用户名: 密码: 验证码:
安吉县毛竹林碳储量时空变异遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹林是中国亚热带地区特殊的森林类型,在区域生态系统中具有重要地位和作用。竹林资源巨大的生物量、碳储量在维护区域生态环境和全球碳平衡中的作用已得到广泛证实。国内外对竹林资源的研究也逐渐深入,结合遥感资源对竹林信息提取的方法研究已取得较多成果,国内对竹类生物量及单株生物量的空间分配规律也进行了较为细致的研究。但就大尺度、时间序列毛竹林地上生物量/碳储量的空间自相关与异质性等研究还不足,不足以从空间上对毛竹林生物量/碳储量进行分析和评价,难以确切地反映毛竹林在时间序列中的变化过程和特征。因此,这方面的研究具有重要意义。
     本研究以浙江省安吉县为试验区,采用近30年(1986到2008)5期(1986、1991、1998、2004、2008)Landsat TM卫星遥感影像,在GIS和GS+等相关软件的支持下,对全县毛竹林动态变化及其碳储量时空演变等进行了研究,主要包括以下几个方面:
     1.在对5期遥感影像进行空间配准、大气校正和地形校正的基础上,采用最大似然法对安吉县土地利用类型进行分类,并从中提取研究区的毛竹林遥感信息。
     2.采用动态度等指标,分析了安吉县各乡镇毛竹林动态变化程度;构建了5个时期土地利用转移矩阵,分析安吉县近30年土地利用覆盖变化对毛竹林面积扩张的贡献。
     3、利用2008年遥感影像与对应的样地调查数据,构建毛竹林地上碳储量估算模型,并以该模型为基础对其他4个时期的毛竹林地上碳储量进行估测。
     4.结合地统计学相关原理,计算得到5个时期碳储量的半方差图,并用不同模型对半方差图进行理论模拟,最后,通过最佳变异模型对各时期毛竹林碳储量的空间异质性进行分析和比较,从而获得碳储量时空演变特性。
     通过研究,本文主要得到以下结论:
     1.各个时期影像分类总体精度和毛竹林信息提取的精度比较好,其中总体分类精度都在85%以上,而毛竹林Kappa系数为0.80~0.95。满足竹林遥感信息提取的需要。
     2.在近30年时间里,除昆铜乡毛竹林面积呈负增长外(变化幅度为-8.49%),其他各乡镇的毛竹林面积呈上升趋势,变化幅度为14%~86%,以孝丰镇增长幅度最大,天荒坪镇增长幅度最小。
     3.安吉县毛竹林总面积由1986年占全县总面积的28.89%增加到2008年的38.48%,呈逐年增加的趋势,其中针叶林、阔叶林以及农业用地的减少对毛竹林总面积增加的贡献最大。
     4.毛竹林碳储量/碳密度遥感估算结果表明,从1986年到2008年的近30年的时间里,安吉县毛竹林碳储量/碳密度基本呈逐渐增大趋势,5个时期的碳密度分别是11.50Mg/ha,15.09 Mg/ha,18.35 Mg/ha,23.41 Mg/ha,22.46 Mg/ha。在空间分布上,除1986年碳储量/碳密度空间分布较为均匀外,其余4个时期毛竹林碳储量/碳密度分布格局有较多相似之处,基本呈西南、东南向东北、西北减少的趋势。另外,相对于2008年,各个乡镇碳密度增长速度都超过50%,部分乡镇如杭垓、章村增长速度超过100%。
     5.安吉县毛竹林碳储量半方差函数计算和模拟表明,除1991年的理论最优模型为球状模型外,其余4个时期均可采用指数模型进行模拟。
     6、对理论模型结构分析表明,安吉县毛竹林碳储量空间自相关范围以1986年最大为9870m,1991以后空间自相关范围明显减小,在2000~3000m之间; 5个时期的碳储量/碳密度具有中等空间自相关性特征,其空间结构比C C0 +C分别是50.1%、72.4%、66.8%、67.3%和65.6%,说明地形、土壤、气候等结构性因素对安吉县毛竹林碳储量空间异质性起主要作用。在不考虑1986年的前提下,从1991年到2008年,随机因素所占的比例呈增加趋势,即随机方差C0所占的比例在增加,这一点与安吉县近年毛竹林人为经营干扰情况是一致的。
Bamboo forest is a special forest type mainly distributed in semi-tropical areas of China. It has been widely confirmed that bamboo forests with huge biomass or carbon storage play important roles in protecting regional ecological environment and maintaining global carbon balance. As studies on bamboo forests increased, many methods used to extract bamboo forest information based on remote sensing data were proposed and a number of publications focus on estimating bamboo biomass and its spatial distribution. However, study on the spatial autocorrelation and heterogeneous of Moso bamboo aboveground biomass (AGB)/ aboveground carbon (AGC) storage in a large scale and time-series is rare. Therefore, it is important to evaluate and analyze the spatial change characteristic of bamboo forest AGB/AGC, and this study is significant.
