays an important role in plant responses to cold stress by regulating cold-responsive gene expression and that SlCZFP1 might be a useful gene for improving cold tolerance in crop plants.
     2. We also isolated another cDNA clone, designated SlCMYB1 (for Solanum lycopersicum Cold MYB 1) from tomato. SlCMYB1 encodes a R2R3-MYB family gene which contains a conserved DNA-binding domain composed of two repeat motifs. The SlCMYB1-GFP fusion protein was localized to the nucleus in a transient expression assay. Expression of SlCMYB1 was not only strongly induced by cold and salt, but also induced by dehydration and abscisic acid (ABA). To understand function of SlCMYB1 in plants under stress conditions, we generated transgenic plants in tomato and rice over-expressing SlCMYB1 under control of the CaMV 35S promoter. We were able to produce 12 tomato and 16 rice transgenic lines, respectively. Preliminary results showed that overexpression of SlCMYB1 in rice induced constitutive expression of the cold-responsive gene OsP5CS1 and OsWCOR413 and might be conferred enhanced tolerance to cold treatments for non-acclimate transgenic plants, compared with wild type plants. Due to the lack of transgenic rice seeds, further assay for drought and salt were undergoing. Analysis of abiotic stress tolerance in SlCMYB1overexpressing transgenic tomato plants will be conducted in further study.
引文
1.崔永兰,张露,黄敏仁. (2003).植物MADS盒基因研究进展.中国生物工程杂志,23,50-54.
    2.高世庆,徐惠君,程宪国,陈明,徐兆师,李连城等. (2005).转大豆GmDREB基因增强小麦的耐旱及耐盐性.科学通报,50(23), 55-63.
    3.郭书巧,黄骥,江燕,张红生. (2007).水稻C2H2型锌指蛋白基因RZF71的克隆与表达分析.遗传,28(5),607-613.
    4.黄骥等,王建飞,张红生. (2004).植物C2H2型锌指蛋白的结构与功能.遗传,26(3),414-418.
    5.黄骥,张红生. (2007). TFIlIA型锌指蛋白及在提高植物耐逆性中的作用.遗传,29(8), 915-922.
    6.孔瑾,曹宛虹,张劲松,陈受宜. (2004).水稻受盐抑制基因OsZFP1的转基因分析.植物学报,46(5),573-577.
    7.刘蕾,杜海,唐晓凤,吴燕民,黄玉碧,唐益雄. (2008). MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传,30(10),1265-1271.
    8.王东,杨金水. (2002).棉花类耐盐锌指蛋白基因的克隆与结构分析[J].复旦学报,41(1),
    42-46.
    9.王艇,苏应娟,刘良式. (1997).植物低温诱导蛋白和低温诱导基因的表达调控.武汉植物学研究,15(1),80-90.
    10.吴关庭,郎春秀,胡张华,陈笑芸,王伏林,金卫,陈锦清. (2006).转CBF1基因增强水稻的耐逆性.核农学报,20(3),l69-l73.
    11.甄伟,陈溪,梁浩博. (2000).转基因马铃薯中病原诱导GO基因的表达及其对晚疫病的抗性.科学通报,45( 10),1071- 1075.
    12. Abe H, Urao T, Ito T, Seki M, Shinozaki K, & Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15(1), 63-78.
    13. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, & Shinozaki K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 9(10), 1859-1868.
    14. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, et a1. (2006). A R2R3-type MYB transcription factor is involved in the cold-regulation of CBF genes and in acquired freezing tolerance, J Biol Chem, 281, 37636-37645.
    15. Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K. (2002). An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol, 43, 751-758.
    16. Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C, & Thomashow M F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects bothchoroplast and protoplast freezing tolerance. Proc Natl Acad Sci, 93(23), 13404-13409.
    17. Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A. et a1. (2010). Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger lSAP gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol, 72, 171-190.
    18. Bender J, & Fink G R. (1998). A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci, 95(10), 5655-5660.
    19. Bilaud T,Koering C E,Binet-Brasselet E, Ancelin K, Pollice A, Gasser S M, et al. (1996).The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res, (24), 1294-1303.
