用户名: 密码: 验证码:
在含有分布式电源的配电系统中继电保护协调问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于电力工业放松管制、环境问题和能源危机的日益突出,特别是可再生能源和热电联产的开发利用,使得配电系统中分布式发电(Distributed Generation, DG)的份额不断增加。分布式电源常与配电系统相连接,在多个方面影响着配电系统的运行,其中保护问题已被认为是发展分布式发电的最大技术阻碍。传统的配电系统一般采用辐射状运行,且只有一个电源,潮流和短路电流的方向因而都是单一的,保护方案相对简单;分布式电源接入配电系统后,潮流和短路电流的方向会发生改变,传统的保护方案不再适用。随着配电系统中分布式电源数量和容量的不断增加,配电系统的结构和运行方式会更接近于输电系统,更复杂的保护系统设计因而就不可避免。然而,替换保护装置需要大量的投资,而且很难在短期内完成。在此背景下,深入、系统地研究含分布式电源的配电系统继电保护问题,对快速清除故障、恢复供电,减少停电损失以及分布式发电的发展,具有十分重要的理论和实际意义。虽然国内外对此作了一些研究,而且有些方法已经在实际中得到应用,但分布式发电技术相对较新,仍有很多重要问题没有得到很好的解决。本论文主要对配电系统潮流分析、分布式发电的特点及其对配电系统继电保护的影响、含分布式电源的继电保护协调等方面进行了深入研究。主要研究成果如下:
     1)为提高配电系统潮流计算的效率,提出了一种并行中断等待的前推回代算法。该方法对节点编号没有严格的要求,并将数字信号处理(Digital Signal Processing, DSP)技术中的并行流水线技术和单片机的中断等待技术应用于传统的前推回代法,使得计算时间明显减少。同时针对环网系统和有PV节点的情况对该算法进行了扩展。
     2)针对在配电系统潮流计算中,牛顿-拉夫逊法计算效率不高、收敛性不佳,前推回代法不便于处理系统环网和PV节点等问题,提出了两种改进的牛顿法:牛顿-下山算法和Broyden法。结果表明所提的两种改进算法在计算效率和收敛性方面都比常规的牛顿-拉夫逊法要好。所提算法对配电系统继电保护的在线快速调整具有十分重要的意义。此外,为了适应分布式电源接入配电系统的情况,对算法进行了扩展。
     3)概述了分布式发电的特点,并在此基础上着重阐述了可再生能源发电的一些基本特征。比较全面地建立了各类常见分布式电源的潮流计算模型,并主要从12个方面深入分析了分布式发电对配电系统继电保护的影响。
     4)为了解决分布式发电对配电系统过电流继电保护的影响问题,建立了一个描述过电流继电保护优化协调的混合整数非线性规划模型,并采用微分进化算法对该模型进行求解。该方法能够在满足协调约束的前提下,以最短的时间清除故障。
     5)为了解决可再生能源发电的间歇性和不确定性出力对继电保护的影响以及传统自适应保护的弊端,提出了一种离线计算的自适应过电流继电保护优化协调方法。该方法缩短了在线自适应调整继电器整定值的时间,并通过求解优化协调模型获得继电器整定值,使得保护系统在可再生能源发电出力的变化中始终保持最优状态。
     6)系统结构变化会使得流过继电器的故障电流发生改变,并相应地改变继电器的动作时间。针对这一问题,提出了一种能适应系统结构变化的过电流继电保护优化协调方法。建立了考虑系统结构变化的含分布式电源的继电保护优化协调模型,并采用改进微分进化算法对该模型进行求解。仿真结果表明所建立的过电流继电器优化协调模型能够较好的反映实际情况。
     最后对论文所做的研究工作进行了简要总结,并指出了这一领域有待进一步深入研究的问题。
During the last two decades, the deregulation of the power industry, environmental issues, energy crisis and, in particular, a growing need for exploitation of renewable energy sources and combined heat and power (CHP) technologies have laid the foundations for an increased penetration of distributed generations (DGs) in distribution systems. In distribution systems with some DGs, as the DGs could impose great impacts on the system performance in many aspects both postitively and negatively, the protection issue is considered as the largest technical barrier for the further applications of distributed generations. Traditionally, distribution systems have been designed to operate radially with one supply source so both the power flow and short-circuit current are single-directional, which makes the protection issue easier. When distributed generation units are introduced in distribution systems, the power flow and short-circuit current would be changed to be bi-directional. As the share of distributed generation increases, distribution systems are more similar to transmission systems, thus more complex protection system design will be demanded. However, it is very expensive and time-consuming to replace the old protection systems. Given this background, it is very important to investigate the problems about protective relays in distribution systems with distributed generations. Although much research work has been done and some methods even developed and applied in the actual power systems, there are still many important issues to be solved. This dissertation focuses on several important, yet difficult, problems associated with protective relays in distribution systems with DGs, such as the power flow computation in distribution systems, the characteristics of distributed generations and their impacts on the protective relays in distribution systems, the optimal coordination of overcurrent relays in distribution systems with DGs. These problems are investigated systematically in this thesis and some significant results obtained.
     First, a new Back/Forward Sweep Method accommodating arbitrary numbing of nodes is developed, and applied to the power flow calculation in distribution systems. In the proposed method, an algorithm similar to the parallel-stream technique in digital signal processing (DSP) and the interruption-waiting technique in single chip microcomputers, named as the parallel and interruption-waiting method, is developed. The developed method is superior to some existing methods in the computational efficiency, and a further extension to deal with mesh networks and PV buses are made at last.
     Secondly, the Newton-Raphson power flow method is not very efficient and sometimes could even not converge when it is applied to distribution systems. The Back/Forward Sweep method is inconvenient to deal with mesh networks and PV buses in distribution systems although its convergence is good. Given this background, two modified Newton methods, i.e., the Newton-Downhill method and Broyden method, are developed. The research results show that the computational efficiency and convergence of the two proposed methods are much better than those of the Newton-Raphson method. The methods are also extended for distribution systems with DGs.
     Thirdly, the characteristics of DGs are described in detail, especially for the renewable energy generating units. The models of different kinds of DGs in power flow calculation are presented, and the impacts of DGs on protective relays in distribution systems investigated systematically from twelve aspects.
