用户名: 密码: 验证码:
聚合物/SiO_2-TiO_2杂化纤维材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机杂化材料克服了单一材料和传统复合材料性能上的缺陷,它兼具有机材料的优点(如韧性、延展性和易加工性等)及无机材料的的优点(如刚性、高热稳定性和特殊的光电磁性能等),因而其制备受到人们的广泛关注。有机/无机杂化纤维是有机/无机杂化材料中的一类,目前国内外对杂化纤维的研究报道较少,制备力学、热学及光学性能优良的杂化纤维的研究正逐步引起人们的关注。本论文用溶胶-凝胶法制备了多种SiO_2-TiO_2杂化纤维材料,研究了杂化和聚合机理、形貌、结构和性能。具体研究内容如下:
     1.以正硅酸乙酯(TEOS)为原料,采用溶胶-凝胶法制备了硅溶胶,探讨了影响硅溶胶可纺性的各种因素及制备SiO_2纤维的最佳反应条件,并采用FT-IR、光学显微镜及XRD等对SiO_2纤维结构和性能进行了分析。溶胶的可纺性受水硅摩尔比,酸硅摩尔比,催化剂种类及反应温度的影响。温度升高,溶胶的可纺性降低;使用HCl作催化剂,水硅摩尔比为1.5,酸硅摩尔比为0.03时溶胶的可纺性最好,所得SiO_2纤维为无定形,直径约为50μm,其透明度和均匀程度都比较好。研究内容为制备无定形SiO_2纤维和制备热学性能、光学性能改进的杂化纤维提供依据。
     2.以TEOS为原料,用溶胶-凝胶方法,在PMMA存在下制备了PMMA/SiO_2杂化纤维,并用原位聚合法制备了PBMA/SiO_2杂化纤维。通过FT-IR、SEM、TGA及DSC等分析手段,探索其杂化机理,研究两种杂化纤维的形貌、结构与性能。杂化纤维中,聚合物与SiO_2之间形成化学键;两种杂化纤维直径分别为160μm和80μm左右,有机无机相间形成均一的连续相,表面光滑,尺寸均匀,透明度较好;耐热性能均优于纯聚合物。PBMA/SiO_2杂化纤维具有更好的柔性。
     3.以TEOS和钛酸四丁酯(TBT)为前躯体,采用溶胶-凝胶法和提拉法制备了PMMA/SiO_2-TiO_2、PBMA/SiO_2-TiO_2杂化纤维。研究了它们的形貌、结构与性能,聚合物与SiO_2-TiO_2之间通过化学键连接;两种SiO_2-TiO_2杂化纤维的直径分别为150μm和50μm左右;有机无机相间形成均一的连续相;随TiO_2含量的增加,杂化纤维的紫外透过率不断降低,荧光发射峰的强度不断增加。TiO_2的引入使杂化纤维具有荧光发射性能,并对紫外线具有有效的屏蔽作用,减缓杂化材料的老化。研究结果对于研制开发新型光电纤维材料具有重要意义;同时为硅钛体系杂化纤维材料的制备提供了理论依据。杂化纤维的耐热性能优于纯聚合物的耐热性能。
     4.采用溶胶-凝胶原位聚合法和静电纺丝技术制备PBMA/SiO_2杂化电纺纤维,聚合物与SiO_2之间通过偶联剂(VTEOS)形成了共价键的连接;随聚合物含量的增加,电纺产物由直径为5μm左右的纤维变为堆聚在一起的表面光滑、大小不均的颗粒;与纯PBMA相比,杂化电纺纤维的热分解温度由260℃升高至348℃左右,热稳定性能优良。
     另外用静电纺丝技术制备PVA/SiO_2-TiO_2杂化电纺纤维,无机相(SiO_2-TiO_2)与PVA之间主要通过分子间羟基键合形成杂化;纤维直径为几百纳米。随(SiO_2-TiO_2)含量的增加,形成的网络结构增多,纤维的直径不断增加,并出现弯曲和扭曲现象,甚至有带状结构出现。杂化纤维中纳米TiO_2对紫外线的有效屏蔽,可以减慢PVA/SiO_2杂化材料的老化。与纯PVA纤维相比,杂化电纺纤维的结晶度明显降低,热分解温度由230℃升高至317℃左右,在酸性、中性和碱性条件下的疏水性和稳定性增强。
     5.以MMA、TBT为主要原料,采用溶胶-凝胶法制备了分散良好,无机相粒径为5nm左右的PMMA/TiO_2杂化材料。杂化材料中无机网络与高分子链之间以共价键相结合,相微区尺寸较小,有效的阻止了两相间的相分离;杂化材料以非晶态形式存在。随TiO_2含量的增加,杂化材料的无机相尺寸增大,透光度下降,紫外透过率不断降低。纳米TiO_2对紫外线的有效屏蔽,减缓了PMMA的光老化。与纯PMMA相比,PMMA/TiO_2杂化材料的热分解温度由270℃升高至300℃左右。应用纳米粒子对PMMA进行改性,从而扩大了PMMA的应用范围。研究结果为制备光学性能和热性能优良的杂化材料提供理论依据。
Organic/inorganic hybrid materials combine the advantage of the organic materials (rigidity, high thermal stability and unique optical, electric and magnetie properties) and organic materials (toughness, ductility and processability), which is different from the single marerials and conventional composite materials. So the preparation of such organic/inorganic hybrid materials has received great interest. Organic/inorganic hybrid fiber, which has received few researches at home and abroad, is a kind of organic/inorganic hybrid material. The preparation study of hybrid fibers with excellent mechanical, thermal and optical properties is of burgeoning interest. A variety of silicon-titania hybrid fiber materials with different organic substances were prepared by sol-gel method. Moreover, the hybrid and polymerization mechanisms, morphology, structure and properties of hybrid fiber materials were investigated. Main works are as follows:
     1. Silica sol was prepared by sol-gel method with tetraethoxysilane (TEOS) as the material. The influencing factors on the spinnability of silica sol and the best reaction conditions of the preparation of SiO_2 fibers were studied. The structures and properties of SiO_2 fibers were analyzed by FT-IR, optical microscope and X-ray diffraction. The spinnability of the sol influenced by the molar ratio of H+ and TEOS, the molar ratio of water and TEOS, the kind of the catalyst and the temperature of the reaction. The spinnability of the sol decreased with the increasing temperature. The sol possessed best spinnability when the molar ratio of water and TEOS is 1.5, the molar ratio of H+ and TEOS is 0.03 with HCl as catalyst. The SiO_2 fibers are amorphous fibers. The diameters of the fibers are about 50μm, and the fibers have good transparence and uniformity. This will provide the basis for the preparation of amorphous SiO_2 fibers and the hybrid fiber, which possessing improved thermal and optical properties.