    20. Boyce J M, Knight H, Deyholos M, Openshaw M R, Galbraith D W, Warren G, et al. (2003). The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J, 34(4), 395-406.
    21. Breton G, Danyluk J, Charron JB, Sarhan F. (2003). Expression profiling and bioinformatic analysis of a novel stress-regulated multispanning transmembrane protein family from Cereals and Arabidopsis. Plant Physiol, 132, 64-74.
    22. Burke M J, Gusta L V, Quamme H A, Weiser C J, Li P H (1976). Freezing and injury in plants. Annu Rev Plant Physiol, 27, 507-528.
    23. Chen B J, Wang Y, Hu Y L, Wu Q, & Lin Z P. (2005). Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci, 168, 493-500.
    24. Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y.(2009) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot., 60(1), 121-35.
    25. Chen S.C, Peng S Q, Huang G X, Wu K X, Fu X H, Chen Z Q, (2003) Association of decreased expression ofa Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol Biol 51 (1), 51-58.
    26. Chen W, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, et al. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14(3), 559-574.
    27. Chen Y, Yang X, He Kun , Liu M, Li J, Gao Z, et al, (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol, 60(1), 107-124.
    28. Cheong Y H , Kim K N, Girdhar K, Pandey L, Rajeev G, John J, et al. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15, 1833-1845
    29. Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agrawal M, et al. (2003). A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 17 (8), 1043-1054.
    30. Chinnusamy V, Zhu J, & Zhu J K. (2007). Cold stress regulation of gene expression in plants.Trends Plant Sci, 12, 444-451.
    31. Choi, D. W., Rodriguez, E. M. and Close, T. J. (2002). Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol., 129, 1781-1787.
    32. Ciftci-Yilmaza S & Mittler R. (2008). The zinc finger network of plants. Cell, 65, 1150-1160.
    33. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, et al. (2005). A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 15, 1196-1200.
    34. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, & Chong K. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 143(4), 1739-1751.
    35. Davletova S, Schlauch K, Coutu J, & Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol, 139, 847-856.
    36. De Vos M, Denekamp M, Dicke M, Vuylsteke M, Van Loon L, Smeekens SC, Pieterse CM. (2006) The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae. Plant Signal Behav, 1(6), 305-11.
    37. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura E, et al. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33, 751-763.
    38. Einset J, Per W, Atle M, Bones E L, & Connolly A. (2008). The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots. Physiol Plant, 134, 334 -341.
    39. Englbrecht C C, Schoof H, & Bohm S. (2004). Conservation diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 5 (39), 1186-1471.
    40. Ensminger I, Busch F, & Huner N. (2006). Photostasis and cold acclimation:sensing low temperature through photosynthesis. Physiol Plant, 126, 28-44.
    41. Feng C P, Andreasson E, Maslak A, Mock H P, Mattsson O, & Mundy J. (2004). Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci, 167, 1099-1107.
    42. Fowler S, & Thomashow M F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14, 1675-1690.
    43. Frampton J. (2004). Myb transcription factors:their role in growth,differentiation and disease, Kluwer academic publishers, Springer. Netherlands, PP, 6-8.
    44. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, et a1. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17, 3470-3488.
    45. Gibson S, Arondel V, Iba K, Somerville C. (1994) Cloning of a temperature regulated gene encoding a chloroplastω-3desaturase from Arabidopsis thaliana. Plant Physiol, 106(4), 1615–1621.
    46. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, & Thomashow M F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 124, 1854-1865.
    47. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, & Thomashow M F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 16, 433-442.
    48. Gong Z, Dong C H , Lee H, Zhu J, Xiong L, Gong D, et al. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 17, 256-267.
    49. Gothandam K M, Nalini E, Karthikeyan S, & Shin J S. (2010). OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol, 72, 125-135.
