用户名: 密码: 验证码:
牛γ干扰素和白细胞介素4基因的原核表达及其产物的单克隆抗体研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛结核病主要由牛型结核分枝杆菌(Mycobacterium bovis, M. bovis)引起的一种重要人兽共患慢性传染病。牛群感染结核分枝杆菌后,主要产生Th1型的细胞免疫应答,以IFN-γ的产生为特征,通过激活巨噬细胞的杀菌活性以抑制或清除体内的细菌,通常情况下病原菌不能被清除,而是被控制在一定区域,疾病进入潜伏期。研究发现随着结核病病情的发展,机体免疫应答逐渐由Th1型转向Th2型,伴随着细胞免疫应答的减弱和体液免疫应答的增强,后者是以IL-4的产生为主要特征。因此IFN-γ和IL-4是牛结核免疫应答中两个重要的细胞因子。为此本研究构建了原核表达牛IFN-γ和IL-4蛋白的重组大肠杆菌,获得相应的融合蛋白,并制备其特异性单克隆抗体。为研究分枝杆菌等牛传染病的致病机理、免疫机制和建立快速检测技术提供了重要条件。同时,牛IFN-γ和IL-4单克隆抗体的获得为研究牛的免疫生物学、免疫应答和免疫调控提供了有力的工具。
     一、牛γ干扰素和白细胞介素4基因的原核表达及其产物特性
     在实验室前期构建的重组菌BL21(pGEX-6p-1-BoIFN-γ)和BL21(DE3)(pET- BoIFN-γ)基础上,对两种重组菌进行了诱导表达,两种融合蛋白均主要以可溶性形式表达。经亲和层析对重组蛋白纯化后,SDS-PAGE鉴定结果表明表达蛋白rGST-BoIFN-γ、rHis-BoIFN-γ与预期的大小一致。
     通过PCR将编码不含信号肽的牛白细胞介素4蛋白的基因从重组质粒pSP73-BoIL-4中克隆出来,分别克隆入表达载体pGEX-6p-1和pET-30a (+),将重组质粒转入DH5α,测序鉴定。测序鉴定正确后将重组质粒转入表达菌,构建出重组菌BL21(pGEX-6p-1-BoIL-4)和BL21(DE3)(pET-BoIL-4)。对重组菌的诱导表达发现两种重组蛋白均以包涵体形式表达。通过对包涵体的变性与复性得到了相应的纯化蛋白,SDS-PAGE鉴定表明得到的蛋白与预期的大小一致。
     二、牛γ干扰素和白细胞介素4单克隆抗体的制备与鉴定
     应用淋巴细胞杂交瘤技术,用纯化的重组蛋白rHis-BoIFN-γ、rHis-BoIL-4分别免疫7周龄BALB/c小鼠,腹部皮下和腹腔免疫,100μg/只。首免时,抗原与等量弗氏完全佐剂混合乳化经腹部皮下免疫;二免时抗原与等量不完全弗氏佐剂混合乳化经腹部皮下免疫;三免时用抗原通过腹腔直接免疫;间隔为两周;尾静脉加强免疫不加佐剂的抗原,100μg/只,3d后,取免疫鼠脾细胞和骨髓瘤SP2/0-Ag-14细胞进行融合。纯化的rGST-BoIFN-γ和rGST-BoIL-4分别作为检测抗原,用间接ELISA方法筛选阳性克隆。获得13株稳定分泌BoIFN-γMcAb的细胞株,命名为1C12、1F7、1G5、3E6、4D5、5E11、5G4、6F8、6G6、7E9、8D3、8F8、9G11,腹水的效价依次为640000、160000、640000、320000、160000、320000、2560000、2560000、320000、640000、80000、2560000、10000,除5G4 McAb亚类为IgG2b外,其余均为IgG1。获得7株稳定分泌BoIL-4 McAb的细胞株,命名为2B8、4A10、5D6、5D8、7G10、8B7、10F8,腹水的效价依次为5000、160000、10000、640000、5000、40000、5000、40000,McAb亚类均为IgG1。Dot-ELISA试验表明,所得单抗只与相应的融合蛋白反应,与其它融合蛋白和对照细菌不反应,显示良好的特异性。Western-blot试验显示所得单抗均能与相应的融合蛋白发生反应,出现特异性条带。单抗与牛IFN-γ和牛IL-4标准品的ELISA反应显示所获单抗均能与标准品反应,显示了良好的应用前景。
Bovine TB is mainly caused by Mycobacterium bovis which pose an infectious risk to cattle and humans. After infected with Mycobacterium bovis, cattle can elicite a Th1 cellular immune response charactered by IFN-γsecretion. IFN-γcan activate the microbicidal activity of macrophages to eliminate the pathogen. But pathogens usually can not be eliminated and be restricted in a certain region, then the pathogen lies latent in the host. Studies of tuberculosis have suggested a shift in dominance from a Th1 towards Th2 immune response that is associated with suppressed cell mediated immune responses and increased humoral responses as the disease progresses. IL-4 is the major cytokine of Th2 immune response. Therefore IFN-γand IL-4 is important in TB research. In this study, the recombinant bacteria were constructed to express IFN-γand IL-4, the recombinant proteins were used to develop monoclonal antibody. All these results could be useful for studying the pathogenicity and the immune mechanism of Mycobacterium bovis, and for developing the method and technique in the detection of Mycobacterium bovis, and furthermore for studying bovine immunological biology immune response and immune regulation.
