用户名: 密码: 验证码:
重组牛干扰素τ抗马传染性贫血病毒效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素(interferon, IFN)是由动物细胞产生并释放的一种具有高度生物活性、多种生物学功能的蛋白质,特别是在抵御感染、抗细胞增殖以及免疫调节方面具有重要的作用。目前已经有IFN类生物制品在临床上应用。IFN-τ是一种独特的IFN,属于I类IFN。最初发现IFN-τ是反刍动物妊娠过程中比较重要的细胞因子,除与动物维持妊娠有关外,近年来也证实了它的免疫学功能,特别是有显著抗慢病毒增殖效果。与其他IFN相比,IFN-τ具有抗病毒效果好、细胞毒性低和副作用小甚至无毒副作用等特点。IFN-τ在临床应用上的潜力已经引起科研工作者的注意。近年来,越来越多的实验室开展了针对IFN-τ抗病毒效果和免疫调节功能的研究,并且已经开始进行IFN-τ跨种间抗病毒效果及免疫功能的研究。值得注意的是,鉴于IFN-τ有显著抗慢病毒增殖的特点,已经开始设想用IFN-τ对人免疫缺陷病毒(human immunodeficiency virus, HIV )感染者进行治疗。
     马传染性贫血病毒(Equine Infectious Anemia Virus,EIAV)作为逆转录病毒亚科慢病毒属中基因结构最简单的成员,是目前公认最理想的慢病毒研究模型。由于EIAV和HIV在病毒形态、基因组结构、细胞嗜性、免疫机制及病毒与宿主相互作用等方面都十分相似,深入研究EIAV感染与免疫机制,能够为HIV的相关研究提供借鉴,因此EIAV的感染与免疫机制的研究已受到国内外学者的高度重视。本研究选择EIAV作为靶病毒,尝试研究和评价重组牛干扰素τ(recombinant bovine interferon tau, rBoIFN-τ)的抗慢病毒效果,并与重组马干扰素(γrecombinant equine interferon gamma, rEIFN-γ)在抗病毒增殖、干扰素刺激基因(Interferon Stimulate Gene, ISG)节点因子介导水平等方面进行比较,分析IFN-τ与IFN-γ抗EIAV病毒的效果上的差异,进而揭示两者的免疫调节机理。本研究采用VSV-MDBK结晶紫染色法分别对rEIFN-γ和rBoIFN-τ进行滴定,并采用Cell Counting Kit-8对两种IFN在ED-EIAV上的细胞毒性进行检测和比较,然后在不产生细胞毒性的条件下,应用逆转录酶活性检测法和real-Time PCR检测和评价两种IFN在ED-EIAV细胞上的抗病毒效果。在上述研究的基础上,用Real-Time PCR检测经过两种IFN处理后不同时间点的ED-EIAV细胞中EIF2AK2、OAS1和Mx protein三种因子基因表达情况,并通过结合比较两种IFN处理后ISG基因的表达情况,探讨两种IFN抗病毒作用机理。
     本研究证明,尽管其抗病毒效果低于rEIFN-γ,rBoIFN-τ在ED-EIAV细胞上确实表现出了一定的抗EIAV病毒的效果,大约10倍量的rBoIFN-τ抗EIAV效果与rEIFN-γ相当,但是其细胞毒性明显低于rEIFN-γ。另外,同rEIFN-γ一样,rBoIFN-τ也能刺激三种节点ISG基因的表达,而且表达上调的趋势也具有相似性,但rBoIFN-τ诱导这三种因子表达的能力显著低于rEIFN-γ,特别是在诱导OAS1基因和Mx protein基因表达的能力上两者差异更为显著。由此推测,IFN-τ的抗病毒机制可能与IFN-γ以及其他IFN的抗病毒机制不同,除了EIF2AK2、OAS1和Mx protein三种因子为代表的通路之外,很可能还存在其它的抗病毒通路,并且这一机制上的差异也可能与IFN-τ细胞毒性低有关。
Interferons are a type of protein produced by animal cells, which have high biological activity and a series of biological functions, especially in infection defense, anti-cell proliferation and immunoregulation. Till now, in-depth studies have been carried out to dissect the biological functions of interferon gamma and it has been applied in clinical cases as a biomedicine. Interferon tau belongs to the type I interferons, originally found as an important cytokine involved in maintaining the pregnancy of ruminant. Recently, efforts have been exerted to explore its roles in immunology, especially in the anti-multiplication of the lentivirus. Compared with other interferons, tau possesses some unique qualities such as high effectiveness of anti-virus, low toxicity to cells and minor or even no side-effects. These excellent characteristics draw great attention from various laboratories trying to expand its functions in effectiveness of anti-interspecies viruses and immunology. It is worth mentioning that some researchers even assume to use interferon tau in the treatment for HIV patients due to the excellent anti-lentivirus effect.