     2. PMMA/SiO_2 hybrid fibers were prepared with PMMA existing and PBMA/SiO_2 hybrid fibers were prepared via in-situ polymerization with TEOS as material by sol-gel method. The mechanism of the hybrid reaction, the structures and properties of the two hybrid fibers were studied by FT-IR, SEM, TGA and DSC. In the hybrid fibers, polymer was linked with SiO_2 by chemical bonds. The diameters of the two hybrid fibers were about 160μm and 80μm, respectively. A homogeneous and continuous phase was formed between organic and inorganic phases. The hybrid fibers have smooth surface, uniform size and good transparence. They show better resistance to heat than pure polymer. PBMA/SiO_2 hybrid fibers have better flexibility.
     3. PMMA/SiO_2-TiO_2 and PBMA/SiO_2-TiO_2 hybrid fibers were prepared with TEOS and tetrabutyl titanate (TBT) as precursor by sol-gel and drawing method. The morphology, structure and property of hybrid fibers were studied. Polymer was linked with SiO_2-TiO_2 network by chemical bonds. The diameters of the two SiO_2-TiO_2 hybrid fibers were about 150μm and 50μm, respectively. A homogeneous and continuous phase was formed between organic and inorganic phases. With the increasing content of TiO_2, the Ultraviolet (UV) permeating ratio of the hybrid fibers decreased and the intensity of the fluorescene emission peak increased. With the introducing of titania, the hybrid fibers possess the fluorescene emission property and shield UV radiation effectively, which decrease the aging of the hybrid materials. The result of the study is significant to the research of new optical fiber materials and provide theory basis for SiO_2-TiO_2 hybrid fiber materials. The hybrid fibers show better resistance to heat than pure polymer.
     4. PBMA/SiO_2 hybrid electrospun fibers were prepared via sol-gel in-situ polymerization and electrospinning method. Polymer was linked with SiO_2 by covalent bond via coupling agent (VTEOS). With the increasing content of polymer, the electrospun product changed from the hybrid fibers with the diameters of about 5μm to gathered smooth and heterogeneous granules. Comparing with pure PBMA, the hybrid fibers possess advantage thermal properties and the thermal decomposition temperature of that rises from 260 to 348℃.
     PVA/SiO_2-TiO_2 hybrid electrospun fibers were prepared by electrospinning method. PVA was linked with SiO_2-TiO_2 network by inter-molecular hydrogen bonds.The diameters of the electrospun fibers were hundreds nanometer. With the increasing content of SiO_2-TiO_2, the network structure increased; the diameter of the fibers increased gradually; blending and contorting structure existed and even ribbon structure appeared. The effective shielding to UV of nano-titania can decrease the aging of the PVA/SiO_2 hybrid materials. Comparing with pure PVA fibers, the crystallinity of hybrid electrospun fibers is decreased distinctly and the thermal decomposition temperature rises from 230 to 317℃. The stability and hydrophobicity of the hybrid fibers are both improved under different pH values.