     1. Prokaryotic expression of bovine IFN-γand IL-4 genes in recombinant E.coli
     Recombinant bacteria BL21(pGEX-6p-1-BoIFN-γ) and BL21(DE3)(pET-BoIFN-γ) were constructed previously. The recombinant proteins, named rGST-BoIFN-γand rHis-BoIFN-γ, are expressed in soluble form. After induced by IPTG, the two recombinant proteins were purified, and their sizes were consistent with the prediction.
     The IL-4 gene without coding signal peptides was amplified from pSP73-BoIL-4 by PCR, then inserted into prokaryotic expression vector pGEX-6p-1 and pET-30a(+). The recombinant plasmids pGEX-6p-1-BoIL-4 and pET-BoIL-4 were transformed into DH5αfor sequencing. After sequencing confirmation, the two recombinant plasmids were transformed into expression bacteria BL21 and Bl21(DE3) respectively, and then recombinant bacteria BL21(pGEX-6p-1-BoIL-4) and BL21(DE3)(pET-BoIL-4) were developed. The recombinant proteins, named rGST-BoIL-4 and rHis-BoIL-4, are expressed in inclusion body form. After denaturation and renaturation of inclusion body, the two recombinant proteins were obtained, and their sizes were consistent with the prediction.
     2. Production and characterization of monoclonal antibodies against bovine IFN-γand bovine IL-4
     To prepare monoclonal antibodies against bovine IFN-γand bovine IL-4, purified protein rHis-BoIFN-γand rHis-BoIL-4 were respectively used as immunogen to immunize subcutaneously 7-week-old BALB/c mice. The immune dose was 100μg recombinant protein emulsified in complete Freund’s adjuvant for the first immunization and in incomplete Freund’s adjuvant for the second injections, the recombinant proteins without emulsified by adjuvant were immunized intraperitoneally for the third time, the interval of two immunizations is 2 weeks. Then an intravenous dose of purified protein was administrated. After 3 days, splenocytes from immunized mice were fused with Sp2/0-Ag-14 myeloma cells. Purified rGST-BoIFN-γand rGST-BoIL-4 were used as detecting antigen respectively, and the supernatant of hybridoma clones was screened by indirect ELISA. Thirteen hybridoma cell lines secreting McAbs against BoIFN-γ, named 1C12, 1F7, 1G5, 3E6, 4D5, 5E11, 5G4, 6F8, 6G6, 7E9, 8D3, 8F8, 9G11 were obtained. The immunoglobulin subclass of McAb 5G4 was IgG2b, the others were IgG1. The ascitic titers of these McAbs were 640000, 160000, 640000, 320000, 160000, 320000, 2560000, 2560000, 320000, 640000, 80000, 2560000, 10000 respectively. Seven hybridoma cell lines secreting McAbs against BoIL-4, named 2B8, 4A10, 5D6, 5D8, 7G10, 8B7, 10F8 were obtained. The immunoglobulin subclass were IgG1. The ascitic titers of these McAbs were 5000, 160000, 10000, 640000, 5000, 40000, 5000, 40000 respectively. In Dot-ELISA, all McAbs could only react with the immunogen and the detecting antigen. Western-blot analysis confirmed that all McAbs could only react with the corresponding recombinant proteins. The McAbs also reacted with the standard recombinant bovine IFN-γor IL-4 with biological activity. All these results suggested that the specific McAbs against bovine IFN-γand IL-4 were developed, which are very useful in both fundamental and practical studies.
引文
[1]Phillips CJ, Foster CR, Morris PA, Teverson R. The tansmission of Mycobacterium bovis infection to cattle. Res Vet Sci. 2003, 74(1): 1-15.
    [2]Corner LA. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how do we assess the risk. Vet Microbiol. 2006, 112(2-4): 303-312.
    [3]Skinner MA, Parlane N, McCarthy A, Buddle BM. Cytotoxic T-cell responses to Mycobacterium bovis during experimental infection of cattle with bovine tuberculosis. Immunology. 2003, 110(2): 234-241.
    [4]Dlugovitzky D, Bay ML, Rateni L, Fiorenza G, Vietti L, Farroni MA, Bottasso OA. Influence of disease severity on nitrite and cytokine production by peripheral blood mononuclear cells (PBMC) from patients with pulmonary tuberculosis (TB). Clin Exp Immunol. 2000, 122(3): 343-349.
    [5]Pollock JM, Welsh MD, McNair J. Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease. Veterinary Immunology and Immunopathology. 2005, 108(1-2): 37-43.
    [6]Brown WC, Rice-Ficht AC, Estes MD. Bovine type 1 and type 2 responses. Veterinary Immunology and Immunopathology. 1998, 63(1-2): 45-55.