     Fourthly, the protective relay coordination problem in distribution systems is investigated with directional overcurrent relays taken as an example, and formulated as a Mixed Integer Nonlinear Programming (MINLP) problem. A mathematical model describing this problem is developed, and the well-developed differential evolution algorithm employed to find the optimal solutions. The proposed method could clear faults quickly with the coordination constraints respected.
     Fifthly, a novel adaptive protection scheme for the coordination optimization of overcurrent relays is proposed, and applied to settle down the impacts of the fluctuant power output of renewable generations on protective relays in distribution systems. In this scheme, the off-line calculation is employed to save the time for adjusting the relay setting. The relay setting could be obtained by the optimal coordination model, with an objective of keeping the protection system at the optimal state during the output power change of the renewable energy generation units.
     Sixthly, since the system configuration may change after a fault occurs, the fault current through the overcurrent protective relays could then change, thus the operation time of relays would be changed and further make the protection coordination problem more complicated. Given this background, a mathematical model, considering the system configuration change, for the optimal coordination of overcurrent relays in distribution systems with DGs is developed, and simulation results show that the developed method is correct and efficient.
     Finally, conclusions are made based on the research outcomes, and directions for further research indicated.
引文
[1]林振智.基于多属性决策和复杂网络理论的电力系统恢复优化的理论与方法[D].广州:华南理工大学, 2008.
    [2] U.S.-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada[EB/OL]. Available on: https://reports.energy.gov/BlackoutFinal-Web.pdf, 2008-3-1.
    [3] Beck G., Povh D., Retzmann D.,等.全球大停电的经验教训[J].中国电力, 2007, 40(10): 75-81
    [4] Union for the Co-ordination of Transmission of Electricity (UCTE). Final Report System Disturbance on 4 November 2006[EB/OL]. Available on: http://www.ucte.org/_library/otherreports/ Final-Report-20070130.pdf, 2008-3-1.
    [5]刘有飞,蔡斌,吴素农.电网冰灾事故应急处理及反思[J].电力系统自动化, 2008, 32 (8): 10-13
    [6] Platt G., Cornforth D., Berry A.. Review of minigrid research and development around the world: accelerating the deployment of“Smart Minigrids”in APP countries [EB/OL]. Available on: http://www.asiapacificpartnership.org/english/project_roster.aspx, 2009-3-23.
    [7]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化, 2004, 28(16): 56-60.
    [8]章杜锡,徐祥海,杨莉,等.分布式电源对配电网过电压的影响[J].电力系统自动化, 2007, 31(12): 50-54, 85.
    [9] Brown R.E.. Reliability benefits of distributed generation on heavily loaded feeders[A]. Proceedings of 2007 IEEE Power Engineering Society General Meeting[C], Tampa, Florida, USA, June 24-28, 2007: 1-4.
    [10] Sadeghzadeh S.M., Ansarian M.. Distributed generation and renewable planning with a linear programming model[A]. Proceedings of the First International Power and Energy Conference (PECon 2006) [C], Putrajaya, Malaysia, November 28-29, 2006: 48-53.
    [11] Pipattanasomporn M., Willingham M, Rahman S. Implications of on-site distributed generation for commercial/industrial facilities[J]. IEEE Trans on Power Systems, 2005, 20(1): 206-212.
    [12] Enslin J.H.R.. Interconnection of distributed power to the distribution network[A].Proceedings of IEEE PES Power Systems Conference and Exposition[C], New York, October 10-13, 2004: 726-731.
    [13] Berg A., Krahl S., Paulun T.. Cost-efficient integration of distributed generation into medium voltage networks by optimized network planning[A]. Proceedings of CIRED Seminar 2008: SmartGrids for Distribution[C], Frankfurt, Germany, June 23-24, 2008: 1-4.
    [14] Stuntz L.. Smart grid: enable of the new energy economy [EB/OL]. Available on: http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf, 2009-4-24.
    [15] Butler T., Peter W.. Impacts and benefits of highly distributed embedded generation in Australian electricity distribution networks [EB/OL]. Available on: http://www.econnect.com, 2009-7-1.
    [16] El-Khattam W., Sidhu T.S.. Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter[J]. IEEE Trans on Power Delivery, 2008, 23(2): 576-585.
    [17]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化, 2008, 32(20): 1-4, 31.
    [18]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005, 29(24): 90-97.
    [19]陈琳.分布式发电接入电力系统若干问题的研究[D].杭州:浙江大学, 2007.
    [20] Kong S., Cornforth D., Berry A.. A new approach to the design of multiple inverter systems using evolutionary optimization[A]. Proceedings of IEEE Power Engineering Society General Meeting[C], July 26-30, 2009, Calgary, Alberta, Canada:1-8.
    [21]唐亮.分布式电源的分类及对配电网的影响[D].合肥:合肥工业大学, 2007.
    [22]丁明,王敏.分布式发电技术[J].电力自动化设备, 2004, 24(7): 31-36.
    [23]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术, 2008, 32(15): 71-76.
    [24]丛伟,潘贞存,王成山,等.含高渗透率DG的配电系统区域纵联保护方案[J].电力系统自动化, 2009, 33(10): 81-85.
    [25] Bollen M.H.J., Zhang L.D.. Different methods for classification of three-phase unbalanced voltage dips due to faults[J]. Electric Power Systems Research, 2003, 66(1): 59-69.
    [26] Gomez J.C., Morcos M.M.. Coordination of voltage sag and overcurrent protection inDG systems[J]. IEEE Trans on Power Delivery, 2005, 20(1): 214-218.
    [27] Viawan F.A., Reza M.. The impact of synchronous distributed generation on voltage dip and overcurrent protection coordination[A]. Proceedings of International Conference on Future Power Systems[C], Amsterdam, Netherlands, November 16-18, 2005: 1-6.
    [28] Seegers T., Birt K.. Impact of distributed resources on distribution relay protection [EB/OL]. Available on: http://www.pes-psrc.org/Reports/wgD3ImpactDR.pdf, 2009-3-20.
    [29]胡学浩.分布式发电(电源)技术及并网问题[J].电工技术杂志, 2004, (10): 1-5.
    [30]崔金兰,刘天琪.分布式发电技术及其并网问题研究综述[J].现代电力, 2007, 24(3): 53-57.
    [31]袁超,吴刚,曾祥君,等.分布式发电系统继电保护技术[J].电力系统保护与控制, 2009, 37(2): 99-105.
    [32]赵豫,于尔铿.电力零售市场研究(六)分散式发电对电力系统的影响[J].电力系统自动化, 2003, 27(15): 25-28, 48.