    50. Gubler F, Watts R J, Kalla R, Matthews P, Keys M, Jacobsen J V. (1997) Cloning of a rice cDNA encoding a wan-seription factor homologous to barley GAMyb. Plant Cell Physiol, 38(3),362-365
    51. Gutha L R, Reddy A R. (2008). Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol, 68, 533-555.
    52. Guy C L. (1990). Cold acclimation and freezing stress tolerance: role of protein metabolism. Plant Physiol, 41, 187-223.
    53. Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, & Zhang J Z. (2002). Tanscription factor CBF4 is a regulation of drought adaptation in Arabidopsis. Plant Physiol, 130, 639-648.
    54. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, et al. (2007). R1R2R3-MYB proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development, 134(6), 1101-1110.
    55. Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, et al. (2007). Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol, 144, 752?767.
    56. Hisanoa H, Kanazawaa A, Kawakamib A, Yoshidab M, Shimamotoa Y, & Yamada T. (2004). Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci, 167, 861-868.
    57. Howe G A, Lightner J, Browse J, & Ryan C A. (1996). An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell, 8, 2067-77.
    58. Hsieh T H, Lee J T, Charng Y Y, & Chan M T. (2002a). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 130, 618-626.
    59. Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y, Wang Y C, et al. (2002b). Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 129,1086-1094.
    60. Hu H, You Jun, Fang Y, Zhu X, Qi Z, & Xiong L. (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 67, 169-181.
    61. Huang J G, Yang M, Liu P, Yang G D, Wu C A, Zheng C C.(2009). GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis. Plant Cell Environ, 32(8), 1132-45.
    62. Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, et al. (2009). Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun, 389, 556-561.
    63. Huang J, Wang J F, & Zhang H S. (2005b). ZFP15 gene encoding for a novel C2H2-type zinc finger protein lacking DLN box, is regulated by spike development but not by abiotic stresses. Mol Biol Rep, 32, 177-183.
    64. Huang J, Wang J F, Wang Q H, & Zhang H S. (2005a). Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA 16, 130-136.
    65. Huang J, Yang X, Wang M M, Tang H J, Ding L Y, Shen Y, et al. (2007). A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochem Biophy Acta, 1769, 220-227.
    66. Ishitani M, Xiong L, Lee H, Stevenson B, & Zhu J K. (1998). A genetic locus involved in cold·responsive gene expression in Arabidopsis. Plant Cell, 10, 1151-1161.
    67. Ito M, Araki S,Matsunaga S. (2001) G2/M-Phase-SpecificTranscription during the Plant Cell CycleIs Mediated by c-Myb-Like Transcription Factors.Plant Cell,13,1891-1905.
    68. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, et al. (2006). Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant Cell Physiol, 47, 141-153.
    69. Iwasaki T, Yamaguchi-Shinozaki K, & Shinoozaki K. (1995). Identifiation of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet, 247(4), 391-398.
    70. Jaglo K R, Gilmour S J, Zarka D G, Schabenberger O, & Thomashow M F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106.
    71. Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, et a1. (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 127, 910-917.
    72. Jeong S T, Goto-Yamamoto N, Kobayashi S, Esaka M. (2004). Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci, 167(2),247?252.
    73. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, et al. (2000). Transcriptional repression by ATMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 19,6150-6161.
    74. Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, et al. (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 146, 623-635.
    75. Kanneganti V, Gupta AK. (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 66, 445-462.
    76. Kasuga M, Liu Qiang, Miura S, Yamaguchi Shinozaki K, Shinozaki K, & Liu Q. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech, 17, 287-291.
    77. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible RD29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 45,3 46-350.
    78. Kawakami A, Yutaka S, & Yoshida M. (2008). Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot, 59, 793-802.
    79. Khodakovskaya M, McAvoy R, Peters J, Wu H, & Li Y. (2006). Enhanced cold tolerance in transgenic tobacco expressing a chloroplast-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 223, 1090-1100.
    80. Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, et al. (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 25, 247-259.
