用户名: 密码: 验证码:
晶体中稀土离子f-f跃迁光谱强度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要介绍晶体中稀土离子f-f跃迁光谱强度的理论研究工作。具体工作分为两部分:第一部分,解决由于Judd-Ofelt理论中的“締合近似”,计算稀土离子4fN组态高能级的发射光谱强度存在很大偏差,修正了传统的理论。第二部分中,对一种X射线或阴极射线激发长余辉材料的光谱性质进行研究,应用Judd-Ofelt理论计算了其掺杂稀土离子4fN组态低能级的发射光谱强度,进而实现了对实验现象的解释。主要内容及结果如下:
     1对Pr3+掺杂的CaAl12O19及SrAl12O19体系进行研究,给出了Pr3+的4f2组态内电偶极跃迁强度的计算方法。考虑到由于4f2组态各能级与4f5d混杂态的能量差不同,对传统全参量Judd-Ofelt理论进行修正,计算中引入了λ为奇数的强度参数。根据实验测量的3P0能级向下能级发射强度比以及它的寿命值就可以得到这些强度参数值。将得到的强度参数值回代到跃迁几率的计算中,得到3P0能级及1S0能级寿命及向下各个能级的跃迁强度,计算结果表明修正的Judd-Ofelt理论处理高能级的发射强度有很大的改进。
     2选取了YPO4:Nd3+体系,考虑了4f 25d组态对f-f跃迁的明确影响。用Duan的简单模型处理4f 25d组态。应用标准张量方法对奇次晶场作用和组态间的电偶极跃迁矩阵元直接展开得到f-f电偶极跃迁强度表达式,其中包含了决定f-d混杂定则的数学因子和需由实验数据拟合的强度参数。由基态4I9/2的吸收强度来拟合这些强度参数,并回代到振子强度的计算中,得到了基态吸收的振子强度及高能级2G(2)9/2向下能级发射的强度,结果表明此模型的建立是合理的。
     3研究Tb3+掺杂的KY3F10体系在X射线或阴极射线激发下的余辉现象。由于( 5D3, 7F6 )– ( 5D4 , 7F0 )的交叉弛豫,余辉颜色随Tb3+掺杂量的不同而可调。由Judd-Ofelt理论计算得到了5D3、5D4能级的光谱学参量,结合发光动力学的分析,给出了交叉弛豫的速率、效率及蓝绿余辉强度比,理论计算结果和实验结果相一致。
The main purpose of this thesis is to introduce the spectral intensities of f-f transitions in rare-earth ions doped crystals. In part one, the closure approximation in Judd-Ofelt breaks down when applied to the high-lying state of 4fN configuration. Modification has been done to the traditional theory. In part two, the luminescence properties of a long-lasting phosphor are studied. The emitting intensities from the low-lying state of 4fN configuration are obtained by Judd-Ofelt treatment. The main results obtained are listed as follows:
     1. A modified Judd-Ofelt theory is to treat the electric dipole transitions within the 4f2 configuration of Pr3+ doped CaAl12O19 and SrAl12O19 by considering two main perturbing components of 4f5d and 4fn'g. The explicit distance between the 4f5d configuration and the 4f2 energy levels are determined. The odd-λintensity parameters are included. The intensity parameters are obtained by fitting the experimental emitting intensities and lifetime of 3P0. Next, the emitting line intensities and lifetime originating from 3P0 and 1S0 are then calculated. Compared with the experimental measurements, the modified model yields better results than the standard Judd-Ofelt theory.
     2. The effects of 4f25d configuration on the intraconfigurational 4f3?4f3 electric dipole transitions of Nd3+ doped YPO4 are taken into account by a“direct”calculation. A simple model is applied to analyze the opposite parity 4f25d configuration. The matrix elements of the odd-rank crystal-field interaction and the interconfigurational electric dipole transition are directly expressed using a standard tensor operator method. A set of selection rules for f-d mixing and f-f electric dipole transitions is built up. Using this calculation method in combination with the experimental data from the absorption spectrum, a set of intensity parameters is obtained. The transition intensities originating from the high-lying 2G9/2(2) level to the lower energy levels are then calculated, demonstrating a good agreement with the experimental results.
     3. We report a persistent phosphor of KY3(1-x)Tb3xF10 (KY3F10:xTb3+) for X-ray or cathode ray tubes. The phosphorescence consists of a group of blue and green emission lines originating from 5D3→7FJ and 5D4→7FJ transitions of Tb3+, respectively. The phosphorescent emitting color can be tuned from blue to green by gradually increasing Tb3+ concentrations due to the cross-relaxation described by ( 5D3, 7F6 )– ( 5D4 , 7F0 ). The Tb3+ concentration dependent phosphorescence spectra are well simulated based on the analysis of luminescence dynamical processes using Judd-Ofelt theory and rate equations concerning the 5D3 and 5D4 levels.