    [33]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术, 2003, 27(12): 71-75, 88.
    [34] Meyer B.. Distributed generation: towards an effective contribution to power system security[A]. Proceedings of IEEE Power Engineering Society General Meeting[C], Tampa, Florida, June 24-28, 2007: 1-6.
    [35]李蓓,李兴源.分布式发电及其对配电网的影响[J].国际电力, 2005, 9(3), 45-49.
    [36] Senjyu T., Miyazato Y., Yona A., et al. Optimal distribution voltage control and coordination with distributed generation[J]. IEEE Trans on Power Delivery, 2008, 23(2): 1236-1242.
    [37] Ma Jinjie, Lu Yuping, Du Jiao, et al. A new fault location scheme based on distributed short-circuit current in distribution system with DGs[A]. Proceedings of IEEE International Conference on Sustainable Energy Technologies (ICSET)[C], Singapore, November 24-27, 2008: 1189-1194.
    [38]林霞,陆于平,吴新佳.分布式发电系统对继电保护灵敏度影响规律[J].电力自动化设备, 2009, 29(1): 54-59, 64.
    [39] Jenkins N., Allan R., Grossley P., et al. Embedded generation[M]. London, UK: Baker & Taylor Books, 2000.
    [40] Moore A.T.. Distributed generation protection overview– literature review for ES 596b [EB/OL]. Available on: http:// www.eng.uwo.ca., 2009-3-23.
    [41] Maki K., Repo S., Jarventausta P.. Effect of wind power based distributed generation on protection of distribution network[A]. Proceedings of the Eighth IEE International Conference on Developments in Power System Protection[C]: Vol 1, Amsterdam, Netherlands, April 5-8, 2004: 327-330.
    [42] Odagiri S.. Connection between dispersed power sources and utility distribution systems: TEPCO's technical challenges[A]. Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition[C]: Vol 2, Yokahama, October 6-10, 2002: 1364-1366.
    [43] Achleitner G., Obkircher C., Fickert L., et al. Overall protection in decentralized wind power plants and decentralized grids[A]. Proceedings of International Conference on Clean Electrical Power (ICCEP 2007)[C], Capri, Italy, May 21-23, 2007: 180-182.
    [44]高飞翎,蔡金锭.分布式发电对配电网电流保护的影响分析[J].电力科学与技术学报, 2008,23(3): 58-61.
    [45]高研,毕锐,杨为,等.分布式发电对配电网继电保护的影响[J].电网与清洁能源, 2009, 25(4): 20-23.
    [46]张超,计建仁,夏翔.分布式发电对配电网馈线保护的影响[J].继电器, 2006, 34(13): 9-12.
    [47]张超,计建仁,夏翔,等.分布式发电对配电网继电保护及自动化的影响[J].华东电力, 2006, 34(9): 23-26.
    [48]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器, 2007, 35(11): 5-8.
    [49]孙鸣,余娟,邓博.分布式发电对配电网线路保护影响的分析[J].电网技术, 2009, 33(8): 104-107.
    [50]孙景钌,李永丽,李盛伟,等.含分布式电源配电网保护方案[J].电力系统自动化, 2009, 33(1): 81-84, 89.
    [51] Dugan R.C., Mcdermott T.E.. Operating conflicts for distributed generation on distribution systems[A]. Proceedings of IEE Rural Electric Power Conference[C], Arkansas, USA, April 29 - May 1, 2001: 6.
    [52] Seegers T., Birt K.. Impact of distributed resources on distribution relay protection [EB/OL]. Available on: http://www.pes-psrc.org/Reports/wgD3ImpactDR.pdf,2009-6-2.
    [53] Kashem M.A., Ledwich G.. Anti-islanding protection and islanding operation of grid-connected hydropower distributed generation[J]. International Journal of Global Energy Issues, 2005, 24(1/2): 76-85.
    [54] El-Arroudi K., Joos G.. Data mining approach to threshold settings of islanding relays in distributed generation[J]. IEEE Trans on Power Systems, 2007, 22(3): 1112- 1119.
    [55] Kumpulainen L.K., Kauhaniemi K.T.. Analysis of the impact of distributed generation on automatic reclosing[A]. Proceedings of IEEE Power Systems Conference & Exposition[C]: vol 1, New York, October 10-13, 2004: 603-608.
    [56] Mayr C., Brundlinger R.. Optimized destabilizing islanding protection scheme for grid-tied inverters insensitive to short term network disturbances[A]. Proceedings of 2007 European Conference on Power Electronics and Applications[C], Aalborg, Denmark, September 2-5, 2007: 1-9.
    [57] Ding Qiang, Xu Zheng, Li Youchun. A modified active frequency drift method for anti-islanding of grid-connected PV systems[A]. Proceedings of the third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT)[C], Nanjing, April 6-9, 2008: 2730-2733.
    [58] Barker P.. Overvoltage considerations in applying distributed resources on power systems[A]. Proceedings of IEEE Power Engineering Society Summer Meeting[C], Chicago, Illinois, USA, July 21-25, 2002: 109-114.
    [59] Collins E.R., Jiang J.. The Role of a Synchronous Distributed Generator on Voltage Sags[A]. Proceedings of the 11th International Conference on Harmonics and Power Quality[C], Lake Placid, New York, USA, September 12-15, 2004: 637-641.
    [60] Kabemura K., Yonekura K., Tsukamoto T., et al. Application of dispersed autonomous voltage control system to a real high voltage distribution network[J]. Electrical Engineering in Japan, 2004, 146(1): 27-36.
    [61] Santoso N.I., Tan O.T.. Neural-net based real-time control of capacitors installed on distribution systems[J]. IEEE Trans on Power Delivery, 1990, 5(1): 266-273.
    [62] Wang Jincheng, Chiang H.D., Miu K.N., et al. Capacitor placement and real time control in large-scale unbalanced distribution systems: Loss reduction formula, problem formulation, solution methodology and mathematical justification[J]. IEEE Trans on Power Delivery, 1997, 12(2): 953-958.
    [63] Lu Fengchang, Hsu Y.Y.. Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation[J]. IEEE Trans on Power Delivery,1997, 12(2): 681-688.
    [64] Deng Youman, Ren Xiaojuan, Zhao Changcheng, et al. A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems[J]. IEEE Trans on Power Sysems, 2002, 17(4), 1068-1072.