     As a simplest member of the retrovirus family, by now, EIAV was generally acknowledged to be a perfect model for retrovirus researching. In this study, EIAV was used as the target virus to analyze the role of tau in anti-lent virus and compare with interferon gamma on antiviral effects and ISG cytokines gene level, and thereby revealing the different immunological mechanisms between interferon tau and gamma. Here, VSV-MDBK detecting system was established based on the titer of vesicular stomatitis virus (VSV), then titration was perform for interferon gamma and tau with VSV-MDBK Dye takes method. Cytotoxicity of interferon gamma and tau was detected using ED-EIAV cell with Cell Counting Kit-8 (DOJINDO). And then based on the condition without cytotoxicity, anti-EIAV effects of them were detected and compared with Reverse transcriptase activity detection and One Step Taqman absolutely quantitive Real-Time PCR. Two methods, Reverse Transcriptase Assay Colorimetric Kit and One Step Taqman absolutely quantitive Real-Time PCR, were used to confirm virus changes in the EIAV cells treated by interferon gamma and tau respectively. At last, three cytokines gene in the ED-EIAV cell, namely EIF2AK2, OAS1 and Mx protein, were detected with One Step relative quantitive Real-Time PCR at different time point after interferon gamma and interferon tau treatment. Then immunologic mechanism of the two IFNs was discussed after cytokines expression assay.
     The results demonstrated that interferon tau indeed has anti EIAV effects in ED-EIAV cell, authough 10 times weaker than interferon gamma. While the cytotoxicity of interferon tau is significantly lower than that of interferon gamma. They both can stimulate the expression of EIF2AK2, OAS1 and Mx protein in similar tendency, but the stimulating capability of interferon tau is significantly lower than that of interferon gamma, especially to OAS1 and Mx protein. All these data showed that interferon tau has an anti-virus mechanism different from gamma and other interferons. Our hypothesis is that interferon tau may have other signaling pathways except the pathways through EIF2AK2, OAS1 and Mx protein, and this mechanism may involved in its low cytotoxicity to cells.
引文
1.Platanias, L.C. Interferons: Laboratory to clinic investigations. Curr. Opin. Oncol. 1995,7(6): 560-5.
    2.ISAACS A, LINDENMANN J. Virus interference. I. The interferon. Rroc R Soc Land B Biol Sci. 1957,147(927): 258-67.
    3.Pestka S. The human interferon-alpha species and hybrid proteins. Semin Oncol. 1997,24(supl 9): S9-4-S9-17.
    4.Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol. 2000, 74(11): 4957–66.
    5.Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol. 2004,78(6): 2701–10.
    6.Weber F, Kochs G, Haller O. Inverse Interference: how viruses fight the interferon system. Viral Immunol. 2004,17(4): 498-515.
    7.Gale M Jr, Foy EM. Evasion of intracellular host defence by hepatitis C virus. Nature. 2005,436(7053): 939-45.
    8.Katze MG, He Y, Gale M Jr. Virus and interferon: a fight for supremacy.Nat Rev Immunol. 2002,2(9): 675-87.
    9.Jaaskelainen KM, Kaukinen P, Minskaya ES, Plyusnina A, Vapalahti O, Elliott RM, Weber F, Vaheri A, Plyusnin A. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol. 2007,79(10): 1527-36.
    10.Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, ParkGS, Boer E, Wolfinbarger JB, Bloom ME. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol. 2005,79(20): 12828-39.
    11.Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE. The V proteins of paramyxociruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci USA. 2004,101(49): 17264-9.
    12.Fasler-Kan E, Pansky A, Wiederkehr M, Battegay M, Heim MH. Interferon-alpha activates signal transducers and activators of transcription 5 and 6 in Daudi cells. Eur J Biochem. 1998,254(3):514-9.
    13.Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature. 1987,330(6146): 377-9.
    14.Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M. Immune response in mice that lack the interferon-gamma receptor. J. Science. 1993,259(5102): 1742-5.
    15.Lu B, Ebensperger C, Dembic Z, Wang Y, Kvatyuk M, Lu T, Coffman RL, Pestka S, Rothman PB. Targeted disruption of the interferon-γreceptor 2 gene results in severe immune defects in mice. Pro.Natl. Acad. Sci. 1998,95(14): 8233-8.
    16.Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. Functional role of type I and type II interferons in antiviral defense. Science. 1994,264(5167): 1918-21.
    17.Guidotti LG, McClary H, Loudis JM, Chisari FV. Nitric Oxide Inhibits Hepatitis B virus Replication in the Livers of Transgenic Mice. J Exp Med. 2000,191(7): 1247-52.
    18.Nansen A, Jensen T, Christensen JP, Andreasen SO, R?pke C, Marker O, Thomsen AR. Compromised Virus Control and Augmented Perforin-Mediated Immunopathology in IFN-γ-Deficient Mice Infected with Lymphocytic Choriomeningitis Virus. J Immunol. 1999,163(11): 6114-22.
    19.Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993,261(5127): 1445-8.
    20.Coccia EM, Krust B, Hovanessian AG. Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J Biol Chem. 1994,269(37): 23087-94.