    81. Kim S H, Hong J K, Lee S C, Sohn K H, Jung H W, & Hwang B K. (2004a). CAZFP1, Cys2/His2-type zinc-finger transcription factor functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol, 55, 883-904.
    82. Kim S, Kang JY, Cho DI, Park JH, Kim SY. (2004b). ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 40(1), 75-87.
    83. Kim Y O, Kim J S, & Kang H S. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J, 42, 890-900.
    84. Kirik V, Kolle K, Misera S, & Baumlein H. (1998a). Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant J, 13, 729-742.
    85. Klempnauer K H, Gonda T J, & Bishop J M. (1982). Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell, 31, 453-463.
    86. Knight H, Veale E L, Warren G J, & Knight M R. (1999). The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 11, 875-886.
    87. Kobayashi F, Maeta E, Terashima A, & Takumi S. (2008a). Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant, 134, (1), 74-86.
    88. Kobayashi F, Maeta E, Terashima A, Kanako K, Yasunari O, & Shigeo T. (2008b). Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot, 59, 891-905.
    89. Kodama H, Horiguchi G., Nishiuchi T, Nishimura M, & Iba K. (1995). Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol, 107, 1177-1185.
    90. Kranz H D, Denekamp M, Greco R, Jin H, Leyva A, Meissner R C, et al. (1998). Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 16, 263-276.
    91. Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, & Harper J F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 130, 2129-2141.
    92. Lea U S, Slimestad R, Smedvig P, & Lillo C. (2007). Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 225(5), 1245-1253.
    93. Lee B H, Lee H, Xiong L, & Zhu J K. (2002a). A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell, 14, 1235-1251.
    94. Levitt, J. (Ed). (1980). Responses of plants to environmental stress. In: Chilling, freezing, and high temperature stress. New York, Acad Press, vol. 1.
    95. Li J G, Li X J, Guo L, Lu F, Feng X J, He K, et al. (2006) A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. J Exp Bot 57,1263–1273
    96. Li Z Y, & Chert S Y. (2001). Isolation, characterization and chromosomal location of a novel zinc-finger protein gene that is down-regulated by salt stress. Theor Appl Genet, 102, 363-368.
    97. Liao Y, Zou H F, Wang H W, Zhang W K, Chen S Y. (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 18(10), 1047–1060.
    98. Lippold F, Sanchez D H, Musialak M, Schlereth A, Scheible W R, Hincha D K, et al. (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol., 149(4), 1761-72.
    99. Lippuner V, Martha S, & Charles S. (1996). Two class of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt torlerance of wild-type yeast. J Biol Chem , 27l(2), 12859-12866.
    100. Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, et al. (2007). Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 226, 1007-1016.
    101. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, et al. (1999). TheArabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 119, 463-470.
    102. Lugert T & Werr W. (1994). A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol Biol, 25(3) ,493-506.
    103. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, et al. (2009). Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology, 150(1), 244-256
    104. Mackay J E and Crossley M. (1998). Zinc fingers are sticking together. Trends Biochem Sci, 23, 1-4.
    105. Maedal K, Kimura S, Demura T, Takeda J, & Ozeki Y. (2005). DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPALI) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol, 59(5), 739-752.
    106. Martin C, & Paz-Ares J. (1997). MYB transcription factors in plants. Trends in Genetics, 13, 67-73.
    107. Martinez C A, Maestri M, & Lani E. (1995). In vitro salt tolerance and praline accumulation in Andean potato (Solanum spp.) differing in frost tolerance. Plant Sci, 116, 177-184.
    108. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, et al. (2009). Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol, 150, 1972-1980.
    109. Miller J, Mclachlan A D, Klug A. (1985). Repetitive zinc-binding domains in the protein transcription factorⅢA from Xenopus oncytes.EMBO J, 4, 1609—1614.
    110. Mitsuya Y, Takahashi Y, Uehara Y, Berberich T, MiyazakiA, Takahashi H, Kusano T. (2007). Identification of a novel Cys2 /His-type zinc-finger protein as a component of a spermine signaling pathway in tobacco. J of Plant Physio, 164 (6), 785 - 793.