    [65] Popovic D.S., Boskov E.E.. Advanced fault management as a part of smart grid solution[A]. Proceedings of CIRED Seminar 2008: SmartGrids for Distribution[C], Frankfurt, Germany, June 23-24, 2008: 1-4.
    [66] Popovic D.S., Boskov E.E., Bekut D.D., et al. Impact of distributed generators in Hybrid MV and LV distribution networks[A]. Proceedings of the 4th European PV-Hybrid and Mini-Grid Conference[C], Glyfada, Greece, May 29-30, 2008:1-6.
    [67] Enslin J.H.R., Jansen C.P.J., Bauer P.. In store for the future? Interconnection and energy storage for offshore wind farms[J]. Renewable Energy World, 2004, 7(1): 104-113.
    [68] Heier S.. Grid integration of wind energy conversion systems[M]. Chichester, UK: John Wiley & Sons Inc, 1998.
    [69] Hingorani N.G.., Gyugyi L.. Understanding FACTS[M]. New York: IEEE Press, 2000.
    [70] Enslin J.H.R., Jansen C.P.J., Bauer P.. Integrated approach to network stability and wind energy technology for on-shore and offshore Applications[EB/OL]. Available on: http://members.lycos.nl/caspoceducation/pq_6_3.pdf, 2009-6-2.
    [71] Abu-Sharkh S., Arnold R.J., Kohler J., et al. Can microgrids make a major contribution to UK energy supply?[J]. Renewable and Sustainable Energy Reviews, 2006, 10(2): 78-127.
    [72]杨培宏,刘文颖.分布式发电的种类及前景[J].农村电气化, 2007, (3): 54-56.
    [73]程华,徐政.分布式发电中的储能技术[J].高压电器, 2003, 39(3): 53-56.
    [74] Mcdowall J.. Conventional battery technologies-present and future[A]. Proceedings of IEEE Power Engineering Society Summer Meeting[C], Seattle, Washington, USA, July 16-20, 2000: 1538-1540.
    [75]赵贺.电力电子学在电力系统中的应用-灵活交流输电系统[M].北京:中国电力出版社, 2000.
    [76] Kumpulainen L., Komulainen R.. General overview on issues related to the connection of DG in the network [EB/OL]. Available on: http://www.energia.fi/content/root%20content/energiateollisuus/fi/julkaisut%20ja%20tutkimukset/s%C3%A4hk%C3%B6voimatekniikan%20pooli/codgunet/wp1.pdf?SectionUri=%2Ffi%2Fjulkaisut%2Fsahkovoimatekniikanpooli, 2009-6-9.
    [77] Brahma S.M., Girgis A.A.. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation[J]. IEEE Trans on Power Delivery, 2004, 19(1): 56-63.
    [78] Girgis A., Brahma S.. Effect of distributed generation on protective device coordination in distribution system[A]. Proceedings of Large Engineering Systems Conference on Power Engineering[C], Halifax, Nova Scotia, Canada, July 11-13, 2001: 115-119.
    [79] Barker P.P., Mello R.W.D.. Determining the impact of distributed generation on power systems. I. Radial distribution systems[A]. Proceedings of IEEE Power Engineering Society Summer Meeting[C]: Vol 3,Seattle, Washington, USA, July 16-20, 2000: 1645-1656.
    [80] Urdenata A., Restrepo H., Marques S., et al. Co-ordination of directional overcurrent relay timing using linear programming[J]. IEEE Trans. Power Delivery, 1996, 11(1): 122-129.
    [81] Urdaneta A., Nadira R., Prez L.. Optimal co-ordination of directional overcurrent relay in interconnected power systems[J]. IEEE Trans on Power Delivery, 1998, 3(3): 903-911.
    [82] Abyaneh H.A., Keyhani R.. Optimal co-ordination of overcurrent relays in power system by dual simplex method[A]. Proceedings of 1995 Australasian Universities Power Engineering Conference (AUPEC)[C], Perth, Australia, September 25-28, 1995: 440-445.
    [83] Chattopadhyay B., Sachdev M.S., Sidhu T.S.. An on-line relay coordination algorithm for adaptive protection using linear programming technique[J]. IEEE Trans on Power Delivery, 1996, 11(1): 165-173.
    [84] So C.W., Li K.K., Lai K.T., et al. Application of genetic algorithm for overcurrent relay coordination[A]. Proceedings of the Sixth International Conference on Developments in Power System Protection (Conf. Publ. No. 434)[C], Nottingham, UK, March 25-27, 1997: 66-69.
    [85] Razavi F., Abyaneh H.A., Al-Dabbagh M., et al. A new comprehensive genetic algorithm method for optimal overcurrent relays coordination[J]. Electric Power Systems Research, 2008, 78(4): 713-720.
    [86] So C.W., Li K.K.. Time coordination method for power system protection by evolutionary algorithm[J]. IEEE Trans on Industry Applications, 2000, 36(5): 1235-1240.
    [87] So C.W., Li K.K.. Evolutionary algorithm for protection relay setting coordination[A]. Proceedings of International Conference on Power System Technology (PowerCon 2000)[C]: Vol 2, Perth, Australia, December 4-7, 2000: 813-817.
    [88] So C.W., Li K.K.. Overcurrent relay coordination by evolutionary programming[J]. Electric Power Systems Research, 2000, 53(2): 83-90.
    [89] Wang Lingfeng, Singh C.. Reliability-constrained optimum recloser placement in distributed generation using ant colony system algorithm[A]. Proceedings of IEEE PES Power Systems Conference and Exposition (PSCE '06)[C]: Vol 1, Atlanta, GA, USA, October 29 -November 1, 2006: 1860-1865.
    [90]袁荣湘,陈U,吴昊.采用PSO算法的反时限过流保护配合方法[J].高电压技术, 2009, 35(7): 1730-1735.
    [91] Zeineldin H.H., El-Saadany E.F., Salama M.M.A.. Optimal coordination of overcurrent relays using a modified particle swarm optimization[J]. Electric Power Systems Research, 2006, 76(11): 988-995.
    [92] Karegar H.K., Abyaneh H.A., Ohis V., et al. Pre-processing of the optimal coordination of overcurrent relays[J]. Electric Power Systems Research, 2005, 75(2): 134-141.
    [93] Abyaneh H.A., Al-Dabbagh M., Karegar H.K., et al. A new optimal approach for coordination of overcurrent relays in interconnected power systems[J]. IEEE Trans on Power Delivery, 2003, 18(2): 430-435.