    21.D’Onofrio C, Franzese O, Puglianiello A, Peci E, Lanzilli G, Bonmassar E. Antiviral activity of individual versus combined treatments with interferon alpha, beta and gamma on early infection with HTLV-I vitro." Int J Immunopharmacol. 1992,14(6): 1069-79.
    22.Sentsui H, Murakami K , Inoshima Y, Yokoyama T, Inumaru S. Anti-viral effect of recombinant bovine interferon gamma on bovine leukaemia virus. Cytokine. 2001,16(6): 227-31.
    23.Julander JG, Judge JW, Olsen AL, Rosenberg B, Schafer K, Sidwell RW. Prophylactic treatment with recombinant Eimeria protein, alone or in combination with and agonist cocktail, protects mice from Banzi virus infection. Antiviral Res. 2007,75(1): 14-9.
    24.Sen GC. Viruses and interferons. Annu Rev Microbiol. 2001,55: 255-1.
    25.Alexenko AP, Ealy AD, Roberts RM. the cross-species antiviral activities of different IFN subtypes on bovine, murine, and human cells: contradictory evidence for therapeutic potential. J Interferon Cytokine Res. 1999,19(12): 1335-41.
    26.Scopets B, Li J, Thatcher WW, Roberts RM, Hansen PJ. Inhibition of lymphocyte proliferation by bovine trophoblast protein-1 (Type I trophoblast interferon) and bovine interferon-a1. Vet. Immunol. Immunopathol. 1992,34(1-2): 81-96.
    27.Pontzer CH, Yamamoto JK, Bazer FW, Ott TL, Johnson HM. Potent Anti-Feline Immunodeficiency Virus and Anti-Human Immunodeficiency Virus Effect of IFN-τ. J. J Immunol. 1997,158(9): 4351-7.
    28.Kohara J, Yokomizo Y. In vitro and In Vivo Effects of Recombinant Bovine Interferon-τon bovine Leukemia Virus. J Vet Med Sci. 2007,69(1): 15-9.
    29.Nakajima A, Sokawa Y. Induction of blood 2’,5’-oligoadenylate synthetse activity in cime by gastric administration of ovine IFN-tau. J Interferon Cytokine Res. 2002,22(3): 397-402.
    30.Subramaniam PS, Khan SA, Pontzer CH, Johnson HM. Differential recognition of the type I interferon receptor by interferons tau andαlpha is responsible for their disparate cytotoxicities. Proc Natl Acad Sci USA. 1995,92(26): 12270-4.
    31.Yankey SJ, Hicks BA, Carnahan KG, Assiri AM, Sinor SJ, Kodali K, Stellflug JN, Stellflug JN, Ott TL. Expression of the antiviral protein Mx in peripheral blood mononuclear cells of pregnant and bred,non-pregnant ewes. J Endocrinol. 2001,170(2): R7-11.
    32.Pontzer CH, Yamamoto JK, Bazer FW, Ott TL, Johnson HM. Potent Anti-Feline Immunodeficiency Virus and Anti-Human Immunodeficiency Virus Effect of IFN-τ. J Immunol. 1997,158(9): 4351-7.
    33.Juste RA, Ott TL, Kwang J, Bazer FW, De la Chongha-Bermjillo A. Effects of recombinant interferon-tau on ovine lentivirus replication. J Interferon Cytokine Res. 1996,16(12): 989-94.
    34.Singh B, Ott TL, Bazer FW, de la Concha-Bermejillo A. Structural responses of pulmonary intravascular macrophages in lentivirus-infected and/or recombinant ovine interferon-tau-treated lambs. Anat Rec. 1998,251(4): 427-85.
    35.Dereuddre-Bosquet N, Clayette P, Martin M, Mabondzo A, Fretier P, Gras G, Martal J, Dormont D. Anti-HIV potential of a new interferon, interferon-tau (trophoblastin). J Acquir Immune Defic Syndr Hum Retrovirol. 1996,11(3): 241-246.
    36.Alexenko AP, Ealy AD, Roberts RM. The Cross-species Antiviral Activities of Different IFN-τSubtyes on Bovine, Murine, and Human Cells: contradictory Evidence for Therapeutic Potential. J Interferon Cytokines Res. 1999,19(12): 1335-1341.
    37.Baron S, Tyring SK, Fleischmann WR Jr, Coppenhaver DH, Nisel DW, Klimpel GR, Stanton GJ, Hughes TK. The interferons. Mechanisms of action and clinical applications. JAMA 1991,266(10): 1375-83.
    38.Michael J Stobart, Debra Parchaliuk, Sharon LR Simon, et al. Differential expression of interferon responsive genes in rodent models of transmissible spongiform encephalopathy disease. Molecular Neurodegeneration. 2007,2(5): 1-13.
    39.VanOudenhove J, Andserson E, Krueger S, Cole JL. Analysis of PKR structure by small angle scattering." J Mol Biol. 2009,387(4): 910-20.
    40.Rothenburg S, Seo EJ, Gibbs JS, Dever TE, Dittmar K. Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nat Struct Mol Biol. 2009,16(1): 63-70.
    41.Lemaire PA, Anderson E, Lary J, cole JL. Mechanism of PKR Activation by dsRNA. J Mol boil. 2008,381(2): 351-60.