    111. Miyake K, Ito T, & Sends M. (2003). Isolation of a subfamily of genes for R2R3-MYB transcription factors showing upregurated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 53(1-2), 237-245.
    112. Mukhopadhyay A, Vij S, Tyagi A K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in tramgenic tobacco. Proc Natl Acad Sci, 101, 6309-6314.
    113. Nakashima K and Yamaguchi-Shinozaki K. (2006). Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plantarum, 126, 62-71.
    114. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, & Shinozaki K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 461, 205-210.
    115. Nelson D E, Repetti P P, Adams T R, Creelman R A, Wu J, David C Warner Don C, et al. (2007)Plant nuclear factor Y (NF-Y). B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci, 104, 16450-16455.
    116. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. (2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 48, 535-547.
    117. Novillo F, Jos M, Alonso L, Joseph R, Ecker A, & Julio S. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci, USA 101, 3985-3990.
    118. Oh S J, Kwon C W, Choi D W, Song S I, Kim J K. (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J, 5, 646-656.
    119. Orlova I V, Serebriiskaya T S, Popov V, Merkulova N, Nosov A M, Trunova T I, et al. (2003). Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol, 44, 447-450.
    120. Pabo C O, Peisach E, & Grant R A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Biochem, 70, 313-340.
    121. Parvanova D, Popova A, Zaharieva I, Lambrev P, T Konstantinova, Taneva S , et al. (2004). Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans or glycine betaine variable chlorophyll fluorescence evidence. Photosynthetica 42,179-185.
    122. Paz-Ares J, Ghosal D, Wienand U, Peterson P A, & Saedler H. (1987). The regulatory CI locus of Zea mays encodes a protein with homology to myb oncogene products and with structural similarities to transcriptional activators. Eur Mol Biol Organi J, 6, 3553-3558.
    123. Pellegrineschi A, Reynolds M, & Yamaguchi-Shinozaki K. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, 493-500.
    124. Pennycooke J C, Jones M L, Stushnoff C. (2003). Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol, 133, 901-909.
    125. Peters Jeanne S, , & Frenkel Chaim . (2004). Relationship between alcohol dehydrogenase activity and low-temperature in two maize genotypes, Silverado F1 and Adh1 Adh2 doubly null. Plant Physiol, 42, 841-846.
    126. Pino M, Jeffrey S, Skinner, Eung-Jun Park, Zoran Jekni, Patrick M, et al. (2007). Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotech J, 5, 591-604.
    127. Pino M T, Skinner J S, Jekni? Z, Hayes P M, Soeldner A H, Thomashow M F, et al. (2008). Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ, 31, 393-406.
    128. Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. (2004). Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 45(8), 1042-52.
    129. Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, & Grotewold E. (1999). Maize R2R3 MYB gene: sequence analysis reveals amplification in the higher plants. Genetics, 153, 427-444.
    130. Raffaele S, Rivas S, Roby D. (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 580, 3498–3504.
    131. Rajashekar C B, Zhou Han-E, Zhang Yuwen, Li Weiqi, & Wang Xuemin . (2006). Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation. J Plant Physiol, 163, 916-926.
    132. Reyes D, Morsy B, & Gibbons J. (2003). A snapshot of the low temperature stress transcriptome of developing rice seedlings (Oryza sativa L.) via ESTs from subtracted cDNA library. Genet, 107, 1071-1082.
    133. Rizhsky L, Davletova S, & Mittler H R. (2004). The zinc-finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 279, 11736-11743.
    134. Rubio V, Linhares F, Solano R, et al. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes&Dev, 15, 2122-2133.
    135. Saijo Y, Hata S, Kyozuka J, Shimamoto K, & Izui K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 23, 319-327.
    136. Sakamoto H, Araki T, Meshi T, & Iwabuchi M. (2000). Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene, 248, 23-32.
    137. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki k, et al. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol, 136, 2734-2746.
    138. Sauter M, Rzewuski G, Marwedel T, & Lorbiecke R. (2002). The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J Exp Bot, 379, 2325-2331.