    [94] Chaitusaney S., Yokoyama A.. Impact of protection coordination on sizes of several distributed generation sources[A]. Proceedings of the 7th International Power Engineering Conference (IPEC 2005)[C]: Vol 2, Singapore, November 29 - December 2, 2005: 669-674.
    [95] Chaitusaney S., Yokoyama A.. An appropriate distributed generation sizing considering recloser-fuse coordination[A]. Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition[C], Dalian, China, August 23-25, 2005: 1- 6.
    [96] So C.W., Li K.K.. Protection relay coordination on ring-fed distribution network with distributed generations[A]. Proceedings of 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (TENCON '02.)[C]: Vol 3, Beijing China, October 28-31, 2002: 1885-1888.
    [97] Brahma S.M., Girgis A.A.. Microprocessor-based reclosing to coordinate fuse and recloser in a system with high penetration of distributed generation[A]. Proceedings of IEEE Power Eng. Soc. Winter Meeting[C]: Vol 1, New York, NY, USA, January 27-31, 2002: 453-458.
    [98] Wan Hui, Wong K.P., Chung C.Y.. Multi-agent application in protection coordination of power system with distributed generations[A]. Proceedings of IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century[C], Pittsburgh, PA, USA, July 20-24, 2008: 1-6.
    [99] Wan Hui, Li K.K., Wong K.P.. Multi-agent application of substation protection coordination with distributed generators[A]. Proceedings of International Conference on Future Power Systems[C], Amsterdam, Netherlands, November 16-18, 2005: 1-6.
    [100] Zeng Xiangjun, Li K.K., Chan W. L., et al. Multi-agents based protection for distributed generation systems[A]. Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT 2004)[C], Hong Kong, April 5-8, 2004: 393-397.
    [101] Wang Lingfeng, Singh C. Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm[J]. IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2008, 38(6): 757-764.
    [102] Pregelj A., Begovic M., Rohatgi A.. Recloser allocation for improved reliability of DG-enhanced distribution networks[J]. IEEE Trans on Power Systems, 2006, 21(3): 1442-1449.
    [103] Chaitusaney S., Yokoyama A.. Reliability Analysis of Distribution System with Distributed Generation Considering Loss of Protection Coordination[A]. Proceedings of 2006 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)[C], Stockholm, Sweden, June 11-15, 2006: 1-8.
    [104] Haslam S.J., Crossley P.A., Jenkins N.. Design and field testing of a source based protection relay for wind farms[J]. IEEE Trans on Power Delivery, 1999, 14(3): 818-823.
    [105] Crossley P.A., Haslam S.J., Jenkins N.. Evaluation of a new type of protection relay for wind farms[A]. Proceedings of IEE Colloquium on System Implications of Embedded Generation and Its Protection and Contro[C], London, UK, February 25, 1998: 7/1-7/6.
    [106]杨国生李欣周泽昕.风电场接入对配电网继电保护的影响与对策[J].电网技术, 2009, 33(11), 87-91.
    [107]孙景钌,李永丽,李盛伟,等.含逆变型分布式电源配电网自适应电流速断保护[J].电力系统自动化, 2009, 33(14): 71-76.
    [108] Hamlyn A, Cheung H。, Wang Lin, et al. Adaptive Interfacing Control Strategy forElectricity Generations from Wind Power to Distribution Grids[A]. Proceedings of 2007 Large Engineering Systems Conference on Power Engineering[C], Montreal, Quebec, Canada, October 10-12, 2007: 78-83.
    [109] Hamlyn A., Cheung H., Wang Lin, et al. Adaptive protection and control strategy for interfacing wind-power electricity generators to distribution grids[A]. Proceedings of 2008 IEEE Power and Energy Society General Meeting -Conversion and Delivery of Electrical Energy in the 21st Century[C], Pittsburgh, Pennsylvania, USA, July 20-24, 2008: 1-8.
    [110] SLADE P G., WU J L, STACEY E J, et al. The utility requirements for a distribution fault current limiter[J]. IEEE Trans on Power Delivery, 1992, 7(2), 507-515.
    [111]陈刚,江道灼,吕征宇,等.一种新型固态短路限流器拓扑及其控制策略[J].电力系统自动化, 2004, 28( 3) : 32-36.
    [112]郝志杰,江道灼,蔡永华.新型固态故障限流器对电力系统暂态稳定性的影响[J].电力系统自动化, 2004, 28( 8) : 50-56.
    [113]刘华蕾,江道灼,陈刚,等.安装固态短路限流器后距离保护整定的改进方法[J].电力系统自动化, 2006, 30( 2) : 90-95.
    [114]蔡永华,江道灼,吴兆麟.新型固态限流器控制系统的研制[J].电力系统自动化, 2004, 28( 7): 62-65.
    [115]吴罡,陆于平,花丽丹,等.分布式发电采用故障限流器对继电保护性能的影响[J].江苏电机工程, 2007, 26(2):1-4.
    [116] Tang G., Iravani M. R.. Application of a fault current limiter to minimize distributed generation impact on coordinated relay protection[A]. Proceedings of International Conference on Power Systems Transients[C], Montreal, Canada, June 19-23, 2005: 1-6.
    [117] Mcdermott T.E., Dugen R.C.. Distributed generation impact on reliability and power quality indices[A]. Proceedings of IEEE Rural Electric Power Conference[C], Colorado Springs, Colorado, USA, May 5-7, 2002: D3-D3_7.
    [118] Doyle M.T.. Reviewing the impacts of distributed generation on distribution system protection[A]. Proceedings of IEEE Power Engineering Society Summer Meeting Conference[C], Chicago, Illinois, USA, July 21-25, 2002: 103-105.
    [119] Wellinghoff J., Kelly S.G., Spitzer M., et al. Proposed smart grid policy statement and action plan [EB/OL]. Available on:. http://www.ferc.gov/industries/electric/indus-act/smart-grid.asp, 2009-5-2.
    [120] Derene G.. How vulnerable is U.S. infrastructure to a major cyber attack? [EB/OL].Available on: http://www.popularmechanics.com/technology/military_law/4307521.htm, 2009-4-4.
    [121] Jayawarna N., Jenkins N., Barnes M., et al. Safety analysis of a microgrid[A]. Proceedings of International Conference on Future Power Systems[C], Amsterdam, Netherlands, November 16-18, 2005: 1-7.