引文
[1]李建宇。稀土发光材料及其应用。[M]北京:化学工业出版社, 2003.
    [2]张希艳,卢利平,柏朝晖等。稀土发光材料。[M]北京:国防工业出版社,2005.
    [3] Brock W H. The Norton History of Chemistry. [Z] 1st ed, Norton W W & Company, 1993.
    [4]李文连。显示技术用稀土有机和稀土无机荧光体研究新进展。[J]液晶与显示, 2002, 17: 335.
    [5]苏锵,吴昊,潘跃晓,等。稀土发光材料在固体白光LED照明中的应用。[J]中国稀土学报, 2005, 5: 513-517.
    [6] Jüstel T, Nikol H, Ronda C R. New Developments in the field of luminescent materials for lighting and displays.[J] Angew Chem Int Ed, 1998, 37: 3084-3103.
    [7] Lu H C, Chen H K, Tseng T Y, Kuo W L, Photoluminescence of phosphors for PDP with VUV excitation. [J] J Electron Spectrosc Relat Phenom, 2005, 144-147: 983-985.
    [8] Sommerdijk J L, Bril A, de Jager A W. Two photon luminescence with ultraviolet excitation of trivalent praseodymium.[J] J Lumin, 1974, 8: 341-343.
    [9] Piper W W, DeLuca J A, Ham F S. Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light.[J] J Lumin, 1974, 8: 344-348.
    [10] Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in LiGdF4: Eu3+ through downconversion. [J] Science, 1999, 283: 663-666.
    [11] Oskam K D, Wegh R T, Donker H, et al. Downconversion: a new route to visible quantum cutting. [J] J Alloys Compd, 2000, 300: 421-425.
    [12] van Eijk C W E. Fast lanthanide doped inorganic scintillators. [J] SPIE, 1996, 2706: 160.
    [13] Drozdowski W, Wojtowicz A J, Wi?niewski D, et al. Scintillation properties of Pr-activated LuAlO3. [J] Opt Mater, 2006, 28: 102-105.
    [14] Makhov V N, Kirikova N Yu, Kirm M, et al. Luminescence properties of YPO4:Nd3+: a promising VUV scintillator material. [J] Nucl Instrum Methods Phys Res, 2002, 486: 437-442.
    [15] Duan C J, Wu X Y, Li W F, et al. Ba3BP3O12:Eu2+-A potential scintillation material. [J] Appl Phys Lett, 2005, 87: 201917.
    [16] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds. [J] Phys Rev B, 2000, 62: 15640-15649.
    [17] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds. [J] Phys Rev B, 2000, 62: 15650-15659.
    [18] Dorenbos P. The 4fn?4fn?15d transitions of the trivalent lanthanides in halogenides and chalcogenides. [J] J Lumin, 2000, 91: 91-106.
    [19] Wegh R T, Donker H, Meijerijk A. Spin-allowed and spin-forbidden fd emission from Er3+ and LiYF4. [J] Phys Rev B, 1998, 57: R2025- R2028.
    [20] Wegh R T, Meijerijk A. Spin-allowed and spin-forbidden 4fn?4fn-15d transitions for heavy lanthanides in fluoride hosts. [J] Phys Rev B, 1999, 60: 10820-10830.
    [21] Reid M F, van Pieterson L, Wegh R T, et al. Spectroscopy and calculations for 4fN→4fN-15d transitions of lanthanide ions in LiYF4. [J] Phys Rev B, 2000, 62: 14744-14749.
    [22] Wegh R T, van Klinken W, Meijerink A. High-energy 2G(2)9/2 emission and 4f25d→4f3 multiphonon relaxation for Nd3+ in orthoborates and orthophosphates. [J] Phys Rev B, 2001, 64: 045115.
    [23] van Pieterson L, Wegh R T, Meijerink A. Emission spectra and trends for 4fn-15d?4fn transitions of lanthanide ions: Experiment and theory.[J] J ChemPhys, 2001, 115: 9382-9392.
    [24] van Pieterson L, Reid M F, Wegh R T, et al. 4fn?4fn-15d transitions of the light lanthanides: Experiment and theory. [J] Phys Rev B, 2002, 65: 045113.
    [25] van Pieterson L, Reid M F, Burdick G W, et al. 4fn?4fn-15d transitions of the heavey lanthanides: Experiment and theory. [J] Phys Rev B, 2002, 65: 045114.
    [26] van Pieterson L, Reid M F, Meijerink A. Reappearance of fine structure as a probe of lifetime broadening mechanisms in the 4fN→4fN-15d excitation spectra of Tb3+, Er3+, and Tm3+ in CaF2 and LiYF4. [J] Phys Rev Lett, 2002, 88: 067405.
