用户名: 密码: 验证码:
北亚热带林带和农田土壤呼吸及环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2009年3月到2010年11月在江苏省南京市北郊的龙王山林带进行原位观测试验。田间试验于2009年3月到2010年11月在南京信息工程大学农业气象试验站进行原位观测试验。使用便携式土壤CO2通量观测仪(LI-8100,美国LI-COR公司)进行观测。试验结果表明,林带和农田的平均土壤呼吸速率分别为(3.05±0.12)、(2.66±0.20)μmol·(m2·s)-1.林带土壤呼吸和农田土壤呼吸差异不显著(p=0.218)。林带和农田土壤呼吸速率与土壤温度的指数回归关系均达显著水平(p<0.01,p<0.05),林带土壤呼吸的温度敏感性高于农田土壤呼吸的温度敏感性。
     于2009年3月~2010年1月在龙王山北亚热带林带进行短期模拟酸雨试验。结果表明,在本试验阶段,四个酸雨强度处理CK (pH=6.4去离子水)、T1(pH=4.5)、T2(pH=3.5)、T3(pH=2.5)的平均土壤呼吸速率分别为(3.20±0.21)、(3.34±0.30)、(3.51±0.06)、(2.99±0.23)整个观测阶段内,低强度模拟酸雨处理未显著改变北亚热带林带的土壤呼吸,仅高强度模拟酸雨T3显著抑制了土壤呼吸作用。不同酸雨强度处理下的土壤呼吸速率与土壤温度的指数回归关系均达显著水平(p<0.01),模拟酸雨处理降低了北亚热带林带土壤呼吸的温度敏感性。
     为研究臭氧浓度升高对农田土壤呼吸的影响,采用开顶箱(OTC)法设置3个臭氧浓度处理,分别为对照CK、T1(100 nL·L-1臭氧)和T2 (150 nL·L-1臭氧)。结果表明,在本实验阶段内,CK、T1、T2处理的土壤呼吸速率之间无显著差异(p>0.05),其平均土壤呼吸速率分别为(5.36±0.72)、(5.08±0.04)、(4.94±0.18)μmol·(m2·s)-1.不同臭氧浓度处理下的土壤呼吸速率与土壤温度的指数回归关系均达显著水平(p<0.05)。臭氧浓度升高未显著改变冬小麦农田土壤呼吸,但臭氧浓度升高显著降低了土壤呼吸的温度敏感性。
This forest soil respiration experiment was conducted in a northern subtropical natural secondary forest from March 2009 to November 2010. Farmland soil respiration experiment was carried out in agrometeorological experimental station of NanJing University of Information Science & Technology from March 2009 to November 2010. A portable soil CO2 fluxes system was used to measure soil respiration rates. Results showed that forest and farmland soil respiration had significant seasonal variation patterns. Mean soil respiration rates for natural secondary forest and farmland were (3.05±0.12), (2.66±0.20). Independent t-test analysis showed that there were no significant differences (p>0.05) in soil respiration rates among natural secondary forest and farmland. During the experimental period, natural secondary forest and farmland soil respiration showed an exponential relationship with soil temperature. The Q10 values (the respiratory flux at one temperature over the flux at a temperature 10℃lower) were 2.61,1.65 for natural secondary forest and farmland soil respiration. The temperature sensitivity of natural secondary forest soil respiration was higher than that of farmland soil respiration.
     In order to investigate the effects of acid rain on forest soil respiration, a simulated acid rain experiment was conducted in a northern subtropical natural secondary forest from March 2009 to January 2010. Acid rain treatments included CK(pH=6.4,deionized water), T1(pH=4.5), T2(pH=3.5) and T3(pH=2.5). A portable soil CO2 fluxes system was used to measure soil respiration rates. Results showed that soil respiration among all treatments had significant seasonal variation patterns. Mean soil respiration rates for CK, T1, T2 and T3 treatments were (3.20±0.21), (3.34±0.30), (3.51±0.06), (2.99±0.23)μmol·m2·s)-1, respectively. The experimental period was divided into three parts, which were non-growth period 1 (from February,2009 to April,2009), growth period (from Mary,2009 to October, 2009), non-growth period 2 (from November,2009 to January,2010), respectively. A paired t-test analysis showed that simulated acid rain did not inhibit soil respiration, T1 and T2 even promoted soil respiration in slow growing period 1; T3 significantly inhibited soil respiration during the growth period; simulated acid rain also promoted soil respiration during the non-growth period 2.Only T3 significantly inhibited soil respiration during the whole experimental period. During the whole experimental period, soil respiration showed an exponential relationship with soil temperature for each of the treatment. The Q10 values were 3.04,2.73,2.83 and 2.51 for CK, T1, T2, T3 treatments, respectively. Simulated acid rain significantly reduced the temperature sensitivity of soil respiration in the northern subtropical natural secondary forest.