    [7]Pollock JM, Neill SD. Mycobacterium bovis infection and tuberculosis in cattle. Vet J. 2003, 163(2): 115-127.
    [8]Chaudhary R, Chowdhary BP, Johansson M, Gustavsson I. The gene for bovine interferon gamma (IFNG) maps to the q22-q24 bands of chromosome 5 in cattle. Hereditas. 1993, 119(1): 11-14.
    [9]Cerretti DP, McKereghan K, Larsen A, Cosman D, Gillis S, Baker PE. Cloning, sequence, and expression of bovine interferon-gamma. J.Immunol. 1986, 136(12): 4561-4564.
    [10]Schmidt P, Kühn C, Maillard JC, Pitra C, Tiemann U, Weikard R, Schwerin M. A comprehensive survey for polymorphisms in the bovine IFN-gamma gene reveals a highly polymorphic intronic DNA sequence allowing improved genotyping of Bovinae. J Interferon Cytokine Res. 2002, 22(9): 923-934.
    [11]唐神结.结核病免疫研究进展.国外医学内科学分册,2002,29(9): 369-372, 380.
    [12]Buitkamp J, Schwaiger FW, Solinas-Toldo S, Fries R, Epplen JT.The bovine interleukin-4 gene: genomic organization, localization, and evolution. Mamm Genome. 1995, 6(5): 350-356.
    [13]Heussler VT, Eichhorn M, Dobbelaere DAE. Cloning of a full-length cDNA encoding bovineinterleukin 4 by the polymerase chain reaction. Gene. 1992, 114(2): 273-278.
    [14]Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001, 19: 93-129.
    [15]North RJ, Jung YJ. Immunity to tuberculosis. Annu Rev Immunol. 2004, 22: 599-623.
    [16]Cassidy JP, Bryson DG. Gutiérrez Cancela MM, Forster F, Pollock JM, Neill SD. Lymphocyte subtypes in experimentally induced early-stage bovine tuberculous lesions. J Comp Pathol. 2001, 124(1): 46-51.
    [17]Pollock JM, Pollock DA, Campbell DG, Girvin RM, Crockard AD, Neill SD, Mackie DP. Dynamic changes in circulating and antigen-responsive T-cell subpopulations post-Mycobacterium bovis infection in cattle. Immunology. 1996, 87(2): 236-241.
    [18]Liebana E, Aranaz A, Aldwell FE, McNair J, Neill SD, Smyth AJ, Pollock JM. Cellular interactions in bovine tuberculosis: release of active mycobacteria from infected macrophages by antigen-stimulated T-cells. Immunology. 2000, 99(1): 23-29.
    [19]Smyth AJ, Welsh MD, Girvin RM, Pollock JM. In vitro responsiveness ofγδT-cells from Mycobacterium bovis-infected cattle to mycobacterial antigens: Predominant involvement of WC1(+) cells. Infect Immun. 2001, 69(1): 89-96.
    [20]Mak TW, Ferrick DA. TheγδT-cell bridge: Linking innate and acquired immunity. Nat Med. 1998, 4: 764-765.
    [21]Kennedy HE, Welsh MD, Bryson DG, Cassidy JP, Forster FI, Howard CJ, Collins RA, Pollock JM. Modulation of immune responses to Mycobacterium bovis in cattle depleted of WC1(+) gamma delta T-cells. Infect Immun. 2002, 70(3): 1488-1500.
    [22]Lightbody KA, McNair J, Neill SD, Pollock JM. IgG isotype antibody responses to epitopes of the Mycobacterium bovis protein MPB70 in immunised and in tuberculin skin testreactor cattle. Vet Micro. 2000, 75: 177-188.
    [23]Lyashchenko KP, Pollock JM, Colangeli R, Gennaro1 ML. Diversity of antigen recognition by serum antibodies in experimental bovine tuberculosis. Infect Immun. 1998, 66(11): 5344-5349.
    [24]McNair J, Corbett DM, Girvin RM, Mackie DP, Pollock JM. Characterisation of the early antibody response in bovine tuberculosis: MPB83 is an early target with diagnostic potential. Scand J Immunol. 2001, 53(4): 365-371.
    [25]杨卫冲,焦新安.牛结核病诊断技术的研究进展.中国人兽共患病杂志,2004,20(12): 1090-1093.
    [26]Pai M, Riley LW, Colford JM. Interferon-γassays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect Dis. 2004, 4: 761-776.
    [27]Huebner RE, Schein MF, Bass JB. The tuberculin skin test. Clin Infect Dis. 1993, 17: 968-975.
    [28]Lee E, Holzman RS. Evolution and current use of the tuberculin test. Clin Infect Dis. 2002, 34: 365-370.
    [29]Anersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet. 2000, 356: 1099-1104.
    [30]Jasmer RM, Nahid P, Hopewell PC. Clinical practice. Latent tuberculosis infection. N Engl J Med. 2002, 347: 1860-1866.
    [31]Thom ML, Hope JC, McAulay M, Villarreal-Ramos B, Coffey TJ, Stephens S, Vordermeier HM, Howard CJ. The effect of tuberculin testing on the development of cell-mediated immune responses during Mycobacterium bovis infection. Veterinary immunology and Immunopathology. 2006, 114(1-2): 25-36.