     5. PMMA/TiO_2 hybrid materials, which were well-dispersed with inorganic size of 5nm, were prepared by sol-gel method with MMA and TBT as the main material. Polymer chains were linked with inorganic network by covalent bonds; the dimension of phase microdomain is small, which prevented the separation of the two-phase effectively. The hybrid materials existed in the amorphous form. With the increasing content of TiO_2, the dimension of inorganic phase increased, light transmission declined gradually and the transmission of UV reduced gradually. The effective shielding against ultraviolet rays of nanotitania can slow down the light aging of PMMA. Comparing with pure PMMA, the thermal decomposition temperature of PMMA/TiO_2 hybrid materials rises from 270 to about 300℃. PMMA was modified by nanometer particles and thus the scope of the application of PMMA was widened. This will provide the theoretical basis for the preparation of hybrid materials, which possessing improved optical and thermal properties.
引文
[1] Yoshiki C. Organic-inorganic hybrid materials. Curr. Opin. Solid State Mater. Sci., 1996, 1(6): 806-811
    [2] Mackenzie J D, Bescher E P. Structures, properties and potential applications of ormosils J. Sol-Gel Sci. Technol., 1998, 13:371-377
    [3] Novak B M. Hybrid naocomposite materials-between inorganic glasses and polymers. Adv. Mater., 1993, 5:422-433
    [4] Chna C K, Chu I M, Lee W. Perparation and properties of organic-inorganic hybrid materials based on poly{(butyl methacrylate)-co-[(3-methacryloxypropyl)trimethoxysilane]}.Macormol. Chem. Phys., 2001, 202(6):911-916
    [5]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程, 2004, 20(2): 28-31
    [6] Sakka S. Sol-gel processing of insulating, electroconducting and superconducting fibers. J. Non-Cryst. Solids, 1990, 121(1-3):417-423
    [7] Sung W L, Young U K, Sung S C, et.al. Preparation of SiO_2/TiO_2 composite fibers by sol–gel reaction and electrospinning. Mater. Lett. , 2007, (61): 889-893
    [8]王家芳,章文贡.溶胶-凝胶法合成有机/无机杂化材料进展.高分子通报, 2001,(2): 60
    [9] Hench L L, West J K, Zhu B F, et al. Gel-silica hybrid optics. Proc. SPIE- Int. Soc. Opt. Eng., 1990, 1328:230-240
    [10]黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005,1-5
    [11] Briuker C J, Sol-Gel Science, Academic Press. INC 1990, 58-65
    [12] Kyoung T K, Chang I K. The effects of drying temperature on the crystallization of YMnO3 thin films prepared by sol-gel method using alkoxids. J. Eur. Ceram. Soc., 2004, 24:2613-2617
    [13]张柏顺,章天金.钛酸锶钡薄膜的制备及其光学特性的研究.电子元件与材料, 2004, 23 (12): 1-3
    [14] Yang C H, Wang Z, Xu H Y, et al. Preparation and main characteristics of lead-free K0. 5Bi0. 5 TiO3 ferroelectric thin films. J. Cryst. Growth, 2004:304-307
    [15] Wei Z J, Bo S. Dielectric and ferroelectric properties of Ba (Sn0. 15 Ti0. 85) O3 thin films grown by a sol-gel process. Mater. Res. Bull., 2004(39):1599-1606
    [16] Giridharan N V, Madeswaran S, Jayavel S. Structural, morphology and electrical studies on ferroelectric bismuth titanate thin films prepared by sol-gel technique. J. Cryst. Growth,2004:468-472
    [17] Wilkes G L, Orler B, and Huang H H. Ceramers: hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol-gel approach. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1985, 26: 300-302
    [18] Schmidt H. New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids, 1984, 73: 681-691
    [19] Sanchez C, Ribot F. Chemistry of hybrid organic-inorganic materials synthesized via a sol-gel. New J Chem, 1994, 18:1007
    [20] Silveira K F, Yoshida I V P, Nune S P. Phase separation in PMMA/silica sol-gel systems. Polym, 1995, 36(7):1425-1434
    [21] Novak B M, Ellsworth M, Wallow T, et al. Simultaneous interpretating networks of inorganic glasses and organic polymers. New routes into nonshrinking sol-gel derived composites. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1990, 31:698-699
    [22]王立新,陈晓婷,王新等.溶胶-凝胶法制备聚酰亚胺/二氧化硅纳米尺度复合材料.河北工业大学学报, 1998, 4(17):18-22
    [23] Pope E J A, Asmai F, Maekenzie J D. Transparent silica gel-PMMA composites. J Mater Res,1989, 4(4):1018-1026
    [24]赵竹第,高宗明,欧玉春等.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究.高分子学报,1996 , (2) :228-233
    [25] Landry C J T, Coltrain B K, Landry M R. Poly (vinyl acetate)/silica filled materials: material properties of in situ vs fumed silica particles. Polym.Prepr. 1991, 32:514
    [26] Zoppi R A, De Castro C R, Yoshida I V P. et al. Hybrids of SiO_2 and poly (amide 6-b-ethylene oxide). Polym., 1997, 38:5705-5712
    [27] Goizet S,Sehrotter J C,Smaihi M,et al. Sol-gel polyimide-silica composite films: correlation between the microstructure and the synthesis parameters. New J.Chem., 1997, 21:461-468.