     Field experiments were carried out in a winter wheat farmland, in order to investigate the effects of elevated ozone concentration on soil respiration. Three ozone concentration treatments, which were CK, T1 (100 nL·L-1) and T2 (150 nL·L-1), were arranged using open top chambers (OTCs). A portable soil CO2 fluxes system was used to measure soil respiration rates. Results indicated that there were no significant differences (p>0.05) in soil respiration rates among CK、T1 and T2 treatments. Mean soil respriation rates for CK、T1 and T2 treatments were (5.36±0.72), (5.08±0.04), (4.94±0.18)μmol·(m2·s)-1, respectively.During the experimental period, soil respiration showed an exponential relationship with soil temperature for each of the treatment. The Q10 values were 1.72,1.58 and 1.51 for CK, T1 and T2 treatments, respectively. This study indicated that elevated ozone concentration did not significantly affect soil respiration rates in the winter wheat farmland. Elevated ozone concentration, however, significantly reduced the temperature sensitivity of soil respiration.
引文
[1]Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist,2003,157(2):213-228.
    [2]Almagro M, Lopez J, Querejeta JI, Martinez-Mena M. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry,2009,41,594-605.
    [3]Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rate id ecosystems:Past, present and future[J]. Glob ChangeBiol,2003,9: 479-492.
    [4]Bahn M, Rodeghiero M, Anderson-Dun M et al. Soil respiration in European grasslands in relation to climate and assimilate supply[J]. Ecosystems,2008,11,1352-1367.
    [5]Barbara Walna, Jerzy Siepak, Stanislaw Drzymala. Soil degradation in the Wielkopolski National Park (Poland) as an Effect of Acid Rain Simulation[J]. Water, Air and Soil Pollution,2001,130:1727-1732.
    [6]Bond-lamberty B, Wang C K, Gower S. A global relationship between the heterotrophic and autotrophic components of soil respiration[J]. Glob Change Biol,2004,10,1756-1766.
    [7]Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record [J]. Nature,2010,464(7288):579-582.
    [8]Calatayud A, Iglesias D J, Talon M, Barreno E. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation[J]. Plant Physiology and Biochemistry,2003,41(9):839-845.
    [9]Chen S T, Huang Y, Zou J W, et al. Modeling interannual variability of global soil respiration from climate and soil properties [J]. Agricultural and Forest Meteorology,2010, 105(4):590-605.
    [10]Chameides WL, Li XS, Tian XY, Zhou XJ, Luo C, et al. Is ozone pollution affecting crop yield in China? [J]. Geophysical Research Letters,1999,26(7):867-870.
    [11]Clark CS, Weber JA, Lee EH, et al.. Accentuation of gasexchange gradients in flushes of ponderosa p ine exposed to ozone[J]. Tree Physiology,1995,15:181-189.
    [12]Coleman M D, Dickson R E, Isebrands J G, et al. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone[J]. Tree Physiology,1996, 16(1-2):145-152.
    [13]Davidson E A, V erchot L V, Cattanio J H, et al. Special Issue Controls on soil respiration: imp lications for climate change Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry,2000,48 (1):53-69.
    [14]Dai Z, Liu Y, Wang X and Zhao D. Decrease in soil pH in southern China within about 30 years[J]. Water, Air Soil Pollution,1997,12:151-155.
    [15]Dermody O, Long S P, DeLucia E H. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytologist,2006,169(1):145-155.