    42.Nallagatla SR, Hwang J, toroney R, Zheng X, Cameron CE, Bevilacqua PC. 5’-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science. 2007,318(5855): 1455-8
    43.Desai SY, Patel RC, Sen GC, Malhotra P, Ghadge GD, Thimmapaya B. Activation of interferon-inducible 2’-5’oligoadenylate synthetase by adenoviral VAI RNA. J Biol Chem. 1995,270(7): 3454-61.
    44.Mache L, Green SR, Schmedt C, Mathews MB. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992,12(11): 5238-48
    45.Rios JJ, Fleming JG, Bryant UK, CarterCN, Huber JC, Long MT, Spencer TE, Adelson DL. OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses. Plos one. 2010,5(5):1-9.
    46.O’Brien M, Lonergan R, Costelloe L, O’Rourke K, Fletcher JM, Kinsella K, Sweeney C, AntonelliG,Mills KH, O’Farrelly C, Hutchinson M, TubridyN. OAS1: a multiple sclerosis susceptibility gene that influences disease severity. Neurology. 2010,75(5): 411-8.
    47.Kristiansen H, Scherer CA, Mcvean M, Iadonato SP, Vends S, Thavachelvam K, Steffensen TB, Horan KA, Kuri T, Weber F, Paludan SR, Hartmann R. Extracellular 2’-5’Oligoadenylate Synthetase Stimulates RNase L-Independent Antiviral Activity: a Novel Mechanism of Virus-Induced Innate Immunity. J Virol. 2010,84(22): 11898-904.
    48.Al-Masri AN, Heidenreich F, Walter GF. Interferon-induced Mx proteins in brain tissue of multiple sclerosis patients. Eur J Neurol. 2009,16(6): 721-6.
    49.Kochs G, Haller O. GTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J Biol Chem. 1999,274(7): 4370-6.
    50.Kochs G, Haller O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc Natl Acad Sci USA. 1999,96(5):2082-6.
    51.Edwards DR, Denhardt DT. A study of mitochondrial and nuclear transcription with cloned cDNA probes. Changes in the relative abundance of mitochondrial transcripts after stimulation of quiescent mouse fibroblasts. Experimental Cell Research. 1985,157(1):127-43.
    52.Winer J, Jung CK, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Analytical Biochemistry. 1999,270(1): 41-9.
    53.van Regenmortel MH, Mayo MA, Fauquet CM, Maniloff J. Virus nomenclature: consensus versus chaos." Arch Virol. 2000,145(10):2227-32.
    54.Sellon DC, Fuller FJ, McGuire TC. The immunopathogenesis of equine infectious anemia virus. Virus Res. 1994,32(2):111-38.
    55.Cheevers WP, McGuire TC. Equine infectious anemia virus: immunopathogenesis and persistence.Rev. Rev Infect Dis. 1985,7(1):83-88.
    56.McGuire TC, Crawford TB, Henson JB. Immunofluorescent localization of equine infectious anemia virus in tissue. Am J Pathol. 1971,62(2):283-94.
    57.Rice NR, Lequarre AS, Casey JW, Lahn S, Stephens RM, Edwards J. Viral DNA in horses infected with equine infectious anemia virus. J Virol. 1989,63(12):5194-200.
    58.Foil LD, Meek CL, Adams WV, Issel CJ. Mechanical transmission of equine infectious anemia virus by deer flies (Chrysops flavidus) and stable flies (Stomoxys calcitrans). Am J Vet Res. 1983,44(1):155-6
    59.Foil LD, Adams WV, McManus JM, Issel CJ. Bloodmeal residues on mouthparts of Tabanus fuscicostatus (Diptera: Tabanidae) and the potential for mechanical transmission of pathogens. J Med Entomol. 1987,24(6):613-6.
    60.Cupp EW, Kemen MJ. The role of stable files and mosquitoes in the transmission of equine infectious anemia virus. Proc Annu Meet U S Anim Health Assoc. 1980,84:362-7.
    61.Hawkins JA, Adams WV, Cook L, Wilson BH, Roth EE. Role of horse fly (Tabanus fuscicostatus Hine) and stable fly (Stomoxys calcitrans L.) in transmission of equine infectious anemia to ponies inLousisiana. Am J vet Res. 1973,34(12):1583-6.
    62.MatheKa HD, Coggins L, Shively JN, Norcross NL. Purification and characterization of equine infectious anemia. Arch Virol. 1976,51(1-2):107-14.
    63.Cheevers WP, Archer BG, Crawford TB. Characterization of RNA from equine infectious anemia virus. J Virol. 1977,24(2):489-97.
    64.Rushlow K, Olsen K, Stiegler G, Payne SL, Montelaro RC, Issel CJ. Lentivirus genomic organization: the complete nucleotide sequence of the env gene region of equine infectious anemia virus. Virology. 1986,155(2):309-21.
    65.Noiman S, Yaniv a, Sherman L, Tronick SR, Gazit A. Pattern of transcription of the genome of equine infectious anemia virus. J Virol. 1990,64(4): 1839-43.