    [122] IEEE 1547-2003. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems[S]. New York, USA:Institute of Electrical and Electronics Engineers, 2003.
    [123]卢志刚,董玉香.含分布式电源的配电网故障恢复策略[J].电力系统自动化, 2007, 31(1): 89-92, 99.
    [124] Chakraborty S., Weiss M.D, Simoes M.G.. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Trans on Industrial Electronics, 2007, 54(1): 97-109.
    [125]张学松,柳焯,于尔铿,等.配电网潮流算法比较研究[J].电网技术, 1998, 22(4): 45-49.
    [126] Haley P.H., Ayres M.. Super decoupled loadflow with distribution slack bus[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104 (1): 104-133.
    [127] Baran M.E., Wu F.F.. Optimal sizing of capacitors placed on a radial distribution systems[J]. IEEE Trans on Power Systems, 1989, 4(1): 735-743.
    [128]刘国威,孙秋野,张化光.配电系统非恒功率负荷潮流计算方法[J].中国电机工程学报, 2008, 28(16): 22-27.
    [129]顾秀芳,关长余.配电网潮流计算的拓扑分析研究[J].华北电力大学学报, 2008, 35(2): 47-50.
    [130]王丹,常宝立.一种用于配网潮流计算的节点编号新方法[J].电力系统及其自动化学报, 2003, 15(1): 22-26.
    [131]杨仪松,王宽,周玲,等.一种配电网潮流计算的新方法[J].继电器(Relay), 2006, 34(13): 46-49.
    [132]颜伟,刘方,王官洁,等.辐射型网络潮流的分层前推回代算法[J].中国电机工程学报, 2003, 23(8): 76-80.
    [133]李志民,李卫星,刘迎春.辐射状配电系统可靠性评估的故障遍历算法[J].电力系统自动化, 2002, 26(2): 53-56.
    [134]李丽,华栋.配电网拓扑节点编号方案及其潮流计算[J].华东电力, 2005, 33(4):17-20.
    [135] Yang Hui, Wen Fushuan, Wang Liping, et al. Newton-downhill algorithm for distribution system power flow analysis[A]. Proceedings of the 2nd IEEE International Conference on Power and Energy (PECon 08) [C], Johor Baharu, Malaysia, 2008: 1628-1632.
    [136] Yang Hui, Wen Fushuan, Wang Liping. Newton-Raphson on power flow algorithm and Broyden method in distribution systems[A]. Proceedings of the 2nd IEEE International Conference on Power and Energy (PECon 08) [C], Johor Baharu, Malaysia, 2008: 1613-1618.
    [137]臧睿,杨丽徙,娄和恭,等.前推回代潮流算法在城网规划中的应用[J].郑州工业大学学报, 2000, 21(4):82-84.
    [138] Chen T.H., Chen M.S., Hwang K.J., et al. Distribution system power flow analysis-a rigid approach[J]. IEEE Trans on Power Delivery, 1991, 6(3): 1146-1152.
    [139] Abur A., Singh H., Liu H., et al. Three phase power flow for distribution systems with dispersed generation[A]. Proceedings of 14th PSCC, Seville, 2002: 1-7.
    [140] Naka S., Genji T., Fukuyama Y.. Practical equipment models for fast distribution power flow considering interconnection of distributed generators[A]. Proceedings of IEEE Power Engineering Society Summer Meeting[C], Vancouver, Canada, 2001: 1-6.
    [141] Wang Caisheng, Nehrir M.H.. Analytical approaches for optimal placement of distributed generation sources in power system[J]. IEEE Trans on Power Systems, 2004, 19(4): 2068-2076.
    [142] Feij?o A.E., Cidrás J.. Modeling of wind farms in the load flow analysis[J]. IEEE Trans on power systems, 2000, 15(1): 110-115.
    [143] Zhu Y., Tomsovic K.. Adaptive power flow method for distribution systems with dispersed generation[J]. IEEE Trans on Power Delivery, 2002, 17(3): 822-827.
    [144]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报, 2003, 23(1): 74-79.
    [145]刘伟良,黄纯,向为,等.基于叠加原理和前代后代法的环状配电网潮流计算[J].继电器, 2005, 33(4): 17-21.
    [146]王守相,黄丽娟,王成山,等.分布式发电系统的不平衡三相潮流计算[J].电网技术, 2007, 27(8): 11-15.
    [147]丁明,郭学凤.含多种分布式电源的弱环配电网三相潮流计算[J].中国电机工程学报, 2009, 29(13): 35-40.
    [148] Cheng C.S., Shirmohammadi D.. A three-phase power flow method for real-time distribution system analysis[J]. IEEE Transaction on Power Systems, 1995, 10(2): 671-679.
    [149] Zimmerman R.D., Chiang H.. Fast decoupled power flow for unbalanced radial distribution systems[J]. IEEE Transaction on Power Systems, 1995, 10(4): 2045-2051.
    [150] Shirmohammadi D., Hong H.W., Semlyen A., et al. A compensation-based power flow method for weakly meshed distribution and transmission networks[J]. IEEE Transaction on Power Systems, 1988, 3(2): 753-762.
    [151] Luo G.X., Demlyen A.. Efficient load flow for large weakly meshed networks[J]. IEEE Transaction on Power Systems, 1990, 5(4): 1309-1316.
    [152]陈海炎,陈金富,段献忠.含分布式电源的配电网潮流计算[J],电力系统自动化, 2006, 30(1): 35-40.
    [153]孙健,江道灼,刘志华.基于前推回代的配电网潮流改进算法[J].电力自动化设备, 2004, 24(3): 81-84.
    [154]丁心海,王先甲,黄涌. 10kV配电网潮流计算方法的实用化改进[J].中国电力, 2009, 42(7): 42-45.
    [155] Makarov Y.V., Reshetov V.I., Stroev A., et al. Blackout Prevention in the United States, Europe, and Russia[J]. Proceedings of the IEEE, 2005, 93(11): 1942-1955.
    [156]唐斯庆,张弥,李建设,等.海南电网“9?26”大面积停电事故的分析与总结[J].电力系统自动化, 2006, 30(1): 1-7, 16.
    [157]孙宏宾,张伯明.配电潮流前推回代法的收敛性研究[J].中国电工程学报, 1999, 19(7) : 26 29.
    [158]张尧,王琴.树状网的潮流算法[J].中国电机工程学报, 1998, 18(3): 217-220.