     In this study, based on remote sensing images with five different times, RS, GIS and GS+ were used to study spatial heterogeneous characteristics and changes in carbon storage of Moso bamboo in Anji, Zhejiang province, China. This study includes the following aspects:
     1. Maximum likelihood method was used to extract Moso bamboo forest information based on Landsat TM images.
     2. Rangeability and dynamical degree were used to analyze the spatial dynamic change character of bamboo forest. Effects of land cover change on bamboo forest were been analyzed.
     3. Based on the integration of Landsat TM and field inventory data, aboveground carbon storage estimation model was built and then used to estimate aboveground carbon storage in different periods.
     4. The semivariogram of carbon storage were calculated using geostatistical software GS+ and these graphs were fitted using different statistical models. The optimal model was used to analyze the spatial heterogeneity of Moso bamboo forest carbon storage in five periods.
     This study mainly gets the following conclusions:
     1. Classification accuracy of each image and Moso bamboo forest was high enough. The overall classification accuracy of each TM image was higher than 85%, and kappa coefficient of Moso bamboo forest ranged from 0.80 to 0.95. The classification accuracy is suitable for application.
     2. Except decrease in bamboo forest area of Kuntong (rangeability is -8.49%), the bamboo forest areas of other towns were increasing during 1986 and 2008, and the rangeability ranged from 14% to 86%. The rangeability of Xiaofeng was the largest, and the rangeability of Tianhuangping was the smallest.
     3. Area percent of Moso bamboo forests in Anji increased from 28.89% in 1986 to 38.48% in 2008. The main reason is that the conversions of conifer and broad-leave forests to bamboo forests.
     4. Results showed that carbon storage of Moso bamboo forests notablely increased from 1986 to 2008. The aboveground carbon density in 5 different periods were 11.50Mg/ha, 15.09 Mg/ha, 18.35 Mg/ha, 23.41 Mg/ha, 22.46 Mg/ha, respectively. Except that spatial distribution of carbon density in 1986 is even, there are similarities in carbon density spatial distribution for the other four periods. Large carbon density exists in southwest and southeast and small carbon density exists in northeast and northwest. Increase rate of carbon density in each town is over 50% from 1986 to 2008.
     5. Results of semi-variance function simulation showed that the optimal semi-variance function for 1991 is spherical model and the optimal semi-variance functions for the other four periods are exponential models.
     6. Analysis on theoretical model structure showed that a range of spatial autocorrelation in 1986 was the largest (9870 m) and it obviously decreased ranged between 2000 and 3000m after 1991. Spatial autocorrelation characters of carbon density in five periods were medium, and their spatial structure ratio (C/C0+C) were 50.1%、72.4%、66.8%、67.3% and 65.6% respectively. It implies that those structural factors, such as terrain, soil, climate, play an important role in spatial heterogeneity of Moso bamboo forest carbon storage. Except for 1986, ratio of random factors increased from 1991 to 2008, that is, ratio of random variance (C0) increased. The result is consistent with Moso bamboo forests severely disturbed by human management in recent years.
引文
[1]王效科,冯宗炜,欧阳志云.中国森林生态系统的植被碳储量和碳密度研究[J].2001, 12(1):13–16.
    [2]董文福,管东生.森林生态系统在碳循环中的作用[J].重庆环境科学,2002,24(3):25–27.
    [3]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283–288.
    [4]李正才,傅懋毅,徐德全.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1–6.
    [5]李惠敏,陆帆,唐仕敏,唐礼俊,吴千红.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版),2004,43(6):1044–1050.
    [6]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20–24.
    [7] LOBOVIKOV M, PAUDEL S, PIAZZA M, REN H, WU J. 2006. World Bamboo Resources: a thematic study prepared in the framework of the Global Forest Resources Assessment, 2005, 1–87.