    [16]Dixon R K, Brown S, Houghton R A, et al. Carbon pool sand flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [17]Donnelly A, Craigon J, Black C R, Colls J J, Landon G. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)[J]. Physiologia Plantarum,2001,111(4):501-511.
    [18]Draaijers G P, Risman J E, Leeuwen J W. Canopy change processes at the Speulder forest[R]. Report No 722108004. Netherlands:National Institute of Public Health and Environmental Protection Bilthoven,1994,172-235.
    [19]Edwards N T. Root and soil respiration responses to ozone in Pinus taeda-seedlings[J]. New Phytologist,1991,118(2):315-321.
    [20]Fang, C., and J. B. Moncrieff. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry,2001,33(2):155-165.
    [21]FAO. Agriculture:Towards 2015/30. Technical InterimReport April 2000.2001, Rome, Food and Agriculture Organization.
    [22]Feng ZW. Impacts and control strategies of acid deposition on terrestrial ecosystems in China[J]. Engineering Science,2000,2 (9):6-11.
    [23]Freeman C, et al. Export of organic carbon from peat soils[J]. Nature,2001,412:785-787.
    [24]Glass N R, Glass G E, Rennie P J. Effects of acid precipitation[J]. Environmental Science and Technology,1979,13(11):1350-1355.
    [25]George H, Tomlinson P. Acidic deposition, nutrient leaching and forest growth[J]. Biogeochemistry,2003,65:51-81.
    [26]Grandy, A. S., Sinsabaugh, R. L., Neff, J. C., Stursova, M, Zak, D. R. Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions[J]. Biogeochemistry,2008,91,37-49.
    [27]Hanson PJ, Edwards NT, Garten CT, Andrews JA. Separating root and soil microbial contributions to soil respiration:a review of methods and observations[J]. Biogeochemistry, 2000,48,115-146.
    [28]Hertstein V Grunhage L, Jayer H J. Assessment of Past, Present and future impacts of ozone and carbon dioxide on crop yields[J]. Atmos.Environ.1995,29(16):2031-2039.
    [29]Hibbard K A, Law B E, Reichstein M, Sulzman J. An analysis of soil respiration across northern hemisphere temperate ecosystems [J]. Biogeochemistry,2005,73(1):29-70.
    [30]HiranoY, Hijii N. Effects of low pH and aluminum on root morphology of Japanese red cedar saplings[J]. Environmental Pollution,1998,101(3):339-347.
    [31]Houghton J.Global warming[M]. Translated by Dai X-S,Shi G-Y, Dong M. Beijing: Meteorology Press,1990.
    [32]Hogberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature,2001,6839:789-792.
    [33]Hogberg P, Read DJ. Towards a more plant physiological perspective on soil ecology[J]. Trends in Ecology & Evolution 2006,21:548-554.
    [34]Hudgens E, Yavitt J B. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York[J]. Ecosci,1997,4:214-222.
    [35]Hui, D and Y. Luo. Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach[J]. Global Biogeochemical Cycles 2004,18, GB4029, doi:10.1029/2004GB002297.
    [36]Huo S X. Acid rain harm to human health[J]. Medicine&health Care,2004,7:48.
    [37]Hutchinson T C, Watmough S A, Sager E P S, et al. The impact of simulated acid rain and fertilizer application on a mature sugar maple (Acer Saccharum Marsh) forest in central Ontario, Canada [J]. Water, Air and Soil Pollution,1999,109(1-4):17-39.
    [38]Hutchinson T C, Watmough S A, Sager E P S and Karagatzides J D. Effects of excess nitrogen deposition and soil acidification on sugar maple (Acer saccharum) in Ontrario, Canada:an experimental study[J]. Canada Journal of Forest Research,1998,28(2): 299-310.
    [39]Hutchinson G L, Livingston GP. Use of chamber systems tomeasure trace gas fluxes. In: Harper L A, ed. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change[J]. Madison, WI:ASA Special Publication.1993,55:63-78.
    [40]IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle:implications for the Kyoto protocol[J]. Science,1998,280:1393-1394.