    [159] Sun D.I.H., Abe S., Shoults R.R., et al. Calculation of Energy Losses in a Distribution System[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(4): 1347-1356.
    [160] Goswami S.K., Basu S.K.. Direct Solution of Distribution Systems[J]. Proceedings of IEE, Part C, 1991, 138(1):78 - 88.
    [161] Teng Jenhao. A Direct Approach for Distribution System Load Flow Solutions[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 882-887.
    [162]蔡中勤,郭志忠.基于拟流编号法的辐射型配电网牛顿潮流法[J].中国电机工程学报, 2002, 20(6): 13-16.
    [163] Zhang Fang, Cheng C.S.. A modified newton method for radial distribution systempower flow analysis[J]. IEEE Trans. on Power Systems , 1997 , 12 (1): 389 - 397.
    [164] Berg I.L., Hawkins E.S., Pieines W.W.. Mechanized calculation of unbalanced load flow on radial distribution circuits[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(4): 415-421.
    [165]吴际舜.电力系统稳态分析的计算方法[M].上海:上海交通大学出版社, 1992: 1-8.
    [166] Stott B.. Review of load-flow calculation methods[J]. Proceedings of the IEEE, 1974, 62(7): 916-929.
    [167] Leonidopoulos G.. Fast Linear Method and convergence Improvement of Load Flow Solution Methods[J]. Electric Power System Research, 1989, 16(1): 23-31.
    [168]谢如彪,姜培庆.非线性数值分析[M].上海:上海交通出版社, 1984.
    [169]奥特加J.M.,莱因博尔特W.C..多元非线性方程组迭代解法[M].北京:科学出版社, 1983.
    [170]郑咸义.计算方法[M].广州:华南理工大学出版社, 2002.
    [171]冯果忱.非线性方程组迭代解法[M].上海:上海科学技术出版社, 1989.
    [172]李庆扬,莫孜中等.非线性方程组的数值解法[M].北京:科学出版社, 1987.
    [173] Tong S., Miu K.. A network-based distributed slack bus model for DGs in unbalanced power flow studies[J]. IEEE Trans on Power Systems, 2005, 20(2): 835-842.
    [174]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化, 2005, 29(24): 39-44.
    [175]王守相,江兴月,王成山.含风力发电机组的配电网潮流计算[J].电网技术, 2006, 30(21): 42-45, 61.
    [176]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化, 2001, 25(12): 53-56.
    [177]刘正谊,谈顺涛,曾祥君.分布式发电及其对电力系统分析的影响[J].华北电力技术, 2004, (10): 18-20, 23.
    [178]温阳东,王欣.分布式发电对配电网继电保护的影响[J].继电器, 2008, 36(1): 12-14, 26.
    [179]梁志鹏,谢正武.中国分布式发电的机遇和挑战[J].节能环保, 2004, (11): 11-13.
    [180] Puttgen H.B., Macgregor P.R., Lambert F.C.. Distributed generation: semantic hype or the dawn of a new era?[J]. IEEE Power and Energy Magazine, 2003, 1(1): 22-29.
    [181]钱科军,袁越.分布式发电技术及其对电力系统的影响[J].继电器, 2007, 35(13):25-29.
    [182]肖鑫鑫.计及分布式电源的配网潮流和短路电流计算研究[D].上海:上海交通大学. 2008.
    [183]刘波,张焰,杨娜.计及分布式电源的配电网潮流和断线故障分析算法[J].上海交通大学学报, 2008, 42(12): 2028-2032, 2036.
    [184]张志坚,王建东,马进.分布式发电及其关键技术[J].山西电力, 2007, (2): 57-61, 64.
    [185]莫颖涛.影响我国分布式发电发展的关键因素[J].电网技术, 2008, 32(s1): 176-178.
    [186]胡骅,徐冲,吴汕,等.影响用户侧分布式发电经济性因素分析[J].电力自动化设备, 2008, 28(5): 29-33.
    [187] Hatziadoniu C.J., Lobo A.A., Pourboghrat F., et al. A simplified dynamic model of grid-connected fuel-cell generators[J]. IEEE Trans on Power Delivery, 2002, 17(2): 467-473.
    [188] El-Sharkh M.Y., Rahman A., Alam M.S.. Analysis of Active and Reactive Power Control of a Stand-Alone PEM Fuel Cell Power Plant[J]. IEEE Transactions on Power Systems, 2004, 19(4), 2022-2028.
    [189]沈海权,李庚银,周明.联网燃气轮机动态特性分析[J],电网技术, 2004, 28(16): 27-31.
    [190]屈莉莉,杨兆华,杨振坤,等.新型电力系统蓄电池充放电装置的控制方式[J].华东电力, 2004, 32(12):48-50.
    [191]王健,康龙云,曹秉刚.可再生能源分布式发电系统能量互补控制的研究[J].西安交通大学学报, 2005, 39(7): 766-770.
    [192] Ei-Khattam W., Salama M.M.A.. Distributed generation technologies, definitions and benefits[J]. Electric Power System Research, 2004, 71(2): 119-128.
    [193] Erlich I., Shewarega F.. Interaction of large wind power generation plants with the power system[A]. Proceedings of First International Power and Energy Conference (PECon 2006)[C], putrajaya, Malaysia, November 28-29, 2006: 12-18.
    [194] Driesen J., Belmans R.. Distributed generation: challenges and possible solutions[A]. Proceedings of IEEE Power Engineering Society General Meeting[C], Montreal, Canada, June 18-22, 2006: 1-8.
    [195]王成山,马立克.含风电场电源的配电系统三相潮流计算[J].电力系统自动化,2006, 30(16): 21-26.
    [196]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化, 2006, 30(15): 10-14.
    [197]陈琳,钟金,倪以信,等.含分布式电源的配电网无功优化[J].电力系统自动化, 2006, 30(14): 20-24.
    [198] Kauhaniemi K., Kumpulainen L.. Impact of distributed generation on the protection of distribution network[A]. Proceedings of the Eighth IEE International Conference on Developments in Power System Protection[C], Amsterdam, April 5-8, 2004: 315-318.
    [199] Britto T.M., Morais D.R., Marin M.A., et al. Distributed generation impacts on the coordination of protection systems in distribution networks[A]. Proceedings of IEEE/PES Transmission and Distribution Conference & Exposition[C], Latin America, Nov. 8-11, 2004: 623-628.