    [32]American Thoracic Society. Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med. 2000, 161: 1376-1395.
    [33]Doborn CJ,Grange JM. HIV AIDS and its implications for the control of animal tuberculosis. Br Vet J. 1993, 149(5): 405-417.
    [34]Thoen CO, Jarnagin JL, Muscoplat CC, Cram LS, Johnson DW, Harrington R Jr. Potential use of lymphocyte blastogenic responses in diagnosis of bovine tuberculosis. Comp Immunol Microbiol Infect Dis. 1980, 3(3): 355-361.
    [35]Pollock JM, Douglas AJ, Mackie DP, Neill, SD. Identification of bovine T-cell epitopes for three Mycobacterium bovis antigens: MPB70, 19,000 MW and MPB57. Immunology. 1994, 82(1): 9-15.
    [36]Nualláin EM, Davis WC, Costello E, Pollock JM, Monaghan ML. Detection of Mycobacterium bovis infection in cattle using an immunoassay for bovine soluble interleukin-2 receptor-alpha (sIL-2R-alpha) produced by peripheral blood T-lymphocytes following incubation with tuberculin PPD. Vet Immunol Immunopathol. 1997, 56(1-2): 65-76.
    [37]Wood PR, Rothel JS. In vitro immunodiagnosis assays for bovine tuberculosis. Vet Micro. 1994, 40: 125-135.
    [38]Palmer MV, Waters WR. Advances in bovine tuberculosis diagnosis and pathogenesis: What policy makers need to know. Veterinary Microbiology. 2006, 112(2-4): 181-190.
    [39]Matsumoto ST, Matsuo MO, Hotokezaka H. Heterogenous expression of the related MPB70 and MPB83 protein distinguish various substranins of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv. Scand J Immunol. 1996, 43(4): 374-380.
    [40]Bahk YY, Kim SA, Kim JS, Euh HJ, Bai GH, Cho SN, Kim YS. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics. 2004, 4(11): 3299-3307.
    [41]Renshaw PS, Panagiotidou P,Whelan A, Gordon SV, Hewinson RG, Williamson RA, Carr MD. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1: 1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6: CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem. 2002, 277: 21598-21603.
    [42]Pollock JM, Girvin RM, Lightbody KA, Neill SD, Clements RA, Buddle BM, Andersen P. Assessment of defined antigens for the diagnosis of bovine tuberculosis in skin test reactor cattle. Vet Rec. 2000, 146(23): 659-665.
    [43]Vordermeier HM,Whelan A, Cockle PJ, Farrant L, Palmer N, Hewinson RG. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin Diagn Lab Immunol. 2001, 8(3): 571-578.
    [44]Buddle BM, Ryan TJ, Pollock JM, Andersen P, de Lisle GW. Use of ESAT-6 in the interferon-gamma test for diagnosis of bovine tuberculosis following skin testing. Vet Microbiol. 2001, 80(1): 37-46.
    [45]Gey van Pittius NC,Warren RM, van Helden PD. ESAT-6 and CFP-10: what is the diagnosis? Infect Immunol. 2002, 70(11): 6509-6510.
    [46]Geluk A, van Meijgaarden KE, Franken KL, Subronto YW, Wieles B, Arend SM, Sampaio EP, de Boer T, Faber WR, Naafs B, Ottenhoff TH. Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect Immunol. 2002, 70(5): 2544-2548.
    [47]Waters WR, Nonnecke BJ, Palmer MV, Robbe-Austermann S, Bannantine JP, Stabel JR, Whipple DL, Payeur JB, Estes DM, Pitzer JE, Minion FC. Use of recombinant ESAT-6: CFP-10 fusion protein for differentiation of infections of cattle by Mycobacterium bovis and by M. avium subsp.avium and M. avium subsp. paratuberculosis. Clin Diag LabImmunol. 2004a, 11(4): 729-735.
    [48]Pollock JM, Andersen P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J Infect Dis. 1997, 175: 1251-1254.
    [49]Buddle BM, McCarthy AR, De Lisle GW, Ryan TJ, Pollock JM, Vordermeier HM, Hewinson RG, Andersen P. Use of mycobacterial peptides and recombinant proteins for the diagnosis of bovine tuberculosis in skin test-positive cattle. Vet Rec.2003, 153(20): 615-620.
    [50]Pollock JM, McNair J, Bassett H, Cassidy JP, Costello E, Aggerbeck H, Rosenkrands I, Andersen P. Specific delayed-type hypersensitivity responses to ESAT-6 identify tuberculosis-infected cattle. J Clin Microbiol. 2003, 41(5): 1856-1860.
    [51]Rhodes SG, Gavier-Widen D, Buddle BM, Whelan AO, Singh M, Hewinson RG, Vordermeier HM. Antigen specificity in experimental bovine tuberculosis. Infect Immunol. 2000, 68(5): 2573-2578.