    [41]Janssens I A, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests[J]. Global Change Biology,2001,7:269-278.
    [42]Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J-A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E-D. Tang, J.& Law, B. E. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geosci,2010,3:315-322.
    [43]Jensen L S, Mueller T, Tate K R, et al. Soil surface CO2 fluxas an index of soil respiration in situ:A comparison of two chambermethods[J]. Soil Biochem,1996,28:1297-1306.
    [44]Jin MH, Feng ZW, Zhang FZ. Impacts of ozone on the biomassand yield of rice in open-top chamber[J]. Journal of Environmental Sciences,2001,13(2):233-236.
    [45]John D, Antti-Jussi L. Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta.Cu-Ni smelter, SW Finland[J]. Environment Pollution,1998,99:225-232.
    [46]Kanerva T, Palojarvi A, Ramo K, et al. A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem [J]. Plant and Soil,2006,286(1-2): 61-73.
    [47]Kasurinen A, Gonzales P K, Riikonen J, et al. Soil CO2 efflux of two silver birch clones exposed to elevated CO2 and O3 levels during three growing seasons [J]. Global Change Biology,2004,10(10):1654-1665.
    [48]Kasurinen A, KeinanenMM, Kaipainen S, et al. Below ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons[J]. Global Change Biology,2005,11:1167-1179.
    [49]Kasurinen A, Helmisaari HS, Holopainen T.1999. The influence of elevated CO2 and O3 on ozone roots and mycorrhizas of naturally growing young Scots p ine trees during three exposure years[J]. Global Change Biology,1999,5:771-780.
    [50]Kelting DL, Burger JA, Edwards GS. The effects ofozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.)[J]. Forest Ecology and Management,1995, 79:197-206.
    [51]King J S, Preziger K S, Zak D R, et al. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3 [J]. Oecologia,2001,128(2):237-250.
    [52]Kivimaenpaa M, Sellden G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics[J]. Environmental Pollution,2005, 137(3):466-475.
    [53]Kucera C, Kirkham D. Soil respiration studies in tallgrass prairie in Missouri [J]. Ecology, 1971,52:912-915.
    [54]Kuzyakov Y., Bol R. Using natural 13C abundances to differentiate between three CO2 sources during incubation of a grassland soil amended with slurry and sugar[J]. Journal of Plant Nutrition and Soil Science,2004,167,669-677.
    [55]Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry,2006,38:425-448.
    [56]Kuzyakov Y., Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology & Biochemistry,2006,38,747-758.
    [57]Kuzyakov Y, Gavrichkova O. Time lag between photosynthesis and CO2 efflux from soil:a review[J]. Global Change Biology,2010, doi:10.1111/j.1365-2486.2010.02179.
    [58]Larionova A A, Yermo layev A M, Blagodatsky S A, et al. Soils and climate change. Soil respiration and carbon balance of gray fo restso ils as affected by land use[J]. BioL Fert Soils,1998,27 (3):251-257.
    [59]Lawler A. Research lime light falls on carbon cycle[J]. Science,1998,280:1683-1684.
    [60]Leitao L, Bethenod O, Biolley J P. The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis:Effects on vegetative biomass, pigmentation, and carboxylases (PEPc and Rubisco). Plant biology,2007,9(4):478-488.
    [61]Likens G E, Driscoll C T, Buso D C. Long-term effects of acid rain:Response and recovery of a forest ecosystem[J]. Science,1996,272:244-246.
    [62]Lloyd, J., and J. A. Taylor. On the temperature dependence of soil respiration [J]. Functional Ecology,1994,8:315-323.
    [63]Maaike C C D, Roland B, Peter J M. Aluminium toxicity and tolerance in three health land species[J]. Water, Air and Soil Pollution,1997,98:229-239.
    [64]Manninen AM, Laatikainen T, Holopainen T. Condition of Scots p ine fine roots and mycorrhiza after fungicide app lication and low21evel ozone exposure in a 2-year field experiment. Trees Structure and Function,1998,12:347-355.
    [65]McCrady JK, Andersen CP. The effect of ozone on belowground carbon allocation in wheat[J]. Environm ental Pollution,2000,107:465-472.