    [8] RAYA W. Sub-Optimal Equilibriums in the Carbon Forestry Game: Why Bamboo Should Win But Will Not. Submitted in partial requirement for the Master in Law and Diplomacy, April 2007.
    [9]陈先刚,张一平,张小全,郭颖.过去50年中国竹林碳储量变化[J].生态学报,2008,28(11):5218–5227.
    [10]王燕,王兵,赵广东,郭浩,丁访军,马向前.我国毛竹林生态系统碳平衡研究进展[J].林业科技开发,2008,22(4):9–12.
    [11] DU H Q, ZHOU G. M, FAN W Y, GE H L, XU X J, SHI Y J, FAN W L. Spatial Heterogeneity and Carbon Contribution of Aboveground Biomass of Moso Bamboo by Using Geostatistical Theory ? (a). Plant Ecology, 2010(207), 131–139.
    [12] LOU YIPING, LI YANXIA, KATHLEEN BUCKINGHAM, GILES HENLEY, ZHOU GUOMO. Bamboo and Climate Change Mitigation. INBAR, 2010.
    [13]林华.毛竹林生态系统生物量动态变化规律研究[J].林业科技开发,2002,16:26–27.
    [14]吴鸿编.“十五”浙江林业科技发展报告[M].北京:中国农业出版社,2005.
    [15]黄伯惠.浙江省竹林概况及今后发展的建议[J].浙江林业科技,1988,8(4):47–52.
    [16]戚连忠,朱杭瑞,蔡琳,等.从文献分析看浙江省竹类研究进展[J].浙江林业科技,2000,20(6):68–72.
    [17]朱永军,程爱兴,何钧潮.临安竹产业实现跨越式发展的目标和对策[J].竹子研究汇刊,2003,22(3):8–12.
    [18]丁丽霞,王祖良,周国模,等.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,23(3):297–300.
    [19]肖乾广,陈维英,盛永伟,郭亮.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J].植物学报,1996,38(1):35–39.
    [20]张远,杨彬,殷鸣放,王术海.山区森林资源遥感动态监测的研究[J].福建林业科技,2005,32(1):30–33.
    [21]付晓,王雪军,韩爱惠,冯仲科.纸浆源地桉树资源遥感动态监测与分析[J].北京林业大学学报,2008,30:89–93.
    [22]杨伯钢,董明,祝晓坤,冯仲科.基于遥感影像的北京林地动态监测应用研究[J].2008,30 (3):105–107.
    [23]王大鹏.烟台沿海防护林遥感动态监测[J].数字林业,2009,11.
    [24]李春干,陈琦,谭必增.基于卫星遥感数据空中抽样的大尺度森林资源动态监测[J].林业资源管理,2009(2):106–110.
    [25]李虎,慈龙骏,方建国,陈冬花,刘玉锋.新疆西天山去杉林生物量的动态监测[J].2008,44(10):14–19.
    [26]魏晶,吴钢,邓红兵.长白山高山冻原植被生物量的分布规律[J].应用生态学报,2004,15(11):1999–2004.
    [27] EBERMEYR,E.Die gesamte Lechr der Waldstreu mit Rucksicht auf die chemische Statik des Waldbaues.Belin:J. Springer,1876.
    [28] BOYSEN JENSEN P.Studier over skovtraernes forhold til lyset Tidsskr [J]. F.Skorvaessen, 1910,22:11–16.
    [29] BURGER H.HOLZ, BLATTMENGE, ZUWACHS.12 Fichten im plenterwald Mitteil, Schweiz, Anst. Forttl[J]. Versuchsw,1952,28:109–156.
    [30] KITTERGE, J. Estimation of amount of trees and shrubs [J].J. Forest, 1994,42:905–912.
    [31]项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,22(3):57–64.
    [32] CHEN LIANGFU,et al.Biomass estimation and uncertainty analysis based on CBERS-02 CCD camera data and field measurement [J].Science in China Ser.E Engineering &Materials Science,2005,48(1):116–128.
    [33] LEE.N.J.,and K.NAKANE.Forest vegetation classification and biomass estimation based on landsat TM data in a mountainous region of west Japan[A].In Gholz,H.L.,K.Nakanwe and H.himosa eds:The use of remote sensing in the modeling of forest productivity.Kluwer Academic Pubishers, Netherlands,1997.159-171.
    [34]曹明奎,于贵瑞,刘纪远,李克让.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学D辑地球科学,2004,34(增刊Ⅱ):1-14.