    [52]Fifis T, Rothel JS, Wood PR. Soluble Mycobacterium bovis protein antigens: studies on their purification and immunological evaluation. Vet Microbiol. 1994, 40(1-2): 65-81.
    [53]刘海英,徐德兴.结核分枝杆菌抗原及其在结核病诊断中的研究进展.国际呼吸杂志,2006,26(4): 276-279.
    [54]冯雪鸣.结核分枝杆菌诊断抗原的研究进展.杭州师范学院学报(自然科学版),2005,4(6): 460-463.
    [55]Lyashchenko K,Manca C, Colangeli R, Heijbel A, Williams A, Gennaro ML. Use of Mycobacterium tuberculosis complex specific antigen cocktails for a skin test specific for tuberculosis. Infect Immun., 1998 , 66(8): 3606-3610.
    [56]Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet. 2000, 356(9235): 1099-1104.
    [57]Pai M. Alternatives to the tuberculin skin test: interferon-γassays in the diagnosis of Mycobacterium tuberculosis infection. Indian Journal of Medical Microbiology. 2005, 23(3): 151-158.
    [58]Shams H, Weis SE, Klucar P Lalvani A, Moonan PK, Pogoda JM, Ewer K, Barnes PF. Enzyme-linked Immunospot and Tuberculin Skin Testing to Detect Latent Tuberculosis Infection. Am J Respir Crit Care Med. 2005, 172(9): 1161-1168.
    [59]Doherty TM, Demissie A, Olobo J, Wolday D, Britton S, Eguale T, Ravn P, Andersen P. Immune responses to the Mycobacterium tuberculosis specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol. 2002, 40(2): 704-706.
    [60]Al-Attiyah R, Mustafa AS, Abal AT, Madi NM, Andersen P. Restoration of mycobacterial antigen induced proliferation and interferon-gamma responses in peripheral blood mononuclear cells of tuberculosis patients upon effective chemotherapy. FEMS Immunol Med Microbiol. 2003, 38(3): 249-256.
    [61]Carrara S, Vincenti D, Petrosillo N, Amicosante M, Girardi E, Goletti D. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis. 2004,38(5): 754-756.
    [62]Lambert L, Rajbhandary S, Quails N, Budnick L, Catanzaro A, Cook S, Daniels-Cuevas L, Garber E, Reves R. Costs of implementing and maintaining a tuberculin skin test program in hospitals and health departments. Infect Control Hosp Epidemiol. 2003, 24(11): 814-820.
    [63]Radhakrishna S, Frieden TR, Subramani R. Association of initial tuberculin sensitivity, age and sex with the incidence of tuberculosis in south India: a 15-year follow-up. Int J Tuberc Lung Dis. 2003, 7: 1083-1091.
    [64]Chadha VK. Epidemiological situation of tuberculosis in India. J Indian Med Assoc. 2003, 101(3): 144-147.
    [65]McCorry T, Whelan AO, Welsh MD, McNair J, Walton E, Bryson DG, Hewinson RG, Vordermeier HM, Pollock JM. Shedding of Mycobacterium bovis in the nasal mucus of cattle infected experimentally with tuberculosis by the intranasal and intratracheal routes. Vet Rec. 2005, 157(26): 24-31,849.
    [66]Vordermeier HM, Chambers MA, Cockle PJ, Whelan AO, Simmons J, Hewinson RG. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect Immun. 2002, 70(6): 3026-3032.
    [67]Ritacco V, Lopez B, Dekantor IN, Barrera L, Errico F, Nader A. Reciprocal cellular and humoral immune-responses in bovine tuberculosis. Res Vet Sci. 1991, 50(3): 365-367.
    [68]Dlugovitzky D, Torres-Morales A, Rateni L, Farroni MA, Largacha C, Molteni O, Bottasso O. Circulating profile of Th1 and Th2 cytokines in tuberculosis patients with different degrees of pulmonary involvement. Fems Immunol Med Microbiol. 1997, 18(3): 203-207.
    [69]Welsh MD, Cunningham RT, Corbett DM, Girvin RM, McNair J, Skuce RA, Bryson DG, Pollock JM. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunology. 2005, 114(1): 101-111.
    [70]黎友伦,罗永艾,王国治.细胞因子及其受体在结核免疫中的作用.国外医学内科学分册,2005, 32(4): 146-149,167.
    [71]Dlugovitzky D, Bay ML, Rateni L, Urízar L, Rondelli CF, Largacha C, Farroni MA, Molteni O, Bottasso OA. In vitro synthesis of interferon-gamma, interleukin-4, transforming growth factor-beta and interleukin-1 beta by peripheral blood mononuclear cells from tuberculosis patients: relationship with the severity of pulmonary involvement. Scand J Immunol. 1999, 49(2): 210-217.
    [72]Rhodes SG, Palmer N, Graham SP, Bianco AE, Hewinson RG, Vordermeier HM. Distinctresponse kinetics of gamma interferon and interleukin-4 in bovine tuberculosis. Infect Immun. 2000, 68(9): 5393-5400.