    [66]McCool PM, Menge JA. Influence of ozone on carbon partitioning in tomato:Potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress[J]. New Phy tologist,1983,94:241-247.
    [67]Meyer U, Kollner B, Willenbrink J, Krause G H M. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat[J]. Agriculture, Ecosystems and Environment,2000,78(1):49-55.
    [68]Morgan P B, Ainsworth E A, Long S P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield[J]. Plant, Cell and Environment,2003, 26(8):1317-1328.
    [69]Myeong H Y, Seung J J, Katsuyuki S. Spatial variability of soil respiration in a larch plantation:Estimation of the number of sampling points required[J]. For Ecol Manage, 2003,175:585-588.
    [70]Orchard V A, Cook F J. Relationship between soil respiration and soil moisture[J]. Soil Biology & Biochemistry,1983,15:447-453.
    [71]OUYANG Xue-Jun, ZHOU Guo-Yi, HUANG Zhong-Liang,et al. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils [J]. Pedosphere, 2008,18(4):503-514.
    [72]Pan G X. Acidification of soils in Mount Lushan over the last 35 years[J]. Pedosphere, 1992, (2):179-182.
    [73]Prenticel I, Farquhar G, Fasham M, Goulden M, Heinmann M et al. The carbon cycle and atmospheric carbon dioxide, In Climate Change 2001:The Scienticfic Basis. Contributions of Working group I to the Third Assessment Report of the Intergovernment Panel on Climate Change, ed. J T Houghton, Y Ding, D J Griggs, M Noguer, P J vander Linden, et al, Cambridge, UK:Cambridge Univ.Press,2001, PP.183-238.
    [74]Qi, Y, M. Xu, and J. G. Wu. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget:nonlinearity begets surprises[J]. Ecological Modelling,2002, 153:131-142.
    [75]Qiu Z, Chappelka AH, Somers GL, et al. Effects of ozone and simulated acidic p recip itation on ectomycorrhizal formation on loblolly p ine seedlings. Environmental and Experimental Botany,1993,33:423-431.
    [76]Raich J W, Potter C S. Global patterns of carbon dioxide emission from soil[J]. Global Biogeochemical Cycle,1995,9:23-26.
    [77]Raich J W, Wtufekeioglu. A Vegetation and soil respiration:Correlations and Controls[J]. Bio-geochemistry,2000,48:71-90.
    [78]Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus,1992,44B(2):81-89.
    [79]Reth S, Reichstein M, Falge E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model [J]. Plant and Soil,2005, 268(1):21-33.
    [80]Renaud JP, Allard GB, Mauffette Y. Effects of ozone on yield, growth, and root starch concentrations of two alfalfa (M edicago sativa L.) cultivars. Environm ental Pollution,1997,95:273-281.
    [81]Reich P B, Schoette A W. Effects of ozone and acid rain on white pine (Pinus strobes) seedlings grown in five soils. Net Photosynthesis and Growth[J]. Can J Bot,1987,65: 977-987.
    [82]Reichstein M, C. Beer. Soil respiration across scales:The importance of a model-data integration framework for data interpretation[J]. Journal of plant nutrition and soil science, 2008,171,344-354.
    [83]Reichstein M, Freibauer R A, Tenhunen A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles 2003,17,114, doi: 10.1029/2003GB002035.
    [84]Rich S, Hawkins A. The susceptibility of potato varieties to ozone in the field[J]. Phytopathology,1970,60:1309.
    [85]Rodrigo, A., Recous, S., Neel, C., Mary, B. Modelling temperature and moisture effects on C-N transformations in soils:comparison of nine models[J]. Ecological Modeling,1997, 102:325-329.
    [86]Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology,2005,11, 1024-1041.
    [87]Scagel C F, Andersen C P. Seasonal changes in root and soil resp iration of ozone exposed ponderosa pine (Pinus ponderosa) grown in different substrates [J].New Phy tologist,1997,136:627-643.
    [88]Shan Y. Effects of simulated acid rain on pinus densiflora inhibition of net photosynthesis by the pheophytization of chlorophy Ⅱ [J]. Water, Air and Soil Pollution,1998,103: 121-127.