    [28] Novak B M, Grubbs R H, Catalytic organometallic chemistry in water: The aqueous ring- opening metathesis polymerization of 7-oxanorbornene derivatives. J Am Chem Soc, 1988,110: 7542-7543
    [29] Ellsworth M W, Novak B M. Functionalized silicic esters for the synthesis of non-shrinking sol-gel composites. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1992, 33(1):1088-1094
    [30] Schubert U, Kickelbick G, Husing N. Nanoscale structures of sol-gel materials. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2000, 354:107-122
    [31] Honma I, Hirakawa S, Yamada K, et al. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes. Solid State Ion., 1999, 118(2):29-36
    [32] Honma I, Tateda Y, Bae J M, Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ion., 1999, 120:255-264
    [33] Wen J, Wilkes G L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chem. Mater., 1996, 8:1667-1681
    [34] Brik M E, Titman J J, Bayle J P, et al. Mapping of motional heterogeneity in organic-inorganic nanocomposite gels. J.Polym.Sci., Part B: Polym.Phys., 1996, 34: 2533-2542
    [35]黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005,82-84
    [36]徐卫兵,何平笙. Epoxy/Clay有机-无机纳米复合材料.高分子材料科学与工程,2002,18(1):6-11
    [37]陈光明,李强,漆宗能等.聚合物/层状硅酸盐纳米复合材料研究进展.高分子通报,1999,(12):1-10
    [38] Usuki A, Kojima Y, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated withε-caprolactam. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1987, 24:247-251
    [39] Messesrmiht P B,Ginnaelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposiets. Chem. Mater.,1994, 6:1719-1725
    [40]史铁钧,徐鼐,吴德峰等.双单体原位接枝插层法制备聚丙烯纳米复合材料的研究、制备、测试与表征及力学性能的研究.高分子学报, 2003, 4: 559-564
    [41]史铁钧,吴德峰,王华林等.两步法制备剥离型聚丙烯/蒙脱土纳米复合材料的制备、测试与表征及力学性能.化工学报, 2004, 2:259-263
    [42]任强,史铁钧,王华林等.丙烯酸-丙烯酸胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究.功能高分子学报, 2003, 16(4): 469-474
    [43] Aranda P, Ruiz-hizky E. Hybrid organic-inorganic electrode-membranes based on organo- polysiloxane/macrocycle systems. Chem. Mater, 1992, 4: 1395-1403
    [44] Wu J, Lerner M M. Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-uontm-orillonite and polyethers. Chem Mater, 1993, 5: 835-838
    [45] Vaia R A,Ishii H,Giannelis E P. Synthesis and properties of 2- dimensional nanostructures by dieret intercalation of po1ymer melts in layered silicates. Chem.Mater, 1993, 5:1694-1696
    [46] Krawiec W, Scanlon L G, Fellner J P, et al. J. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. Power Sources, 1995, 54:310-315
    [47] Vaia R A, Jandt K D, Kramer E J, et al. Microstructural Evolution of Melt Intercalated Polymer-Organically Modified Layered Silicates Nanocomposites. Chem. Mater., 1996, 8(11):2628-2635
    [48]Hasegawa N,Okamoto H,Kato M,et al. Preparation and mechanical properties ofPolypropylene-clay hybrids based on modified polypropylene and organophilic clay. J.Appl.Polym.Sci., 2000, 78:1918-1922
    [49]Vaia R A, Ginnelis E P. Polmyer melt intercalation in organically-modified layered silicates: model predictiond and experiment. Macromolicules, 1997, 30:8000-8009
    [50] Chen W, Xu Q, Yuan R Z. Modification of poly (ethylene oxide) with poly(methyl-methacrylate) in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett., 1999, 18:711-713
    [51]郑华,彭宗林,张勇等. EPDM/有机蒙脱土纳米复合材料的制备和性能研究.橡胶工业, 2003, 50(7):398-402
    [52] Shang S W, Wiuiams J W, et al. Preparation and properties of EVA/ SiO_2 hybrid material. J. Mater. Sci., 1992, 27: 4949-4954
    [53]官同华,瞿雄伟,李秀错等.乳液法聚甲基丙烯酸甲酯/蒙脱土纳米复合材料的合成与测试与表征.中国塑料, 2001,15(11):15-19
    [54]史铁钧、王华林、李波等. PP/SiO_2杂化纳米复合材料的制备与性能研究.高分子通报, 2005, 2:93-96
    [55] Wang H L, Shi T J, Yang S Z, et al. Crystallization behavior of PA6/SiO_2 organic-inorganic hybrid material. Mater. Res. Bull., 2006, 41(2):295-306
    [56] Wang H L, Shi T J, Yang S Z, et al. Crystallization behavior of PA66/SiO_2 organic-inorganic hybrid material. J. Appl. Polym. Sci., 2006, 101(2):810-817
    [57]邬智勇,夏金魁,伍仟新等.超声波在SBS/粘土纳米复合材料研究中的应用.橡胶工业, 2005, 52(12):713-715
    [58]王华林,李延红,翟林峰等.可降解聚乳酸/羟基磷灰石杂化材料—Ⅲ.聚乳酸/羟基磷灰石杂化材料的制备及降解.高分子材料科学与工程, 2006, 22(3): 247-249