    [200] Dwaraknath M.H., Nowitz L.. An application of liner graph theory for co-ordination of directional overcurrent relays[A]. Proceedings of SIAM Conference Elect. Power Problem: Math. Challenge[C], Seattle, WA, 1980: 104-114.
    [201] Damborg M.J., Ramaswami R., Venkata S.S., et al. Computer aided transmission protection system design, part I: Algorithm[J]. IEEE Transmissions on Power Apparatus and Systems, 1984, PAS-103(1): 51-59.
    [202] Whiting J.P., Lidgate D.. Computer prediction of IDMT relay setting and performance for interconnected power systems[J]. IEE Generation, Transmission and Distribution, 1983, 130(3): 139-147.
    [203] Ramswami R., Mcguire P.F.. Integrated coordination and short circuit analysis for system protection[J]. IEEE Trans. Power Delivery, 1992, 7(3):1112-1119.
    [204] Braga A.S., Saraiva J.T.. Coordination of overcurrent directional relays in meshed networks using the Simplex method[A]. Proceedings of IEEE MELECON Conf.[C], Bari, Italy, Vol. 3, May 13-16, 1996: 1535-1538.
    [205] Zeienldin H., Ei-Saadamy E.F., Salama M.A.. A novel problem formulation for directional overcurrent relay coordination[A]. Proceedings of Large Engineering systems Conference on Power Engineering[C], Canada, July 28-30, 2004: 48-52.
    [206] Tuitemwong K., Premrudeepreechacharn S. Expert system for protective devices coordination in radial distribution network with small power producers[A] Proceedings of IEEE Lausanne Power Tech[C], Switzerland, July 1-5, 2007: 1159-1164.
    [207]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社, 2006.
    [208] Stron R., Price K.. DE-a simple and efficient heuristic for global optimization over continuous space[J]. Journal of global optimization, 1997, 11(4): 341~359.
    [209]梁才浩,段献忠,钟志勇,等.基于差异进化和PC集群的并行无功优化[J].电力系统自动化, 2006, 30(1): 29-34.
    [210] Zeienldin H., Ei-Saadamy E.F., Salama M.M.A.. Protective relay coordination for micro-grid operation using particle swarm optimization[A]. Proceedings of Large Engineering Systems Conference on Power Engineering[C], Canada, July 26-28, 2006: 152-157.
    [211] Conti S.. Analysis of distribution network protection issues in presence of dispersed generation[J]. Electric Power System Research Journal, 2009, 79(1): 49-56.
    [212] Directive 2001/77/EC of the European Parliament and of the Council of September 27, 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. [EB/OL]. [2009-6-10]. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:283:0033:0033:EN:PDF
    [213] Directive 2003/54/EC of the European Parliament and of the Council of June 26, 2003 connerning common rules for the internal market in electricity and repealing Directive 96/92/EC. [EB/OL]. Available on: http://vlex.com/vid/internal-market-electricity-repealing-37442435, 2009-6-10.
    [214] Silva J.A., Funmilayo H.B., Butler-Purry K.L.. Impact of distributed generation on the IEEE 34 node radial test feeder with overcurrent protection[A] Proceedings of the 39th North American Power Symposium (NAPS '07) [C], Las Cruces, NM, September 30-October 2, 2007: 49-57.
    [215] Wang S.X., Zhao W., Chen Y.Y.. Distribution system reliability evaluation considering DG impacts[A]. Proceedings of the third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT)[C], Nanjing, China, April 6-9, 2008: 2603-2607.
    [216] Salman S.K., Rida I.M.. Investigating the impact of embedded generation on relay settings of utilities electrical feeders[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 246-251.
    [217]王成山,李鹏.分布式发电系统仿真理论与方法[J].电力科学与技术学报, 2008, 23(1): 8-12.
    [218] Frunt J., Kling W.L., Myrzil J.M.A., et al. Effects of further integration of distributedgeneration on the electricity market[A]. Proceedings of the 41st International Universities Power Engineering Conference (UPEC '06) [C], Newcastle-upon-Tyne, UK, Sept. 6-8, 2006: 1-5.
    [219] Gardner P., Garrad H.P.. Quantifying the impact of renewables on network voltage quality. IEE Colloquium on Protection and Connection of Renewable Energy Systems (Ref. No. 1999/205)[C], 1999: 8/1-8/6.
    [220] Malmedal K., Kroposki B., Sen P.K.. Distributed energy resources and renewable energy in distribution systems: protection considerations and penetration levels[A]. Proceedings of IEEE Industry Applications Society Annual Meetingp[C], Edmonton, Alberta, Canada, Oct. 5-9, 2008:1-8.
    [221]曹国臣,韩蕾,祝滨.大电网分布式自适应继电保护系统的实现方法[J].电力系统自动化, 2000, 24(13): 19-22, 51.
    [222] Abdelaziz A.Y., Talaat H.E.A, Nosseit A.I., et al. An adaptive protection scheme for optimal coordination of overcurrent relays[J]. Electric Power Research, 2002, 61 (1): 129.
    [223] Li Yinhong, Duan Xianzhong. A study on integrated adaptive relaying system for large-scale mixed power network[A]. Proceedings of Canadian Conference on Electrical and Computer Engineering: Toward a Caring and Humane Technology[C]: Vol 1, Montreal, Canada, May 4-7, 2003: 575-578.
    [224] Kumar J.A., Venkata S.S., Damborg M.J.. Adaptive transmission protection: concepts and computational issues[J]. IEEE Transactions on Power Delivery, 1989, 4 (1): 177-185.
    [225]沈冰,何奔腾,张武军.新型自适应距离继电器[J].电力系统自动化, 2007, 31(7): 39-44.
    [226]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社, 2007.
    [227]黄伟,雷金勇,夏翔,等.分布式电源对配电网相间短路保护的影响[J].电力系统自动化, 2008, 32(1): 93-97.
    [228] Urdenta A.J., Perez L.G., Resterbo H.. Optimal coordination of directional over current relays considering dynamic changes in the network topology[J]. IEEE Transactions on Power Delivery, 1997, 12(4):1458-1464.
    [229] So C.W., Li K.K.. Intelligent method for protection coordination[A]. Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuringand Power Technologies (DRPT 2004)[C], Hong Kong, April 5-8, 2004: 378-382.
    [230] So C.W., Li K.K.. The influence of time coordination method on supply reliability[A]. Proceedings of IEEE Industry Application Society Annual meeting[C], Roma, Italy, October 8-12, 2000: 3248-3253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700