    [89]Sitaula B K, Bakken L R, Abrahamsen G. N-fertilization and soil acidification effects on N2O and CO2 emission from temperature pine forest [J]. Biology and Biochemistry, 1995,27(11):1401-1408.
    [90]Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The Botanical Review,1977,43 (4):449-528.
    [91]Smith S J, Pitcher H, Wigley T M L. Global and regional anthropogenic sulfur dioxide emissions [J]. Global and Planetary Change,2001,29:99-119.
    [92]Smith, V.R. Soil respiration and its determinants on a sub-Antarctic island[J]. Soil Biology and Biochemistry 2003,35,77-91.
    [93]Stracher G B,Taylor T P.Coal fires burning out of control around the world:thermodynamie Recipe for environmental catastrophe[J].International Journal of Coal Geology,59:7-17.
    [94]Tingey D T, Johnson M G, Lee E H, et al. Effects of elevated CO2 and O3 on soil respiration under ponderosa pine[J]. Soil Biology and Biochemistry,2006,38(7): 1764-1778.
    [95]Widen B. Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest[J]. Agric For Meteorol,2002,111:283-297.
    [96]Xuhui Lee, Hui-Ju Wu, Jeffrey Sigler. Rapid and transient response of soil respiration to rain[J]. Global Change Biology,2004,10(6),1017-1026.
    [97]Yang X H, Nie C R, Mai Z M. Effect of acid rain on the main microbial strains of peanut soil in South China [J]. Journal of Peanut Science,2004,33(2):26-29.
    [98]岑慧贤,王树功,仇荣亮,等.模拟酸雨对土壤盐基离子的淋溶释放影响[J].环境污染与防治,2001,23(1):13-15.
    [99]陈书涛,胡正华,张勇,等.陆地生态系统土壤呼吸时空变异的影响因素研究进展[J].环境科学,2011,32(8)(录用待刊)
    [100]陈书涛,胡正华,李涵茂,等.紫外(UV-B)辐射增强对拔节-孕穗期小麦植株呼吸和土壤呼吸的温度敏感性的影响[J].环境科学,2009,30(5):1249-1254.
    [101]陈书涛,朱大威,牛传坡,等.管理措施对农田生态系统土壤呼吸的影响[J].环境科学,2009,30(10):2858-2865.
    [102]陈光水,杨玉盛,吕萍萍,张亿萍,钱小兰.中国林带土壤呼吸模式.生态学报,2008,28(4):1748-1761.
    [103]曹裕松,李志安,江远清,等.陆地生态系统土壤呼吸研究进展[J].2004,26(1):138-143.
    [104]冯宗炜,曹洪法,周修萍.酸沉降对生态环境的影响及其恢复技术[M].北京:中国环境科学出版社,1999:179-222,300-335.
    [105]冯宗炜,张家斌,陈楚莹,等.模拟酸雨对树木叶片的伤害和树木抗性的研究[J].环境科学,1988,5(9):30-33.
    [106]冯宗炜,单运峰.大气污染防治技术研究[M].北京:科学出版社,1993,821-826.
    [107]樊后保,林德喜.模拟酸雨对福建四种山地土壤的淋溶和风化作用[J].山地学报,2002,20(5):570-577.
    [108]樊后保,苏兵强.杉木人工林生态系统的生物地球化学循环Ⅰ:养分归还动态[J].2000,6(2):127-132.
    [109]高太忠,戚鹏,张杨,等.酸雨对土壤营养元素迁移转化的影响[J].生态环境,2004,13(1):23-26.
    [110]郭建平,王春乙,白月明,温民,霍治国.大气中臭氧浓度变化对冬小麦生理过程和籽粒品质的影响[J].应用气象学报,2001,12(2):255-256.
    [111]郭景恒,张晓山,汤鸿霄.酸沉降对地表生态系统的影响Ⅰ.土壤中铝的活化与迁移[J].土壤,2003,2(125):89-93.
    [112]黄益宗,李志先,黎向东,等.酸沉降和大气污染对华南典型林带生态系统生物量的影响[J].生态环境,2007,16(1):60-65.