    [59]邹小平,张良莹,姚熹等.溶胶-凝胶法有机-无机精细复合材料P(VDF/TeFE)- SiO_2的制备与显微结构.功能材料, 1998, 29(3):327-329
    [60] Suzuki F, Onozato K. A formation of compatible poly (vinglacohol)/alumina gel composite and its properties. J. Appl. Polym. Sci., 1990, 39: 371-381
    [61] Park N H, Kyung D. Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3 toughened HDPE. J Appl Polym Sci, 1996, 71: 1597-1561
    [62] Ansell M A, Zeppenfeld A C, Yoshimoto K, et al. Self-Assembled Cobalt-Diisocyanobenzene Multilayer Thin Films. Chem. Mater., 1996, 8: 591-594
    [63] Li J, Josowicz M. Synthesis and Characterization of Electropolymerized Poly (cyclophosphazene-benzoquinone). Chem. Mater., 1997, 9: 1451-1462
    [64]陆绍荣,张海良,王霞瑜.环氧树脂/二氧化硅杂化材料的制备与性能.高分子材料科学与工程, 2005, 21(6):261-265
    [65] Ahmad M I. Thermal transport in opalified silica mono lithic aerogels. J Non-Cryst Solids, 1992, 145 (5):207-214
    [66] Sanchez C, Alonso B, Chapusot F, et al. Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J. Sol-gel Sci. Tech., 1994, 2:161-167
    [67] MacCraith B D, McDonagh C , McEvoy A K, et al. Optical chemical sensors based on sol-gel materials: recent advances and critical issues. J. Sol-gel Sci. Tech., 1997, 8(1-3):1053-1058
    [68] Franville A C , Zambon D, Mahiou R, et al. Synthesis and optical features of a europium organic–inorganic silicate hybrid. J. Alloys Compd., 1998, (275-277):831-834
    [69] Wang B, Wilkes G L , Smith C D. High refractive index hybrid ceramet materials prepared from tetraisoprpoxide and poly (arylene ether phosphine oxide ) through sol-gel processing. Polym. Comm, 1991, 32 (1):400- 401
    [70]王华林,戴静,翟林峰等.可降解聚乳酸/骨粉杂化材料的制备与降解性能.高分子材料科学与工程,2007, (3):167-170
    [71] C.C.P.M. Verheyen, J.R. de Wijn. Hydroxyapatite/poly (L-lactide) composite: an animal study on push-out strengths and interface histology. J. Biomed. Mater. Res. 1993, (27):433-444
    [72]郭清泉,陈焕钦.溶胶凝胶技术革新及其在涂料工业中的应用.热固性树脂, 2003, 18(4):29-32
    [73] Rogelio R, Miriam E, Susana V M. A tonieta Mondragon Hybrid ceramic-polymer material for wood coating with high wearing resistance. Mater. Res. Innovat, 2003, (7):8-12
    [74] Yogo T, Nakamura T, Kikuta K, et al. Synthesis of alpha-Fe2O3/particle/oligomer hybrid material. J. Mater. Res., 1996, 11(2):475-482
    [75] ZHOU W Y, TANG S Q, WAN L, et al. Preparation of nano-TiO_2 photocatalyst by hydrolyzation precipitation method with metatitanic acid as the precursor. J. Mater. Sci, 2004, 39 (3): 1139-1141
    [76] Kinetic K S. Study of photocatalytic degradation of volatile organic compound in air using thin film TiO_2 photocatalyst. Appl. Catal. B: Environ, 2002, 15:305-315
    [77]杨祝红,暴宁钟,刘畅. TiO_2纤维的制备及其光催化活性研究.高等学校化学学报, 2002, 23(7):1371-1374
    [78] Kamiya K, Yoko T, BeddhoM. Nitridation of TiO_2 fibers prepared by the sol gel method. J. Mater. Sci, 1987, 22:937-941
    [79] CHEN Y F, LEE C Y. Preparing titanium oxide with various morphologies. Mater. Chem. Phys., 2003, 81: 39-44
    [80] Wang Y Q, Hu G Q. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phys. Lett., 2002, 365(5):427-431
    [81]王福平,宋英,姜兆华等.水合二氧化钛纤维的制备及其相变过程研究.材料科学与工艺, 1999, 7(1):64-67
    [82]王福平,孙德智;王俊辉等.用纤维TiO_2作光催化剂降解饮用水中腐殖质.高技术通讯, 1998,12:21-24
    [83]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料.高分子学报, 1997(4):434-438
    [84] Chin S W. Synthesis of polyethylene-octene elastomer/SiO_2-TiO_2 nanocomposites via in situ polymerization: Properties and characterization of the hybrid J. Polym. Sci., Part A: Polym Chem, 2005, 43(8):1690-1701
    [85] Sung S C, Boyoung C, Seung G L, et al. Titania-Doped Silica Fibers Prepared by Electrospinning and Sol-Gel Process. J. Sol-Gel Sci. Technol., 2004, 30: 215-221
    [1] Sakka S., Kamiya K. The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. J. Non-Cryst. Solids, 1982(48):31-46
    [2]肖明艳,陈建敏.有机-无机杂化材料研究进展.高分子材料科学与工程, 2001,17(5):6-10
    [3]袁坚,刘明志,汤李缨.化学法SiO_2单组分凝胶纤维的制备山东建材, 2001,22(1): 8-10
    [4] Kiyoshi O, Shuichi Y, Shigeo H, et.al. Sol-gel synthesis of mullite long fibres from water solvent systems. J. Eur. Ceram. Soc., 1998(8): 1879-1884