    [73]Fenhalls G, Stevens L, Bezuidenhout J, Amphlett GE, Duncan K, Bardin P, Lukey PT. Distribution of IFN-gamma, IL-4 and TNF-alpha protein and CD8 T cells producing IL-12p40 mRNA in human lung tuberculous granulomas. Immunology. 2002, 105(3): 325-335.
    [74]Lin Y, Zhang M, Hofman FM, Gong J, Barnes PF. Absence of a prominent Th2 cytokine response in human tuberculosis. Infect Immun. 1996, 64(4): 1351-1356.
    [75]Swanination S, Gong J, Zhang M, Samten B, Hanna LE, Narayanan PR, Barnes PF. Cytokine production in children with tuberculosis infection and disease. Clin Infect Dis. 1999, 28(6): 1290-1293.
    [76]North RJ. Mice in capable of making IL-4 or IL-10 display normal resistance to infection with mycobacterium tuberculosis. Clin Exp Immunol. 1998, 113(1): 55-58
    [77]柏雪莲,傅斌,刘克义.结核分枝杆菌感染中一些重要免疫细胞和细胞因子作用的研究进展.中国防痨杂志,2006, 28(3): 178-182.
    [78]Corinti S, Albanesi C, Sala A, Pastore S. Girolomoni G Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol. 2001,166: 4312-4318.
    [79]Jacobs M, Fick L, Allie N, Ryffel B. Enhanced immune response in Mycobacterium bovis Bacille Calmette Guerin (BCG)-infected IL-10-deficient mice. Clin Chem Lab Med. 2002, 40(9): 893-902.
    [80]Feng CG, Kullberg MC, Jankovic D, Cheever AW, Caspar P, Coffman RL, Sher A. Transgenic mice expressing human interleukin-10 in the antigen-presenting cell compartment show increased susceptibility to infection with Mycobacterium avium associated with decreased macrophage effector function and apoptosis. Infect Immun. 2002, 70(12): 6672-6679.
    [81]De la Barrera S, Aleman M, Musella R, Schierloh P, Pasquinelli V, García V, Abbate E, del C.Sasiain M. IL-10 down-regulation costimulatory molecule on mycobacterium tuberculosis -pulsed macrophages and impair the lytic activity of CD4 and CD8 CTL in tuberculosis patients. Clin Exp Immunol. 2004, 138(1): 128-138.
    [82]Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC, Berezovskaya A, Rousset D, Reynes JM, Goldfeld AE. IL-10 producing T cells suppress immune responses in anergic tuberculosis patients. The Journal of Clinical Investigation. 2000, 105(9): 1317-1324.
    [83]Tuner J, Ginzalez-Juarrero M, Ellis D, Basaraba RJ, Kipnis A, Orme IM, Cooper AM. In vivoIL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice . J Immunol. 2002,169(11): 6343 -6351.
    [84]Fortsch D, Rollinghoff M, Stenger S. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J Immunol. 2000, 165(2): 978-987.
    [85]Palmer MV, Whipple DL, Olsen SC, Jacobson RH. Cell mediated and humoral immune responses of white-tailed deer experimentally infected with Mycobacterium bovis. Res Vet Sci. 2000, 68(1): 95-98.
    [86]Hussain R, Dawood G, Abrar N, Toossi Z, Minai A, Dojki M, Ellner JJ. Selective increases in antibody isotypes and immunoglobulin-G subclass responses to secreted antigens in tuberculosis patients and healthy household contacts of the patients. Clin Diagn Laboratory Immunol. 1995, 2(6): 726-732.
    [87]Erb KJ, Kirman J, Delahunt B, Moll H, Le Gros G. Infection of mice with Mycobacterium bovis-BCG induces both Th1 and Th2 immune responses in the absence of interferon-gamma signalling. Euro Cytokine Netw. 1999, 10(2): 147-153.
    [88]Hussain R, Shiratsuchi H, Ellner JJ, Wallis RS. PPD-specific IgG1 antibody subclass upregulate tumour necrosis factor expression in PPD-stimulated monocytes: possible link with disease pathogenesis in tuberculosis. Clin Exp Immunol. 2000, 119(3): 449-455.
    [89]Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun. 1996, 64(2): 399-405.
    [90]Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ. Enhanced production of TGF-βby blood monocytes from patients with active tuberculosis and presence of TGF-βin tuberculous granulomatous lung lesions. J Immunol. 1995, 154(1): 465-473.
    [91]Hirsch CS, Hussain R, Toossi Z, Dawood G, Shahid F, Ellner JJ. Cross-modulation by transforming growth factor beta in human tuberculosis: suppression of antigen-driven blastogenesis and interferon gamma production. Proc Natl Acad Sci USA. 1996, 93(8): 3193-3198.
    [1]唐神结.结核病免疫研究进展.国外医学内科学分册,2002,29(9): 369-372, 380.
    [2]Pollock JM, Welsh MD, McNair J. Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease. Veterinary Immunology and Immunopathology. 2005, 108(1-2): 37-43.
    [3]Brown WC, Rice-Ficht AC, Estes MD. Bovine type 1 and type 2 responses. Veterinary Immunology and Immunopathology. 1998, 63(1-2): 45-55.