    [113]韩梅,王体健,许瑞林,江苏省大气污染和酸雨的现状及预测[J].江苏环境科技,2003,16(1):37-39.
    [114]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望[J].植物生态学报,2008,32(3):719-733.
    [115]韩广轩,朱波,江长胜.川中丘陵区土壤呼吸及其影响因素[J].植物生态学报,2006,30(3):450-456.
    [116]林而达.气候变化与农业可持续发展[M].北京出版社,北京,2001,1-32.
    [117]梁骏,郑有飞,唐信英,麦博儒.南京江北酸雨分布特征及其与气象条件的关系[J].环境科学与技术,2008,32(6):96-100..
    [118]刘慧,赵平,林永标.华南丘陵区不同土地利用方式下土壤呼吸[J].生态学杂志,2007,26(12):2021-2027.
    [119]刘可慧,彭少麟,莫江明,黄忠良,方运霆.酸沉降对林带植物影响过程和机理[J].生态环境,2005,14(6):953-960.
    [120]刘巧辉,黄耀,郑循华.基于BaPS系统的旱地土壤呼吸作用及分量确定探讨[J].环境科学学报,2005,25(8):1105-1111.
    [121]刘菊秀.酸沉降下铝对林带的影响[J].热带亚热带植物学报,2000,8(3):269-274.
    [122]刘源月,江洪,李雅红,等.模拟酸雨对杉木幼苗-土壤复合体系土壤呼吸的短期效应[J].生态学报,2010,30(8):2010-2017.
    [123]刘允芬,欧阳华,曹广民,等.青藏高原东部生态系统土壤碳排放[J].自然资源学报,2001,16(2):152-160.
    [124]吕均良,李三玉,黄寿波.模拟酸雨对桃梨叶片和果实的影响[J].浙江农业大学学报,1998,24(6):603-607.
    [125]李志国,翁忙玲,姜武,等.模拟酸雨对乐东拟单性木兰幼苗部分生理指标的影响[J].生态学杂志,2007,26(1):31-34.
    [126]马骏,唐海萍.内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及温度敏感性变 化[J].植物生态学报,2011,35(2):167-175.
    [127]马连祥,杨文斌,周定国.酸雨和大气污染对杨树木材物理性质的影响[J].福建林学院学报,2000,20(3):269-272.
    [128]齐丽彬,樊军,邵明安,等.黄土高原水蚀风蚀交错带不同土地利用类型土壤呼吸季节变化及其环境驱动[J].生态学报,2008,28(11):5428-5436.
    [129]苏永红,冯起,朱高峰等.土壤呼吸与测定方法研究进展[J].2008,28(1):57-65.
    [130]单运峰,冯宗炜.模拟酸雨对马尾松和杉木幼树的影响[J].环境科学学报,1988,8(3):307-315.
    [131]单运峰.酸雨大气污染与植物[M].北京:中国环境科学出版社,1994:32-51.
    [132]唐英平,尹云峰,高人,等.林地和农田土壤呼吸的对比研究[J].热带地理,2008,28(2):109-113.
    [133]吴建国等.土地利用变化对土壤有机碳的影响一理论、方法和实践[M].北京:中国林业出版社.2004
    [134]吴丹,王武功,尚可政.中国酸雨研究综述[J].干旱气象,2006,24(2):70-77.
    [135]汪雅各,王玮.模拟酸雨对若干蔬菜影响的研究[J].中国环境科学,1987,7(6):1-5.
    [136]王国兵,郝岩松,王兵,等.土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J].北京林业大学学报,2006,28(增刊2):73-79.
    [137]王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报,2007,27(5):1960-1968.
    [138]王代长,蒋新,卞永荣,徐仁扣,贺纪正.酸沉降下加速土壤酸化的影响因素[J].土壤与环境,2002,11(2):152-157.
    [139]王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社.2007.
    [140]王代长,蒋新,贺纪正,等.模拟酸雨对阳离子在土体内迁移的影响[J].地球化学,2004,33(1):46-51.
    [141]王文兴.中国酸雨成因研究[J].中国环境科学,1994,14(5):323-329.