    66.Jin J, Sturgeon T, Chen C, Watkins SC, Weisz OA, Montelaro RC. Distinct intracellular trafficking of Equine infectious anemia virus and human immunodeficiency virus type 1 Gag during viral assembly and budding revealed by bimolecular fluorescence complementation assay. J Virol. 2007,81(20):11226-35.
    67.Hussain KA, Issel CJ, Rwambo PM, Arnizaut AB, Ball JM, Schnorr KL, Montelaro RC. Identification of gag precursor of equine infectious anaemia virus with monoclonal antibodies to the major viral core protein, p26. J Gen Virol. 1988,69(Pt 7): 1719-24.
    68.Stephens RM, Casey JW, Rice NR. Equine infectious anemia virus gag and pol genes: relatedness to visna and AIDS virus. Science. 1986,231(4738):589-94.
    69.Montelaro RC, Lohrey N, Parekh B, Blakeney EW, Issel CJ. Isolation and comparative biochemical properties of the major internal polypeptides of equine infectious anemia virus. J Virol. 1982,42(3):1029-38.
    70.Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology. 1988,251(1):1-15.
    71.Hatanaka H, Iourin O, Rao Z, Fry E, Kingsman A, Staurt DI. Structure of equine infectious anemia virus matrix protein. J virol. 2002,76(4):1876-83.
    72.Chen K, bachtiar I, Piszczek G, Bouamr F, Carter C, Tiandra N. Solution NMR characterizations of oligomerization and dynamics of equine infectious anemia virus matrix protein and its interaction with PIP2. 2008,47(7):1928-37.
    73.Provitera P, Bouamr F, Murray D, Carter C, Scarlata S. Binding of equine infectious anemia virus matrix protein to membrane bilayers involves multiple interactions. J Mol Biol. 2000,296(3):87-98.
    74.Parent LJ, Bennett RP, Craven RC, Nelle TD, Krishna NK, Bowzard JB, Wilson CB, Puffer BA, Montelaro RC, Wills JW. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J virol. 1995,69(9):5455-60.
    75.Jin S, Chen C, Montelaro RC. Equine infectious anemia virus Gag p9 function in early stpes of virus infection and provirus production. J Virol. 2005,79(14):8793-801.
    76.Puffer BA, Parent LJ, Wills JW, Montelaro RC. Equine infectioius anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol. 1997,71(9):6541-6.
    77.Lichtenstein DL, Rushlow KE, Cook RF, Raabe ML, Swardson CJ, Kociba GJ, Montelaro RC.Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity. J Virol. 1995,69(5):2881-8.
    78.Steagall WK, Robek MD, Perry ST, Fuller FJ, Payne SL. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages. Virology. 1995,210(2):302-13.
    79.Threadgill DS, Steagall WK, Fuller FJ, Perry ST, Rushlow KE, Le Grice SF, Payne SL. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. J Virol 1993,67(5):2592-600.
    80.Sun C, Zhang b, Jin J, Montelaro RC. Binding of equine infectious anemia virus to the equine lentivirus receptor-1 mediated by complex discontinuous sequences in the viral envelope gp90 protein. J Gen Virol 2008,89(Pt8):2011-9.
    81.Leroux C, Issel CJ, Montelaro RC. Novel and dynamic evolution ofequine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony. J virol 1997,71(12): 9627-39.
    82.Carvalho M, Derse D. Physical and functional characterization of transcriptional control elements in the equine infectious anemia virus promoter. J Virol. 1993,67(4):2064-74.
    83.Dorn PL, Derse D. cis- and trans-acting regulation of gene expression of equine infectious anemia virus. J Virol. 1988,62(9):3522-6.
    84.Sherman L, Gazit A, Yaniv A, Kawakami T, Dahlberg JE, Tronick SR. Localization of sequences responsible for trans-activation of the equine infectious anemia virus long terminal repeat. J Virol. 1988,62(1):120-6.
    85.Hoffman DW, White SW. NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. Nucleic Acids Res. 1995,23(20):4058-65.
    86.Hoffman DW, Colvin RA, Garcia-Blanco MA, White SW. Structural features of the trans-activation response RNA element of equine infectious anemia virus. Biochemistry. 1993,32(4):1096-104.
    87.Carvalho M, Derse D. Mutational analysis of the equine infectious anemia virus Tat-responsive element. J. Virol. 1991,65(7):3468-74.
    88.Albrecht TR, Lund LH, Garcia-Blanco MA. Canine cylin T1 rescues equine infectious anemia virus tat trans-activation in human cells. Virology. 2000,268(1):7-11.
    89.Bieniasz PD, Grdina TA, bogerd HP, Cullen BR. Highly divergent lentiviral Tat proteins activate viral gene expression by a common mechanism. Mol Cell Boil. 1999,19(7): 4592-9.
    90.Schiltz RL, Shih DS, Rasty S, Montelaro RC, Rushlow KE. Equine infectious anemia virus gene expression: characterization of the RNA splicing pattern and the protein products encoded by open reading frames S1 and S2. J Virol. 1992,66(6):3455-65.