    [4]Heussler VT, Eichhorn M, Dobbelaere DA. Cloning of a full-length cDNA encoding bovine interleukin 4 by the polymerase chain reaction. Gene. 1992, 114(2): 273-278.
    [5]Fredertick M, Ausubel RM, Robert EK.精编分子生物学实验指南(颜子颖,王海林译).北京:科学出版社, 1998.
    [6]杨卫冲.牛γ干扰素基因cDNA的克隆、表达及其表达产物单克隆抗体的研制.扬州大学硕士学位论文, 2005年.
    [7]阳玉梅,黄维义,代华龙,郑小龙,石云良,张为宇.广西沼泽型水牛IL-4和IL-5基因的克隆及其序列分析.中国预防兽医学报,2007,29(10): 768-772.
    [8]Yokota T, Otsuka T, Mosmann T, Banchereau J, DeFrance T, Blanchard D, De Vries JE, Lee F, Arai K. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell-and T-cell-stimulating activities. Proc Natl Acad Sci USA. 1986, 83(16): 5894-5898.
    [9]肖斌,杨珺,田文标,朱永红,毛旭虎,邹全明.人白细胞介素-24基因的克隆、表达和纯化.中国生物制品学杂志,2006,19(2): 134-138.
    [10]张海峰,盛伟华,缪竞诚,谢宇锋,李丽娥,马丽丽,庄文卓,杨吉成.重组人IL-18在大肠杆菌中的表达及其抗肿瘤作用.中国免疫学杂志,2006,22(2): 141-144.
    [11]井申荣,邹全明,洪愉,毛旭虎.重组人IL-10融合蛋白的表达及其生物学活性测定.免疫学杂志,2006,22(4): 399-405.
    [12]罗启慧.猪IL-4和IL-6基因的克隆、表达及疫苗佐剂效应研究.西北农林科技大学硕士学位论文,2005年.
    [13]邱燕,孙九如,黄阳滨.重组人IL-4大肠杆菌表达与纯化.生物工程学报,2006,22(6): 962-967.
    [14]吉清.包涵体复性的研究进展.国外医学临床生物化学与检验学分册, 2004, 25(6): 516-518.
    [15]朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略.过程工程学报,2006,6(1): 150-155
    [16]Brandon TL, Wesley CV, Sheila AL. Expression of rabbit interleukin-4 and characterization of its biologic activity on T and B-cell. Veterinary Immunology and Immunopathology. 2006, 113(3-4): 421-427.
    [17]Weynants V, Gilson D, Furger A, Collins RA, Mertens P, De Bolle X, Heussler VT, Roditi I, Howard CJ, Dobbelaere AE, Letesson JJ. Production and characterisation of monoclonal antibodies specific for bovine interleukin-4. Veterinary Immunology and Immunopathology. 1998, 66(2): 99-112.
    [18]Furger A, Jungi TW, Salomone JY, Weynants V, Roditi I. Stable expression of biologically active recombinant bovine interleukin-4 in Trypanosoma brucei. FEBS Letters. 2001, 508(1): 90-94.
    [19]杨晓仪,林键,吴文言.重组蛋白包涵体的复性研究.生命科学研究,2004,8(2): 100-105
    [20]宁云山,李妍,王小宁.包含体蛋白质的复性研究进展.生物技术通讯,2001,12(3): 237-240.
    [21]许金俊,秦爱建,刘岳龙,金文杰,李瑞芳.奶牛γ干扰素基因克隆及其在大肠杆菌中表达.扬州大学学报(农业与生命科学版),2003, 24(1): 5-9.
    [22]Sordillo LM, Babink LA. Controlling acute Escherichia coli mastitis during the periparturient period with recombinant bovine interferon-gamma. J Gen Virol. 2000, 81(11): 2665-2673.
    [23]Pighetti GM, Sordillo LM. Specific immune responses of dairy cattle after primary inoculation with recombinant bovine interferon-gamma as an adjuvant when vaccinating against mastitis. Am J Vet Res. 1996, 57(6): 819-824.
    [24]Walrand F, Picard F, McCullough K, Martinod S, Lévy D. Recombinant bovine interferon -gamma enhances expression of class I and class II bovine lymphocyte antigens. Vet Immunol Immunopathol. 1989, 22(4): 379-383.
    [1]Phillips CJ, Foster CR, Morris PA, Teverson R. The tansmission of Mycobacterium bovis infection to cattle. Res Vet Sci. 2003, 74(1): 1-15.
    [2]Pollock JM, Pollock DA, Campbell DG, Girvin RM, Crockard AD, Neill SD, Mackie DP. Dynamic changes in circulating and antigen-responsive T-cell subpopulations post -Mycobacterium bovis infection in cattle. Immunology. 1996, 87(2): 236-241.
    [3]Skinner MA, Parlane N, McCarthy A, Buddle BM. Cytotoxic T-cell responses to Mycobacterium bovis during experimental infection of cattle with bovine tuberculosis. Immunology. 2003, 110(2): 234-241.