    139. Savitch L V, Allard G, Seki M, Robert L S, Tinker N A, Huner N P, et al. (2005). The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol, 46, 1525-1539.
    140. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, et al. (2002). Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2(6), 282-91.
    141. Seo P J, Xiang F, Qiao M, Park J Y, Lee Y N, Kim S G, et al. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis.Plant Physiol, 151(1), 275-89.
    142. Seong E S, Baek K H, Oh S K, Jo S H, Yi S Y, & Parka J M. (2007). Induction of enhanced tolerance to cold stress and disease by overexpression of the pepper CaPIF1 gene in tomato.Physiologia Plantarum 129: 555–566.
    143. Shan D P , Huang J G , Yang Y T , Guo Y H , Wu Ch A , Yang G D, et a1. (2007). Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol, 175, 70-81.
    144. Shou H, Bordallo P, & Wang K. (2004a). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot, 399, 1013-1019.
    145. Shou H, Patricia B, Fan J B, Joanne M, Yeakley K, Bibikova M, et al. (2004b). Expression of an active tobacco mitogen-activated protein kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci, 101, 3298-3303.
    146. Singh K, Foley R C, & Onate-Sanchez L. (2002). Transcription factors in plant defense and stress response. Curr Opin Plant Biol, 5(5), 430-436.
    147. Steponkus P L, Uemura M, & Webb M S. (1993). A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. Adv in Low-Temp Biol, 2, 211-312.
    148. Stockinger E J, Gilmour S J, & Thomashow M F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci, 94, 1035-1040.
    149. Stracke R, Werber M, & Weisshaar B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 4(5), 447-456.
    150. Strand A, Foyer C H, Gustafsson P, Garadestrom P, & Hurry V. (2003). Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ, 26, 523-535.
    151. Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, & Yu S M. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol, 153, 145-158.
    152. Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui k, et al. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J, 36, 830-841.
    153. Sugimoto K, Takeda S, & Hirochika H. (2000). MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense related genes. Plant Cell, 12(12), 2511-2528.
    154. Sui N, Li M, Zhao S J, Li F, Liang H, Meng Q W. (2007). Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 226, 1097-1108
    155. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, et al. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J, 29, 417-426.
    156. Takatsuji H. (1998). Zinc-finger transcription factors in plants. Cell Mol Life Sci, 54, 582-596.
    157. Takatsuji H. (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plantscience. Plant Mol Biol, 39, 1073-1078.
    158. Takumi S, Shimamura C, Kobayashi F. (2008). Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiol Biochem, 46, 205-211.
    159. Tamminen I, Makela P, Heino P, & Palva E T. (2001). Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J, 25, 1-8.
    160. Tamura K, Dudley J, Nei M, & Kumar S. (2007). Molecular Evolutionary Genetics Analysis (MEGA) software version. Mol Biol Evol, 24, 1596-1599.
    161. Thomashow M F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 118, 1-8.
    162. Thomashow M F. (2001). So what's new in the field of plant cold acclimation. Plant Physiol, 125, 89-93.
    163. Thompson M A, & Ramsay R G. (1995). Myb:an old oncoprotein with new roles. Bioessays, 17, 341-350.
    164. Tian C, Wan P, Sun S, Li J, Chen M (2004). Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54, 519-532.
    165. Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K.(2005).Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol Biol, 59(3), 435-448.
    166. Uemura M, Tominaga Y, Nakagawara Y, Shigematsu S, Minami A, & Kawamura Y. (2006). Responses of the plasma membrane to low temperatures. Physiol Plant, 126, 81-89.
    167. Urao T, Yamaguchi-Shinozaki K, Urao S, & Shinozaki K. (1993). An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5(11), 1529-1539.
    168. Vailleau F, Daniel X, Tronchet M, Montillet J L, Triantaphylidès C, & Roby D. (2002). A R2R3-MYB gene, AtMYB30, act as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci, 99(15), 10179-10184.