    91.Yoon S, Kingsman SM, Kingsman AJ, Wilson SA, Mitrophanous KA. Characterization of the equine infectious anaemia virus S2 protein. J Gen Virol. 2000,81(Pt 9):2189-94.
    92.Angela J. Fagerness, Maureen T. Flaherty, Stephanie T. Perry, Bin Jia, Susan L. Payne, Frederick J. Fuller. The S2 accessory gene of equine infectious anemia virus is essential for expression of disease in ponies. Virology. 2006,349(1):22-30.
    93.Covaleda L, Fuller FJ, Payne SL. EIAV S2 enchances pro-inflammatory cytokine and chemokine response in infected macrophages. Virology. 2010,397(1):217-23.
    94.Belshan M, Harris ME, Shoemaker AE, Hope TJ, Carpenter S. Biological characterization of Rev variation in equine infectious anemia virus. J Virol. 1998,72(5): 4421-6.
    95.Chung H, Derse D. Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious a nemia virus RNA. J Biol Chem. 2001,276(22):18960-7.
    96.Martarano L, Stephens R, Rice N, Derse D. Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. JVirol. 1994,68(5):3102-11.
    97.Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science. 1988,242(4882):1168-71.
    98.Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988,242(4882):1171-3.
    99.Bakhanashvili M, Hizi A. Fidelity of DNA synthesis exhibited in vitro by the reverse transcriptase of the lentivirus equine infectious anemia virus. Biochemistry. 1993,32(29):7559-67.
    100.Carpenter S, Alexandersen S, Long MJ, Perryman S, Chesebro B. Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus. J Vriol. 1991,65(3):1605-10.
    101.Maruy W, Perryman S, Oaks JL, Seid BK, Crawford T, McGuire T, Carpenter S. Localized sequence heterogeneity in the long terminal repeats of in vivo isolates of equine infectious anemia virus. J virol. 1997,71(7):4929-37.
    102.Lichtenstein DL, Issel CJ, Montelaro RC. Genomic quasispecies associated with the initiation of infection and disease in ponies experimentally infected with equine infectious anemia virus. J Vriol. 1996,70(6):3346-54.
    103.Reis JK, Craigo JK, Cook SJ, Issel CJ, Montelaro RC. Characterization of EIAV LtR variability and compartmentalization in various reservoir tissues of long-term inapparent carrier ponies. Virology 2003,311(1):169-80.
    104.Baccam P, Thompson RJ, Li Y, Sparks WO, Belshan M, Dorman KS, Wannemuehler Y, Oaks JL, Cornette JL, Carpenter S. Sub-populations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype. J Virol. 2003,77(22):12122-31.
    105.Belshan M, Baccam P, Oaks JL, Sponseller BA, Murphy SC, Cornette J, Carpenter S. Genetic and biological variation in equine infectious anemia virus Rev correlates with variable stages of clinical disease in an experimentally infected pony. Virology. 2001,279(1):185-200.
    106.Kono Y, Kobayashi K, Fukunaga Y. Antigenic drift of equine infectious anemia virus in chronically infected horses. Arch Gesamte Virusforsch. 1973,41(1):1-10.
    107.Salinovich O, Payne SL, Montelaro RC, Hussain KA, Issel CJ, Schnorr K.L. Rapid emergence of novel antigenic and genetic variants of equine infectious anemia virus during persistent infection. J. Virol. 1986,57(1):71-80.
    108.Zheng YH, Nakaya T, Sentsui H, Kameoka M, Kishi M, Hagiwara K, Takahashi H, Kono Y, Ikuta K. Insertions, duplications and substitutions in restricted gp90 regions of equine infectious anaemiavirus during febrile episodes in an experimentally infected horse. J Gen Virol. 1997,78(Pt 4):807-20.
    109.Craigo JK, Leroux C, Howe L, Steckbeck JD, Cook SJ, Issel CJ, Montelaro RC. Transient immune suppression of inapparent carriers infected with a principal neutralizing domain-deficient equine infectious anaemia virus induces neutralizeing antibodies and lowers steady-state virus replication. J Gen Virol. 2002,83(Pt 6):1353-9.
    110.Leroux C, Craigo JK, Issel CJ, Montelaro RC. Equine infectious anemia virus genomic evolution in progressor and nonprogressor ponies. J. Virol. 2001,75(10):4570-83.
    111.Harrold SM, Cook SJ, Cook RF, Rushlow KE, Issel CJ, Montelaro RC. Tissue sites of persistent infection and active replication of equine infectious anemia virus druing acute disease and asymptomatic infection in experimentally infected equids. J Virol. 2000,74(7):3112-21.
    112.Hammond SA, Li F, McKeon BM Sr, Cook SJ, Issel CJ, Montelaro RC. Immnune responses and viral replication in long-term inapparent carrier ponies in oculated with equine infectious anemia virus. J. Virol. 2000,74(13):5968-81.