    [35]龚健雅.当代地理信息系统进展综述[J].测绘与空间地理信息,2004,27(1):5–11.
    [36] TUCKER C J, MILLER L D, PEARSON R L. Shortgrass prairie spectral measurements[J]. Photogrammetric Engineering and Remote Sensing, 1975,41: 1175–1183.
    [37] HOLBEN B, TUCKER C J and FAN C-J. Spectral assessment of soybean leaf area and leaf biomass. Photogrammetric Engineering and Remote Sensing, 1980,46:651–656.
    [38] HAME T, SALLI A, ANDERSSON K,et al.A new methodology for the estimation of biomass of conifer-dominate forest using NOAA AVHRR data. Int. J. Remote Sensing, 1997, 18(15):3211–3243.
    [39] TODD S W, HOFFER R M and MILCHUNAS D G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. J. Remote Sensing. 1998,19(3):427–438.
    [40] LEFSKY M A,HARDING D,COHEN W B,et al. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens. Environ., 1999,67:83–98.
    [41] ALEXEYEV, V., R. BIRDSEY, V. STAKANOV & I. KOROTKOV. Carbon in vegetation of Russian forsts: methods to estimate storage and geographical distribution[J]. Water, Air and Soil Pollution, 1995,82:271-182.
    [42] TURNER, D. P., G.J.KOEPPER, M. E. HARMON & J.J. LEE. A carbon budget for forests of the conterminous United States[J]. Ecological Applications, 1995,5:421-436.
    [43] JIARUI DONG, ROBERT K. KAUFMANN, RANGA B. MYNENI, COMPTON J. TUCKER, et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources and sinks[J]. Remote Sensing of Environment, 2003(84):393–410.
    [44] JASON B. DRAKE, ROBERT G. KNOX, RALPH O. DUBAYAH,et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships[J]. Global Ecology & Biogeography, 2003(12):147–159.
    [45] S. S. SAATCHI, R. A. HOUGHTON,et al. Distribution of aboveground live biomass in the Amazon basin[J]. Global Change Biology, (2007)13,816–837.
    [46] DAOLAN ZHENG, LINDA S. HEATH, and MARK J.KUCCY. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA[J]. Journal of Applied Remote Sensing,Vol. 2,021502(2008).
    [47] R.A.HOUGHTON, K.T.LAWRENCE, J.L. HACKLER and SANDRA BROWN. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates[J]. Global Change Biology,2001 ,(7):731–746.
    [48] B.E.LAW, D.TURNER, J.CAMPBELL,et al. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA[J]. Global Change Biology, 2004(10):1429–1444.
    [49] T. CALV?O, and J.M.PALMEIRIM. Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour[J]. Int. J. Remote Sensing, 2004,25(16):3113–3126.
    [50]潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):1–14.
    [51]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18 (2):127–134.
    [52]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊), 1981:34–50.
    [53]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J] .东北林业大学学报,1990,18 (2): 40–46.
    [54]党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究[J].云南大学学报(自然科学版), 1992,14 (2):95–107.
    [55]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].2004,24(1):50–54.
    [56]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497–507.
    [57]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967–973.
    [58]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733–740.
    [59]张德全,桑卫国,李曰峰,王宗泉,盖文杰.山东省森林有机碳储量及其动态的研究[J].植物生态学报,2002,26(增刊):93–97.
    [60]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化[J].应用生态学报,2004,18(12):2687–2692.
    [61]邓旺华,范少辉,官凤英.遥感技术在竹资源监测中的应用探讨[J].竹子研究汇刊,2008,27(3):8–16.
    [62]李仁东,刘纪远.应用Landsat ETM数据估算鄱阳湖湿生植被生物量[J].地理学报,2001,56(5):532–540.
    [63]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832–1840.
    [64]丁圣彦,梁国付.近20年来洛宁县森林植被碳储量及动态变化[J].资源科学,2004,26(3):105–108.
    [65]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108–111.
    [66]徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究[J].林业调查规划,2008,33(3):11–13.
    [67]王政权.地统计学及其在生态学中的应用[M].北京:中国林业出版社,1999:15–20.
    [68]史舟,李艳.地统计学在土壤学中的应用[M].中国农业出版社,2006年第1版.
    [69]王政权,王庆成,李哈滨.红松老龄林主要树种的空间异质性特征与比较的定量研[J].植物生态学报,2000,24(6):718–723.