    [5]徐莉.正硅酸乙酯溶胶-凝胶过程中催化剂的作用.南京林业大学学报, 1998,22(4): 67-70
    [6] MacChesney J B, Johnson D W, Bhandarkar J S., et.al. Optical fibers by a hybrid process using sol-gel silica overcladding tubes. J. Non-Cryst. Solids, 1998(226): 232-238
    [7] Xu Y D, Zhou W C, Zhang L T, et.al. Spinnability and crystallizability of silica glass fiber by the sol-gel method. J. Mater. Process. Manuf. Sci., 2000(101):44-46
    [8]王丽秋,刘丽萍,朱彩云等.溶胶粘度的影响因素与SiO_2凝胶产品的合成.齐齐哈尔师范学院学报(自然科学版), 1997,17(4):40-42
    [9]徐永东,周万城,张立同.溶胶凝胶法SiO_2玻璃纤维的制备及其析晶性.材料研究学报, 1994, 8(4): 343-347
    [10] Sakka S, Kozuka H, Adachi T. Stability of solutions, gels and glasses in the sol-gel glass synthesis. J. Non-Cryst Solids, l988, 102(1-3):263-268
    [11] Awaji N,Ohkubo S,Nakanishi T,Thermal oxide growth at chemical vapor-deposited SiO_2/Si interface during annealing evaluated by difference x-ray reflectivity. Appl. Phys Lett, 1997, 71(14):1954-1956
    [12]汪晨铎,钱达兴. SiO_2单分散溶胶微球制备的工艺条件研究.玻璃与搪瓷, 2006, 34(l):14-18
    [13]徐莉.正硅酸乙酯溶胶-凝胶过程中催化剂的作用.南京林业大学学报, 1998, 22(4):67-70
    [14]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社,1988:83-88
    [1] Sakka S, Kamiyia K. The sol-gel transition in the hydrolysis of metalalkoxides in relation to the formation of glass fibers and films. J. Non-Cryst. Solids, 1982, 48:31-46
    [2] Song K C. Preparation of Mullite Fibers by the Sol-Gel Method. J. Sol-Gel Sci. Technol., 1998, 13:1017-1021
    [3] Arkhireeva A, Hay J N, Lane J M,et al. J. Sol-Gel Sci. Technol., 2004, 31:31-36
    [4] Innocenzi P, Kidchob T, Yoko T. J. Sol-Gel Sci. Technol., 2005, 35(3,):225-235
    [5]张启卫,章永化,陈守明.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能应用化学, 2002, 19(9): 874-877
    [6] Sung S C, Boyoung C, Seung G L, et al. Titania-Doped Silica Fibers Prepared by Electrospinning and Sol-Gel Process. J. Sol-Gel Sci. Technol., 2004, 30: 215-221
    [7] Glaubitt W, Watzka W, Scholz H, et al. Sol-gel processing of functional and structural ceramic oxide fibers. J. Sol-Gel Sci. Technol., 1997, 8(1-3):29-33
    [8] Sakka S. Sol-gel processing of insulating, electroconducting and superconducting fibers. J. Non-Cryst. Solids, 1990, 121(1-3):417-423
    [9] Xu Y D, Zhou W C, Zhang L T, et.al. J. Mater. Process. Technol., 2000, 101:44-46
    [10]王华林,余锡宾,訾振军. PMMA/SiO_2有机-无机杂化玻璃的研究.高分子材料科学与工程, 2000, 16(4):114-116
    [11]Shahzada A, Sharif A, Agnihotry S A. Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull. Mater. Sci., 2007, 30(1):31-35
    [12] Min C, Shu X Z, Bo Y, et.al. A novel preparation method of raspberry-like PMMA/SiO_2 hybrid microspheres. Macromolecules, 2005, 38 (15):6411–6417
    [13]曹金燕,史铁钧,王华林等.可成纤PMMA/SiO_2杂化溶胶研究.高分子材料科学与工程, 2007, 23(1): 204-207
    [14]任洪波,张林,杜爱明等.紫外光固化丙烯酸酯/二氧化硅杂化光学增透膜的研制.强激光与粒子束, 2004, 16 (5):623- 626
    [15] Huang Z H, Qiu K Y. Preparation and thermal property of poly (methyl methacrylate) / silicate hybrid materials by the in-situ sol-gel process. Polym. Bull., 1995, 35:607-613
    [16] Mukkamala R, Cheung H M. Acid and base effects on the morphology of composites formed from microemulsion polymerization and sol-gel processing. J. Mater. Sci., 1997, 32:4687-4692
    [17] Xie T X, Zhou C G, Feng S Y, et al. Study of poly (methyl methacrylate-maleic anhydride) /silica hybrid materials. J. Appl. Polym. Sci., 2000, 75:379-383
    [18] Shahzada A, Sharif A, Agnihotry S A. Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull. Mater. Sci., 2007, 30(1):31-35
    [19] Coltrain B K, Landry C J T, O’Reilly J M. Role of trialkoxysilane functionalization in the preparation of organic-inorganic composite. Chem. Mater., 1993, 5:1445-1455
    [20]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社, 1988: 83-88
    [21]李吉学,付永启,赵晶丽等. SiO_2/PMMA无机-有机复合材料的制备与结构研究.功能材料, 2001, 32(4):427-428
    [1]王家芳,章文贡.溶胶-凝胶法合成有机无机杂化材料进展—组分间以次价力作用的有机无机杂化材料.高分子通报, 2001(2):30-36
    [2] Rodríguez J C, Monleon P M, Ribelles J L. Properties of poly (2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. J. Non-Cryst. Solids, 2008, 354(17):1900-1908