    [142]王文兴,张婉华,石泉,等.影响我国降水酸性因素的研究[J].中国环境科学,1993,13(6):401-407.
    [143]肖胜生,叶功富,董云社,等.木麻黄沿海防护林土壤呼吸动态及其关键影响因子[J].中国环境科学,2009,29(5):531-537.
    [144]夏明忠.模拟酸雨对烟草细胞透性和化学成分及产量的影响[J].农业环境保护,1989, 8(1):23-25.
    [145]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].1998,35(2):162-171.
    [146]谢小赞,江洪,余树全,等.模拟酸雨胁迫对马尾松和杉木幼苗土壤呼吸的影响[J].生态学报,2009,29(10):5713-5720.
    [147]邱栋梁,刘星辉.模拟酸雨对龙眼叶绿体活性的影响[J].应用生态学报,2001,3(12):1559-1562.
    [148]俞元春,丁爱芳,胡笳,孟磊.模拟酸雨对土壤酸化和盐基迁移的影响[J].南京林业大学学报,2001,25(2):39-42.
    [149]姚芳芳,王效科,陈展,冯兆忠,郑启伟,段晓男,欧阳志云,冯宗炜.农田冬小麦生长和产量对臭氧动态暴露的响应[J].植物生态学报,2008,32(1):212-219.
    [150]杨兰芳,蔡祖聪..不同生长期盆栽大豆的土壤呼吸昼夜变化及其影响因子[J].生态学报,2004,24(12):2955-2960.
    [151]杨学春,朱亚萍.酸沉降对土壤化学物质的影响[J].四川环境,1995,14(1):6-9.
    [152]杨晶,李凌浩.土壤呼吸及其测定法[J].植物杂志,2003,(5):36-37.
    [153]赵艳霞,侯青.1993-2006年中国区域酸雨变化特征及成因分析[J].气象学报,2008,66(6):1032-1042.
    [154]张勇,陈书涛,王连喜,等.臭氧浓度升高对冬小麦田土壤呼吸及硝化-反硝化作用的影响[J],环境科学,2010,30(12):156-162.
    [155]张容娟,布乃顺,崔军,等.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J].2010,30(24):6698-6706.
    [156]张丽华,陈亚宁,李卫红,等.干旱荒漠区不同土地利用/覆盖类型土壤呼吸速率的季节变化[J].中国科学D辑地球科学,2006,36(增刊):68-76.
    [157]张金波,宋长春,杨文燕.不同土地利用方式下土壤呼吸温度敏感性差异及影响因素分析[J].环境科学学报,2005,25(11):1537-1542.
    [158]郑启伟,王效科,冯兆忠,宋文质,冯宗炜.臭氧对原位条件下冬小麦叶片光合色素、脂质过氧化的影响[J].西北植物学报,2005,25(11):2240-2244.
    [159]郑启伟,王效科,冯兆忠,冯宗炜,欧阳志云.臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响[J].环境科学学报,2007,27(9):1544-1548.
    [160]郑有飞,唐信英,许建强,等.南京市江北工业区降水酸性及化学成分分析[J].环境科学研究,2007,20(4):45-21.
    [161]郑有飞,张金恩,吴荣军,等.地表臭氧胁迫对北方冬小麦光合及生理特征的影响[J].农业环境科学学报,2010,29(8):1429-1436.
    [162]郑有飞,刘瑞娜,吴荣军,等.臭氧胁迫对冬小麦干物质生产和产量构成的影响[J].农业环境科学学报,2010,29(3):409-417.
    [163]周洪华,李卫红,杨余辉,等.干旱区不同土地利用方式下土壤呼吸日变化差异及影响因素[J].地理科学,2011,31(2):190-195.
    [164]周青,黄晓华,刘小林.酸雨对3种木本植物的胁迫效应[J].环境科学,2002,23(2):42-46.
    [165]周修萍,秦文娟.华南三省区土壤对酸雨的敏感性及其分区图[J].环境科学学报,1992,12(1):78-83.
    [166]周崇莲,齐玉臣.酸雨对土壤微生物活性的影响[J].生态学杂志,1988,7(2):21-24.
    [167]周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社,2004.48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700