    [70]孙志虎,牟长城,孙龙.采用地统计学方法对落叶松人工纯林表层细根生物量的估[J].植物生态学报,2006,30(5):771–779.
    [71]洪伟,吴承祯.杉木种源胸径生长地理变异规律的研究[J].植物生态学报,1998,22(2):186–192.
    [72]何志斌,赵文智.黑河下游荒漠河岸典型样带植被空间异质性[J].冰川冻土,2003,25(05):591-596.
    [73]曾宏达.基于DEM和地统计的森林资源空间格局分析[J].地球信息科学,2005,7(2):82–88.
    [74]郭旭东,傅伯杰,陈利顶,马克明,李俊然.河北省遵化平原土壤养分的时空变异特[J] .地理学报,2000,55(5):554–566.
    [75]王淑君,管东生,黎夏,宁巍巍.广州森林碳储量时空演变及异质性分析[J].环境科学学报,2008,28(4):778–785.
    [76]郭起荣,杨光耀,杜天真,施建敏.中国竹林的碳素特征[J].世界竹藤通讯,2005,3(3):25–28.
    [77]王兵,魏文俊,邢兆凯,李少宁,白秀兰.中国竹林生态系统的碳储量[J].生态环境,2008,17(4):1680–1684.
    [78]游先祥.遥感原理及在资源环境中的应用[M].中国林业出版社,2003年9月(第1版) .
    [79]任国业.大熊猫主食竹彩红外遥感判读技术探讨[J].遥感信息,1990年第4期.
    [80]任国业,喻歌农,晏懋昭.应用地理信息系统调查与管理大熊猫主食竹资源[[J].西南农业学报,1993,6(3):33–39.
    [81]颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].应用技术,2004,(2):31–34.
    [82]刘健,余坤勇,亓兴兰,黄维友.基于专家分类知识库的林地分类[J].福建农林大学学报,2006,35(1):42–46.
    [83]施拥军,徐小军,杜华强,周国模,金伟,周宇峰.基于BP神经网络的竹林遥感监测研究[J].浙江林学院学报,2008,25(4):417–421.
    [84]杜华强,周国模,葛宏立,赵宪文,崔林丽.基于TM数据提取竹林遥感信息的方法[J].东北林业大学学报,2008,36(3):35–38.
    [85] SOMYOT SAENGNIN.Application of remote sensing data for estimating bamboo forest production in northern and western part of Thailand[M].Bangkok(Thailand), 1993.
    [86] MENON A R R.Remote sensing application in bamboo resource evaluation:a case study in Kerala[J].Bangkok(Thailand),1994,51–53.
    [87] KHALI AZIZ HAMZAH.Mapping of bamboos area:remote sensing approach[J].Buletin Buluh (Malaysia),1995,3(1):11–12.
    [88] NAIR P V,MENON A R R. Estimation of bamboo resources in Kerala by remote sensingtechniques [J]. Current Science,1998,75(3):209–210.
    [89] TORRII A.Estimation of range expansion rate of bamboo stands using aerial photographs[J]. Japanese Journal of Ecology,1998,48(1):37–47.
    [90] S.JAYAKUMAR,D.I.AROCKIASAMY and S.JOHN BRITTO.Conserving forests in the Eastern Ghats through remote sensing and GIS-A case study in Kolli hills[J].CURRENT SCIENCE,VOL.82,NO.10,25 MAY 2002:1259–1267.
    [91] BHARADWAJ S.P.,SUBRAMANIAN S.,MANDA S.,et al.Bamboo livelihood development planning, monitoring and analysis through GIS and remote sensing[J].Journal of Bamboo and Rattan,2003,2(4):453–461.
    [92] M.LINDERMAN,J.LIU,J.QI,L.AN,Z.OUYANG,J.YANG and Y.TAN.Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data[J].International Journal of Remote Sensing,2004,25(9):1685–1700.
    [93] NISHIKAWA R,MURAKAMI T,YOSHIDA S,et al.Characteristic of temporal range shifts of bamboo stands according to adjacent landcover type[J].Journal of the Japanese Forest Scociety,2005,87(5):402–409.
    [94]聂道平.毛竹林结构的动态特性[J].林业科学,1994,30(3):201–208.
    [95]陈辉,洪伟,兰斌,郑郁善,何东.闽北毛竹生物量与生产力的研究[J].林业科学,1998,34(专刊1):60–64.