    [3] Isao Hasegawa, Yuka Fukuda, Meisetsu Kajiwara. Inorganic-organic hybrid route to synthesis of ZrC and Si-Zr-C fibres. Ceram. Int., 1999, 25(6):523-527
    [4]宋秋生,史铁钧,王华林等. PVA/SiO_2杂化纤维的制备与测试与表征[J].高分子材料科学与工程, 2007, 23(6):216-219
    [5] Glaubitt W, Watzka W, Scholz H, et al. Sol-gel processing of functional and structural ceramic oxide fibers. J. Sol-Gel Sci. Technol., 1997, 8(1-3):29-33
    [6] Eremenko A, Smirnova N, Rusina O. et al. Photophysical properties of organic fluorescent probes on nanosized TiO_2/SiO_2 systems prepared by the sol–gel method. J. Mol. Struct., 2000, 553(1-3):1-7
    [7] Song C F, Lu M K, Yang P, et al. Structure and photoluminescence properties of sol-gel TiO_2-SiO_2 films. Thin Solid Films, 2002, 413:155-159
    [8] Juodkazis S, Bernstein E, Plenet J C, et al. Waveguiding properties of CdS-doped SiO_2-TiO_2 films prepared by sol-gel method. Thin Solid Films, 1998, 322:238-244
    [9]张玲,曾兆华,杨建文等.光固化环氧丙烯酸酯树脂有机-无机杂化体系.应用化学, 2001, 18 (11):873-876.
    [10] Zhang J, Luo S C, Gui L L .Poly(methyl methacrylate)–titania hybrid materials by sol–gel processing. J. Mater. Sci, 1997, 32:1469-1472
    [11]宋秋生,史铁钧,王华林.聚丙烯酸/SiO_2杂化纤维的制备与测试与表征.应用化学, 2007, 24(8):953-956
    [12]邓国宏,余立新,郝继华等.聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究.高分子材料科学与工程, 2001, 17(6):122-125
    [13]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料.高分子学报, 1997(4):434-438
    [14] Guo T G, Zhi J Z, Hong X D. Preparation and characterization of hydrophobic organic–inorganic composite thin films of PMMA/SiO_2/TiO_2 with low friction coefficient. Appl. Surf. Sci., 2004, 221:129-135
    [15]张玲,蔡涛,姚英政等. SiO_2-TiO_2二元材料及其杂化材料的制备和测试与表征.应用化学, 2005, 22(9):984-988
    [16] Yamada K, Chow T Y, Horihata T. et al. A low temperature synthesis of zirconium oxide coating using chelating agents. J. Non-Cryst. Solids, 1988, 100:316-321
    [17] Huang Z H, Qiu K Y. The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process. Polymer, 1997, 38(3):521-526
    [18]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社,1988:83-88
    [19]张志强,张保柱,李军平等.有机-无机纳米杂化材料P(MMA -BMA) -TiO_2的制备和测试与表征.山西大学学报(自然科学版), 2006, 29 (3): 291-293
    [20]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2002:83-85
    [21]李吉学,付永启,赵晶丽等. SiO_2-PMMA无机-有机复合材料的制备与结构研究[J].功能材料,2001, 32(4):427-428
    [22] Sakka S, Kozuka H, Adachi T. Stability of solutions, gels and glasses in the sol-gel glass synthesis. J. Non-Cryst. Solids, l988, 102(1-3):263-268
    [1] Deitzel J M, Kleinmeyer J D, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42:261-272
    [2] Drew C, Liu X, Ziegler D, et al. Metal oxide-coated polymer nanofibers. Nano Lett., 2003, 2:143-147
    [3] Frenot A, Chronakis I S. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci., 2003, 8:64-75
    [4] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63:2223-2253
    [5] Formhals A.US Patent [P], 975, 504, 1934
    [6] Lei H,MeMilan R A,Robert P A, et al. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules, 2000, 33(8):2989-2997
    [7]宋秋生,史铁钧,王华林等. PVA/SiO_2杂化纤维的制备与测试与表征[J].高分子材料科学与工程, 2007, 23(6):216-219
    [8] Shin Y M, Hohman M M, Brenner M P, et al. Experimental characterization of electrospinning: The electrically forced jet and instabilities. Polymer, 2001, 42(25):9955-9967
    [9] Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 2001, 42:8163-8170
    [10] [阿根廷]大卫R.萨利姆著,高绪珊,吴大诚等译.聚合物纤维结构的形成.北京:化学工业出版社, 2004, 178-184
    [11] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J. Electrostatics, 1995, 35 (2-3):151-160
    [12] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15):2223-2253
    [13]吴大诚,杜仲良,高绪珊.纳米纤维.北京:化学工业出版社, 2003, 4-10
    [14]郝秀峰.利用电喷离子化技术研制高分子微/纳米粒子.吉林大学博士学位论文, 2005
    [15] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J. Electrostatics, 1995, 35 (2-3):151-160
    [16] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40(16):4585-4592
    [17] Deitzel J M, Kleinmeyer J, Harris D. e al. The effect of processing variables on the morphologyof electrospun nanofibers and textiles. Polymer, 2001, 42(1):261-272.