    113.Issel CJ, Foil LD. Studies on equine infectious anemia virus transmission by insects. J Am Vet Med Assoc. 1984,184(1984):293-7.
    114.Issel CJ, Coggins L. Equine infectious anemia: current knowledge. J Am Vet Med Assoc. 1979,174(7):727-33.
    115.Cook RF, Cook SJ, Berger SL, Leroux C, Ghabrial NN, Gantz M, bolin PS, Mousel MR. Montelaro RC, Issel CJ. Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides. Virology. 2003.313(2):588-603.
    116.Issel CJ, Adams WVJ, Meek L, Ochoa R. Transmission of equine infectious anemia virus from horses without clinical signs of disease. J Am Vet Med Assoc. 1982,180(3):272-5.
    117.Clabough DL, Gebhard D, Flaherty MT, Whetter LE, Perry ST, Coggins L, Fuller FJ. Immune-mediated thrombocytopenia in horses infected with equine infectious anemia virus. J Virol. 1991,65(11):6242-51.
    118.Crawford TB, Wardrop KJ, Tornquist SJ, Reilich E, Meyers KM, McGuire TC. A primary production deficit in the thrombocytopenia of equine infectious anemia. J Virol. 1996,70(11):7842-50.
    119.Costa LR, Santos IK, Issel CJ, Montelaro RC. Tumor necrosis factor-alpha production and disease severity after immunization with enriched major core protein (P26) and/or infection with equine infectious anemia virus. Vet Immunol Immunopathol. 1997,57(1-2):33-47.
    120.Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Beka’ssy AN, Scime R, Pistorio A, Pistoia V. TNF-alpha and IFN-gamma are overexpressed in the bone marrow of Fanconi aneia patients and TNF-alpha suppresses erythropoiesis in vitro. Blood. 2003,102(6):2053-9.
    121.Coggins L, Norcross NL. Immunodiffusion reaction in equine infectious anemia. Cornell Vet. 1970,60(2):330-5.
    122.dos Reis JK, Melo LM, Rezende MR, Leite RC. Use of an ELISA test in the eradication of an equine infectious anaemia focus. Trop Anim Health Prod. 1994,26(2): 65-68.
    123.Lew AM, Thomas LM, Huntington PJ. A comparison of ELISA, FAST-ELISA and gel diffusiontests for detecting antibody to equine infectious anaemia virus. Vet Microbiol. 1993,34(1):1-5.
    124.Soutullo A, Verwimp V, Riveros M, Pauli R, tonarelli G. Design and validation of an ELISA for equine infectious anemia(EIA) diagnosis using synthetic peptides. Vet Microbiol. 2001,79(2):111-21.
    125.Tencza SB, Islam KR, Kalia V, Nasir MS, Jolley ME, Montelaro RC. Development of a fluorescence polarization-based diagnostic assay for equine infectious anemia virus. J Clin Microbiol. 2000,38(5):1854-9.
    126.Oaks JL, McGuire TC, Ulibarri C, Crawford TB. Equine infectious anemia virus is found in tissue macrophages during subclinical infection. J Virol. 1998,72(9):7263-9.
    127.Kono Y, Hirasawa K, Fukunaga. Taniguchi T. Recrudescence of equine infectious anemia by treatment with immunosuppressive drugs. Natl Inst Anim Health Q (Tokyo). 1976,16(1):8-15.
    128.Tumas DB, Hines MT, Perryman LE, Davis WC, McGuire TC. Corticosteroid immunosuppression and monoclonal antibody-mediated CD5+ T lymphocyte depletion in normal and equine infectious anaemia virus-carrier horses. J Gen Virol. 1994,75(Pt 5):959-68.
    129.McGuire TC, Banks KL, Poppie MJ. Combined immnunodeficiency in horses: characterization of the lymphocyte defect. Clin Immunol Immunopathol. 1975,3(4):555-6.
    130.Perryman LE, O’Rourke KI, McGuire TC. Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. J Virol. 1988,62(8):3073-6.
    131.McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes and neutralizing antibody in the control of equine infectious anemia virus. Viral Immunol. 2002,15(4):521-31.
    132.McGuire TC, Tumas DB, Byrne KM, Hines MT, Leib SR, Brassfield AL, O’Rourke KI, Perryman LE. Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/PR proteins. J Virol. 1994,68(3):1459-67.
    133.Rwambo PM, Issel CJ, Adams WV Jr, Hussain KA, Miller M, Montelaro RC. Equine infectious anemia virus (EIAV) humoral responses of recipient ponies and antigenic variation during persistent infection. Arch Virol. 1990,111(3-4):199-212.
    134.Hammond SA, Cook SJ, Lichtenstein DL, Issel CJ, Montelaro RC. Maturation of the cellular and humoral immune responses to persistent infection in horses by equine infectious anemia virus is a complex and lengthy process. J Virol. 1997,71(1997):3840-52.
    135.O’Rourke K, Perryman LE, McGuire TC. Antiviral, anti-glycoprotein and neutralizing antibodies in foals with equine infectious anaemia virus. J gen virol. 1988,69(Pt 3):667-74.