    [96]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].杭州:浙江大学.2006.
    [97]鲁顺保,饶玮,彭九生,丁贵杰,张艳杰,朱笃.立地条件对毛竹生物量的影响研究[J].浙江林业科技,2008,28(4):22–27.
    [98]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑, 2007,37(6): 804–812.
    [99]中国绿色时报, 2009年10月14日.
    [100]徐小军.基于LANDSAT TM影像毛竹林地上部分碳储量估算研究[D].临安:浙江农林大学,2009.
    [101]安吉县林业局.安吉县森林资源调查及规划设计成果汇编[G],1999.
    [102]安吉县林业局.安吉县森林资源规划设计调查成果报告[G],2008.
    [103]邓书斌,武红敢,江涛.遥感动态监测中的相对辐射校正方法研究[J].遥感信息,2008(4):71–75.
    [104]范渭亮.毛竹林参数遥感定量反演与软件实现[D].临安:浙江农林大学,2010.
    [105]郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004,(4):66–70.
    [106]史培军,宫鹏.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2003.
    [107]张鹏强,余旭初,刘智,李建胜,万刚.多时相遥感图像相对辐射校正[J].遥感学报,2006,10(3):339–344.
    [108]刘三超,张万昌,蒋建军等.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学,2003,23(5):585–591.
    [109]黄微.一种改进的卫星影像地形校正算法[J].中国图象图形学报,2005,10(9):1124–1129.
    [110]李英成.数字遥感影像地形效应分析与校正[J].北京测绘, 1994,(2):14–19.
    [111]高永年,张万昌.遥感影像地形校正研究进展及其比较实验[J].地理研究, 2008,27(2):467–477.
    [112] LU D S.The potential and challenge of remote sensing based biomass estimation[J].International Journal of Remote Sensing,2006,27(7):1297–1328.
    [113] ATKINSON,P. M. and P. LEWIS, 2000,“Geostatistical Classification for Remote Sensing: An Introduction,”Computers & Geosciences, 26:361–371.
    [114] LO, C.P. and A. K. YEUNG,2002, Concepts and Techniques of Geographic Information systems, Upper Saddle River, NJ: PrenticeHall,429p.
    [115] SWAIN, P. H. and S. M. DAVIS, 1978, Remote Sensing: The Quantitative Approach, New York: McGraw-Hill, 166–174.
    [116] RICHARDS, J. A., and X. JIA, 1999, Remote Sensing Digital Image Analysis: An Introduction, Berlin: Springer, 363 p.
    [117]韦玉春,汤国安,杨昕等编著.遥感数字图像处理教程[M].科学出版社,北京,2008.
    [118]朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报,2003,58(5):643–650.
    [119]田光进,张增祥,周全斌,赵晓丽,刘斌,谭文彬.基于遥感和GIS的北京市土地利用动态演化模式研究[J].遥感信息,2003,(1):7–11.
    [120] JOHN R. JENSEN.遥感数据影像处理导论[M].陈晓玲,龚威,李平湘,田礼季译.机械工业出版社,2007.
    [121]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1998,18(1):81–87.
    [122] ZHU ZHAOHUA and MAXIM L.. Vietnam-Laos Bamboo Sector Feasibility Study. Beijing, PRC: International Network for Bamboo and Rattan, 2006.
    [123]邵景安,芦清水,张小咏.近30年青海三江源西部干旱区草地退化特征的遥感分析[J].自然资源学报,2008,23(4):643–656.
    [124]王宗明,国志兴,宋开山等. 2000~2005年三江平原土地利用履被变化对植被净初级生产力的影响研究[J].自然资源学报,2009,24(1):136–146.
    [125]苏海民,何爱霞.基于RS和地统计学的福州市土地利用分析[J].自然资源学报,2010,25(1):1–99.
    [126]谢锦忠.中国不同竹产区土地利用变化对生态环境影响的比较研究[D].中国林业科学研究院博士论文,2006.
    [127]朱锦懋,江训强,黄儒珠等.毛竹林物种多样性的初步分析[J].福建林学院学报,1996,16(1):5–8.
    [128]余树全,周国模,李翠环.雷竹林生态系统健康的研究[J].北京林业大学学报,2003,25(5):15–19.
    [129]李伟成,盛海燕,钟哲科.竹林生态系统及其长期定位观测研究的重要性[J].林业科学,2006,42(8):95–101.