    [18] Demir M M, Yilgor I, Erman B. Electrospinning of polyurethane fibers. Polymer, 2002, 43(11):3303-3309.
    [19] Shekar B, Vecravazhuti V, Sakthivel S, et al. Growth, strucre dielectric and AC conduction properties of solution grown PVA films. Thin Solid Films, 1999, 348(1-2):122-129.
    [20] Mishra R, Rao K J, et al1 Electrical conductivity studies of poly (ethyleneoxide) - poly (vinylalcohol) blends. Solid State Ionics, 1998, 106(1-2):113-127
    [21] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett., 2004, 58:493-497
    [22] Lee J S, Choi K H, Ghim H D, et al. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci, 2004, 93:1638-1646
    [23] Zong X H, Kom K, Fang D F, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16):4403-4412
    [24] Christopher J, Buchkoa, Loui C, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999, 40(26):7397-7407
    [25] Lee K H, Kim H Y, Khil M S, et al. Characterization of nano-structured poly (-caprolactone) nonwoven mats via electrospinning. Polymer, 2003, 44(4):1287-1294
    [26] Song W K, Youk J H, Lee T S, et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafinc poly (ethylene oxide) fibers. Polymer, 2004, 45:2959-2966
    [27]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社, 1988:83-88
    [28]张玲,蔡涛,姚英政等. SiO_2-TiO_2二元材料及其杂化材料的制备和测试与表征.应用化学, 2005, 22(9): 984-988
    [29]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社, 1994:38-44
    [30]张志强,张保柱,李军平等.有机-无机纳米杂化材料P(MMA-BMA)-TiO_2的制备和测试与表征. .山西大学学报(自然科学版), 2006, 29 (3):291-293
    [31] Loy D A, Shea K J. Bridged polysilsesquioxanes-highly porous hybrid organic-inorganic materials. Chem. Rev., 1995, 95:1431-1442
    [1]王华林,余锡宾,訾振军. PMMA/SiO_2有机-无机杂化玻璃的研究.高分子材料科学与工程, 2000, 16(4):114-116
    [2] Sinha R S, Okamoto M. Polymer/ layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 2003, 28(11):1539-1641
    [3] Zheng W G, Wong S C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol., 2003, (2):225-235.
    [4] Chang T C, Wang Y T, Hong Y S, et al. Effects of inorganic components on the structure and thermo-oxidative degradation of PMMA modified metal alkoxide-EAA complex . Thermochim. Acta, 2002, (7):93-102.
    [5]董相廷,洪广言,刘桂霞等.纳米CeO2 / PMMA杂化材料的制备与测试与表征.化学学报, 2003 , 61(1):122-125
    [6]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料.高分子学报, 1997 ,(4):434-438
    [7]晋日亚,王培霞.聚丙烯改性研究进展.中国塑料, 2001, 15(2):20-23
    [8]张哗,周贵恩,李磊等.纳米TiO_2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构.材料研究学报, 1998, 12(3):291-294
    [9]张隽,罗胜成,桂琳琳等.PMMA-TiO_2有机无机杂化玻璃的制备与测试与表征.物理化学学报, 1994, 12(4):259-292
    [10]郭广生,赵伟,王志华等.PMMA-TiO_2纳米复合材料的制备.应用化学, 2004, 21(8): 821-823
    [11]张道洪,刘传军,吴璧耀.溶胶-凝胶法制备有机-二氧化钛杂化材料.高分子材料科学与工程, 2003, 19(5):191-193
    [12] Zhou E G. X-ray diffraction of polymer. Hefei University of Science and Technology of China Press, 1989:131-139
    [13]陶华锋,张林,王金凤等.溶胶凝胶法制备PMMA/ SiO_2杂化材料.强激光与粒子束, 2006, 18(2):223-226
    [14]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社, 1994:38-44
    [15]张志强,张保柱,李军平等.有机-无机纳米杂化材料P(MMA -BMA) -TiO_2的制备和测试与表征.山西大学学报(自然科学版), 2006, 29 (3) : 291-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700