    136.DeVico AL, Issel CJ, Le Grice SF, Payne SL, Montelaro RC, Sarngadharan MG. Hingh prevalence of serum antibodies to equine infectious anemia virus reverse transcriptase. AIDS Res Hum Retroviruses. 1993,9(1):7-11.
    137.McGuire TC, Zhang W, Hines MT, Henney PJ, Byrne KM. Frequency of memory cytotoxic T Lymphocytes to equine infectious anemia virus proteins in blood from carrier horses. Virology. 1997,238(1):85-93.
    138.Zhang W, Auyong DB, Oaks JL, McGuire TC. Natural variation of equine infectious anemia virus Gag protein cytotoxic T lymphocyte epitopes. Virology. 1999,261(2):242-52
    139.Lonning SM, Zhang W, McGuire TC. Gag protein epitopes recognized by CD4(+) T-helper lymphocytes from equine infectious anemia virus-infected carrier horses. J Virol. 1999,73(5):4257-65.
    140.Montelaro RC, Cole KS, Hammond SA. Maturation of immune responsesto lentivirus infection: implications for AIDS vaccine development. AIDS Res Hum Retroviruses 14 Suppl. 1998,3:S255-9.
    141.Lonning SM, Zhang W, Leib SR, McGuire TC. Detection and induction of equine infectious anemia virus-specific cytotoxic T-lymphocyte responses by use of recombinant retroviral vectors. J Virol. 1999,73(4):2762-9.
    142.Mealey RH, Zhang B, Leib SR, Littke MH, McGuire TC. Epitope Specificity is critical for high and moderate avidity cytotoxic T lymphocytes associated with control of viral load and clinical disease in horses with equine infectious anemia virus. Virology. 2003,313(2):537-52.
    143.Ball JM, Rushlow KE, Issel CJ, Montelaro RC. Detailed mapping of the antigenicity of the surface unit glycoprotein of equine infectious anemia virus by using synthetic peptide strategies. J Virol. 1992,66(2):732-42.
    144.Howe L, Leroux C, Issel CJ, Montelaro RC. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increasses resistance to in vitro serum antibody neutralization as a dominant phenotype. J Virol. 2002,76(21):10588-97.
    145.Kono Y. Viremia and immunological responses in horses infected with equine infectious anemia virus. Natl Inst Anim Health Q (Tokyo). 1969,9(1):1-9.
    146.Montelaro RC, Parekh B, Orrego A, Issel CJ. Antigenic variation during persistent infection by equine infectious anemia virus, a retrovirus. J Biol Chem. 1984,259(16):10539-44.
    147.Issel CJ, Horohov DW, Lea DF, Adams WVJ, Hagius SD, McManus JM, Allison AC, Montelaro RC. Efficacy of inactivated whole-virus and subunit vaccines in preventing infection and disease caused by equine infectious anemia virus. J Virol. 1992,66 (6):3398-408.
    148.Leroux C, Chastang J, Greenland T, Mornex JF. Genomic heterogeneity of small ruminant lentiviruses: existence of heterogeneous populations in sheep and of the same lentiviral genotypes in sheepand goats. Arch Virol. 1997,142(6):1125-37.
    149.Fujimiya Y, Perryman LE, Crawford TB. Leukocyte cytotoxicity in a persistent virus infection: presence of direct cytotoxicity but absence of antibody-dependent cellular cytotoxicity in horses infected with equine infectious anemia virus. Infect Immun. 1979,24(3):628-36.
    150.Tschetter JR, Byrne KM, Perryman LE, McGuire TC. Control of equine infectioius anemia virus is not dependent on ADCC mediating antibodies. Virology. 1997,230(2):275-80.
    151.Raabe ML, Issel CJ, Montelaro RC. In vitro antibody-dependent enhancement assays are insensitive indicators of in vovo vaccine enhancement of eqine infectious anemia virus. Virology. 1999,259(2):416-27.
    152.Li F, Craigo JK, Howe L, Steckbeck Jd, Cook S, Issel C, Montelaro RC. A live attenuated equnine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses. J Virol. 2003,77(13):7244-53.
    153.Hammond SA, Cook SJ, Falo LD Jr, Issel CJ, Montelaro RC. A particulate viral protein vaccine reduces viral load and delays progression to disease in immunized ponies challenged with equine infectious anemia virus. Virology. 199254(1):37-49.
    154.Subramaniam PS, Khan SA, Pontzer CH, Johnson HM. Differential recognition of the type I interferon receptor by interferons tau andαlpha is responsible for their disparate cytotoxicities. Proc. Natl. Acad. Sci. USA 1995; 92(26): 12270-12274.
    155. Elahesh H, Jha BK, Silverman RH, Scherbik SV, Brinton MA. The Flvr-encoded murine oligoadenylate synthetase 1b (Oas1b) suppresses 2-5A synthesis in intact cells. Virology. 2010,409(2):262-70.
    156. Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X, Ceccaldi PE, Deubel V, Guenet JL, Despres P. A nonsense mutation in the gene encoding 2’-5’-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA. 2002,99(17):11311-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700