    [130]郑成洋,何建源,罗春茂等.不同经营强度条件下毛竹林植物物种多样性的变化[J].生态学杂志,2003,22(6):1–6.
    [131]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13–16.
    [132]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1–10.
    [133]魏传华.非参数和半参数模型的研究[D].中国人民大学博士论文,2006.
    [134] KRASNOPOLSKY V M, CHEVALLIER F. Some neural network applications in environmental sciences. PartⅡ: Advancing computational efficiency of environmental models [J]. Neural Networks. 2003,16:335–348.
    [135] ROGERS S K, KABRISKY M. An Introduction to Biological and Artificial Neural Networks for Pattern Recognition[M]. Washington:SPIE Opt Eng Press,1991.
    [136] ABUELGASIM A A, GOPAL S, STRAHLER A H. Forwark and inverse modeling of canopy directional reflectance using a neural network[J]. International Journal of Remote Sensing. 1998,19: 453–471.
    [137] DANSON F M, ROWLAND C S, BARET F. Training a neural network with a canopy reflectance model to estimate crop leaf area index[J]. International Journal of Remote Sensing. 2003,24: 4891–4905.
    [138] FANG H, LIANG S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies[J]. Remote Sensing of Environment. 2005,94:405–424.
    [139] WEISS M, BARET F. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data[J]. Remote Sensing of Environment. 1999,70:293–306.
    [140] XIAOJUN XU, HUAQIANG DU, GUOMO ZHOU, HONGLI GE, YONGJUN SHI, YUFENG ZHON, WEILIANG FAN and WENYI FAN. Estimation of aboveground carbon stock of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest with a Landsat Thematic Mapper image[J]. International Journal of Remote Sensing. 2011.
    [141] HARALICK R M. Statistical and Structural Approaches to Texture[J]. Proceeding of the IEEE. 1979,67:786–804.
    [142] LU D, BATISTELLA M. Exploring TM Image Texture and its Relationship with Biomass Estimation in Rondonia, Brazilian Amazon[J]. Acta Amazonica, 2005,35:249–257.
    [143] ST-LOUIS V, PIDGEON A M, RADELOFF V C. High-resolution image texture as a predictor of bird species richness[J]. Remote Sensing of Environment. 2006,105:299–312.
    [144]曾文华.基于灰度共生法和小波变换的遥感影像纹理信息提取[D].长春市:东北师范大学,2006.
    [145]杜华强.森林排列空间结构分形地统计描述及其与热场之间的关系研究[D].北京:北京林业大学,2005.
    [146]葛剑平,郭海燕,仲莉娜.地统计学在生态学中的应用(I)——基本理论和方法[J] .东北林业大学学报, 1995,23(2):88–94.
    [147] VILLARD. MARC-ANDRE,MAURER. BRIAN A.Geostatistics as a tool for examining hypothesized declines in migratory songbirds[J].Ecology,1996,77(1):59–68.
    [148] TRANGMAR,B.B.,R.S. YOST,and G. UEHERA. Application of geostatistics to spatial studies of soil properties. Adv. Agron.1985, 38:45–94.
    [149]邬建国.景观生态学——格局、过程、尺度与等级[M].高等教育出版社,2000.
    [150]朱连超,殷敬华,温松明,张彦立.高分子科学实验中异常数据的差别与剔除[J].高分子材料科学与工程,2007,23(3):5–8.
    [151] DAVID MG, CHAO S, ZHANG B, OWEN T C. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland,Environmental Pollution 127 (2004) 239-248
    [152] GAN, F. F., KOEHLER, K. J.,Goodness of Fit Tests Based on P-P Probability Plots [J].Technometrics, 1990, 32(3):289–303.
    [153]王斌会,徐勇勇.正态性检验的图示方法及其应用[J].数理统计与应用概率,1999,11(3):249–256.
    [154]张仁铎.空间变异理论与应用[M].科学出版社2005.
    [155]赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用[J].水生生物学报,2000,24(5):514–520.
    [156] CAMBARDELLA CA, MOORMAN TB, NOVAK JM et al. 1994.Field-scale variability of soil properties in central low a soils[J].Soil Sci Soc Am J, 58:1501–1511.
    [157]吴学文,晏路明.普通Kriging法的参数设置及变异函数模型选择方法——以福建省一月均温空间内插为例[J].地球信息科学,2007,9(3):104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700