    169. Van Buuren M, Salvi S, Morgante M, Serhani B, Tuberosa R. (2002). Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize. Plant Mol Biol, 48, 741-750.
    170. Van der Krol A R, van Poeck R M P, Vorst O S J, Voogt C, van Leeuwen W, Borst-Vrensen T W M, et al. (1999). Developmental and wound-, cold-, desiccation-, ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene ZPT2-2. Plant Physiol, 121, 1153-1162.
    171. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, et al. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 37 (1), 115-127.
    172. Villalobos M A, Bartels D, Iturriaga G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol, 135(1), 309-324.
    173. Vlachonasios K E, Thomashow M F, & Triezenberg S J. (2003). Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell, 15, 626-638.
    174. Vogel J T, Zarka D G, Van Buskirk H A, Fowler S G, & Thomashow M F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J, 41, 195-211.
    175. Wang X, Li W, Li M, & Welti R. (2006). Profiling lipid changes in plant response to low temperatures. Physiol Plant, 126, 90-96.
    176. Wu L , Chen X , Ren H , Zhang Z , Zhang H , Wang J, et a1. (2007). ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta, 226, 815-825.
    177. Wu L, Zhang Z, Zhang H, Wang X C , & Huang R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol, 148, 1953-1963.
    178. Xiang Y, Huang Y, Xiong L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 144(3), 1416-28.
    179. Xin Z, & Browse J. (1998). Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci, 95, 7799-7804.
    180. Xiong L, Lee H, Ishitani M, et al. (2002a). Repression of stress responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci, 99, 10899-10904.
    181. Xiong L, Schumaker K S, & Zhu J K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14, Suppl: S165-S183.
    182. Xu D Q, Huang J, Guo S Q, Yang X, Bao Y M, Tang H J, et al. (2008). Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett, 582, 1037-1043.
    183. Xu S, Wang X, Chen J.(2007). Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep, 26(4), 497-506.
    184. Xue T, Li X, Zhu W, Wu C, Yang G, & Zheng C. (2009). Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot, 60, 339-349.
    185. Yamaguchi-Shinozaki K, Urao T, & Shinozaki K. (1995). Regulation of genes that are induced by drought stress in Arabidopsis thaliana. J Plant Res, 108, 127-136.
    186. Yang T W, Zhang L J, Zhang T G, Zhang H, Xu S, & An L. (2005). Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci, 169(6), 987-995.
    187. Yang Y, Klessig D F. (1996) Isolation and characterization of a tobacco mosaic virus–inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci, 93, 14972-14977.
    188. Yoshiba Y, Klyosue T, Katagiri T, et al. (1995). Correlation between the induction of a gene for△1-pyrroline-5-carboxylate synthase and the accumulation of praline in Arabidopsis thaliana under under osmotic stress. Plant J, 7, 751-760.
    189. Yu E Y, Kim S E, Kim J H, Ko J H, Cho M H, & Chung I K. (2000). Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J Biol Chem, 275, 24208-24214.
    190. Yua C, Wang H S, Sha Y, Tang X F, Ming D, & Meng Q W. (2009). Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem, 47, 1102-1112.
    191. Zhang J Y, Corey D, Broeck L , Lloyd W, Sumner D, & Wang Z Y. (2007). Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 64, 265-278.
    192. Zhang J, Creelman R A, & Zhu J K. (2004a). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol, 135, 615-621.
    193. Zhang X, Fowler S G, Cheng H, Lou Y, Rhee S Y, Stockinger E J, et al. (2004b). Freezing sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J, 39, 905-919.
    194. Zhang Z & Huang R. (2010). Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mo, 73, 241-249.
    195. Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, et al. (2008). Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci, 105(12), 4945-4950.
    196. Zhu J, Shi H, Lee B, Damsz B,Cheng S, Stirm V, et al. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci, 101, 9873-9878.
    197. Zhu J, Verslues P E, Zheng X, Lee B H, Zhan X, Manabe Y, et al. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci, 102, 9966-9971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700