    [4]Dlugovitzky D, Bay ML, Rateni L, Fiorenza G, Vietti L, Farroni MA, Bottasso OA. Influence of disease severity on nitrite and cytokine production by peripheral blood mononuclear cells (PBMC) from patients with pulmonary tuberculosis (TB). Clin Exp Immunol. 2000, 122(3): 343-349.
    [5]刘秀梵.单克隆抗体在农业上的应用.合肥:安徽科学技术出版社. 1994,11-50.
    [6]萨姆布鲁克J,拉塞尔DW,黄培堂等译.分子克隆实验指南.第3版.北京:科学出版社. 2002,1474-1480.
    [7]张庶民,祁自柏.基因工程表达蛋白包涵体的形成和纯化.微生物学免疫学进展, 1995, 23(1): 52-54.
    [8]胡茂志,焦新安,潘志明,刘亚兵,邵国青,刘秀梵.猪肺炎霉形体单克隆抗体的制备与鉴定.中国兽医科技,2004, 34(12): 42-45.
    [9]尤永进,郑兆鑫. pXZ500融合蛋白提取物和包涵体免疫效果比较.上海农业学报,1997,13(4): 4-6.
    [10]Rodríguez MF, Pati?o PJ, Montoya F, Montoya CJ, Sorensen RU, García de Olarte D. Interleukin 4 and interferon-gamma secretion by antigen and mitogen-stimulated mononuclear cells in the hyper-IgE syndrome: no TH-2 cytokine pattern. Ann Allergy Asthma Immunol. 1998, 81(5Pt 1): 443-447.
    [11]Agger EM, Andersen P. Tuberculosis subunit vaccine development: on the role of interferon -gamma. Vaccine. 2001, 19(17-19): 2298-2302.
    [12]Tary-Lehmann M, Hricik DE, Justice AC, Potter NS, Heeger PS. Enzyme-linked immunosorbent assay spot detection of interferon-gamma and interleukin 5-producing cells as a predictive marker for renal allograft failure. Transplantation. 1998, 66(2): 219-224.
    [13]Kubota Y, Koga T, Nakayama J. In vitro released interferon-gamma in the diagnosis of drug-induced anaphylaxis. Eur J Dermatol. 1999, 9(7): 559-560.
    [14]Sikand VK, Rothel JS, Martin RM. Diagnosis of Lyme borreliosis by a whole-blood gamma interferon assay for cell-mediated immune responses. Clin Diagn Lab Immunol. 1999, 6(3): 445.
    [15]Desem N, Jones SL. Development of a human gamma interferon enzyme immunoassay and comparison with tuberculin skin testing for detection of Mycobacterium tuberculosis infection. Clin. Diagn. Lab. Immunol. 1998, 5(4): 531-536.
    [16]Benyoucef S, Hober D, De Groote D, De La Tribonniere X, Vilain V, Lion G, Bouzidi A, Wattre P. An interferon-gamma (IFN-gamma) based whole blood assay to detect T cell response to antigens in HIV-1 infected patients. Pathol Biol(Paris). 1997, 45(5): 400-403.
    [17]Manandhar R, LeMaster JW, Butlin CR, Brennan PJ, Roche PW. Interferon-gamma responses to candidate leprosy skin-test reagents detect exposure to leprosy in an endemic population. Int J Lepr Other Mycobact Dis. 2000, 68(1): 40-48.
    [18]Palmer MV, Waters WR, Whipple DL, Slaughter RE, Jones SL. Evaluation of an in vitro blood-based assay to detect production of interferon-gamma by Mycobacterium bovis-infected white-tailed deer (Odocoileus virginianus). J Vet Diagn Invest. 2004, 16(1): 17-21.
    [19]Liébana E, Aranaz A, Urquía JJ, Mateos A, Domínguez L. Evaluation of the gamma-interferon assay for eradication of tuberculosis in a goat herd. Aust Vet J. 1998, 76(1): 50-53.
    [20]Hope JC, Kwong LS, Thom M, Sopp P, Mwangi W, Brown WC, Palmer GH, Wattegedera S, Entrican G, Howard CJ. Development of detection methods for ruminant interleukin (IL)-4. Journal of Immunological Methods. 2005, 301(1-2): 114-123.
    [21]Nuntaprasert A, Mori Y, Fujita K, Yoneda M, Miura R, Tsukiyama-Kohara K, Kai C. Characterization of specific antibodies and the establishment of sandwich ELISA and ELISPOT systems for swine IL-4. Comp Immunol Microbiol Infect Dis. 2004, 27(6): 457-470.
    [22]Rook GAW, Hernandez-Pando R, Dheda K, Seah GT. IL-4 in tuberculosis: implications for vaccine design. Trends in Immunology. 2004, 25 (9): 483-488.
    [23]Rhodes SG, Palmer N, Graham SP, Bianco AE, Hewinson RG, Vordermeier HM. Distinct Response Kinetics of Gamma Interferon and Interleukin-4 in Bovine Tuberculosis. Infection and Immunity. 2000, 68(9): 5393-5400.
    [24]Wood PR, Corner LA, Plackett P. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of gamma interferon. Res Vet Sci. 1990, 49(1): 46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700