    [27]孙家跃,杜海燕,胡文祥。固体发光材料。[M]北京:化学工业出版社, 2003.
    [28] Qiu J Rong, Miura K, Inouye H, et al. Emtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicateglasses doped with rare earth ions. [J] Appl Phys Lett, 1998, 73:1763-1765.
    [29] Munehiko K, Daisuke K, Yoshiyuki S, et al. The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation. [J] Nuclear Instruments and Methods in Physics Research Section A, 2002, 480:431-439.
    [30] Halperin W P. Quantum size effects in metal particles. [J] Rev of Modern Phys, 1986, 58: 533-605.
    [31] Birringer R, Gleiten H, Klein H P. Synthesis of n-metals. [J] Phys Lett, 1984, 102:365-369.
    [32] Bethune D S, Kiang C H, DeVries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. [J] Nature, 1993, 363:605-607.
    [33] Nang N, Tang Z K, Li G D. Materials sxience-single-walled 0.4 angstrom carbon nanotubes arrays. [J] Nature, 2000, 408: 50-51.
    [34] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate,gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. [J] Science, 1995, 267:222-225.
    [35] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. [J] Nature, 1997, 387:791-793.
    [36] Wu G S, Zhang D, Cheng B C. [J] Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach. [J] J Am Chem Soc, 2004, 126: 5976-5977.
    [37] Mitsunori Y, Masami M, Shingi M. Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies. [J] Adv Mater, 2002, 14: 309-313.
    [38] Pol V G, Palchik O, Gedanken A. Synthesis of Europium Oxide Nanorods by Ultrasound Irradiation. [J] J Phys Chem B, 2002, 106: 9737-9743.
    [39] Wang X, Li Y D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. [J] Chem Eur J, 2003, 9: 5627-5635.
    [40] Becquere J. Influence des variations de température sur l'absorption dans les corps solides.[J] Radium Le, 1907, 4: 328-339.
    [41] Becquere J, Kammerlingh Onnes H. The absorption spectra of the compounds of the rare earths at the temperatures obtainable with liquid hydrogen, and their change by the magnetic field. [J] Proc Acad Amsterdam, 1908, 10: 592-603.
    [42] Becquere J. Theory of magneto-optical phenomena in crystals.[J] Z Physik, 1929, 58:205.
    [43] Van Vleck J H. The puzzle of rare-earth spectra in solids.[J] J Phys Chem, 1937, 41: 67-80.
    [44] Judd B R. Optical absorption intensities of rare-earth ions.[J] 1962, Phys Rev, 127: 750-761.
    [45] Ofelt G S. Intensities of crystal spectra of rare-earth ions.[J] J Chem Phys, 1962, 37:511-520.
    [46] Axe J D. Radiative transition probabilities within 4fn configurations: the fluorescence spectrum of Europium Ethylsulfate. [J] J Chem Phys, 1963, 39: 1154-1160.
    [47] G?rller-Walrand C, Binnemans K. Spectral intensities of f-f transitions. In: Gschneidner K A Jr, Eyring L. Handbook on the Physics and Chemistry of Rare Earth.[M] vol. 25. Amsterdam: Elsevier, 1998. 101-265.
    [48] J?rgensen C K, Judd B R. Hypersensitive pseudoquadrupole transitions in lanthanides. [J] Mol Phys, 1964, 8: 281
    [49] Judd B R. Hypersensitive transitions in rare-earth ions.[J] J Chem Phys, 1966, 44:839-840.
    [50] Krupke W F. Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals. [J] Phys Rev, 1966, 145: 325
    [51] Barnes J C, Pincott H. Electron transfer spectra of some solid lanthanide(III) complexes. [J] J Chem Soc A, 1966: 842
    [52] Mason S F, Peakcock R D, Stewart B. Dynamic coupling contributions to the intensity of hypersensitive lanthanide transitions. [J] Chem Phys Lett, 1974, 29: 149
    [53] Mason S F, Peacock R D, Stewart B. Ligand-polarization contributions to the intensity of hypersensitive trivalent lanthanide transitions. [J] Mol Phys, 1975, 30: 1829
    [54] Henrie D E, Fellows R L, Choppin G R. Hypersensitivity in the electronic transitions of lanthanide and actinide complexes. [J] Coord, Chem Rev, 1976, 18: 199
    [55] Peacock R D. The charge-transfer contribution to the intensity of hypersensitive trivalent lanthanide transitions. [J] Mol Phys, 1977, 33: 1239
    [56] Reid M F, Richardson F S. Electric dipole intensity parameters for lanthanide 4f→4f transitions. [J] J Chem Phys, 1983, 79: 5735-5742.
    [57] Reid M F, Dallara J J, Richardson F S. Comparison of calculated and experimental 4f→4f intensity parameters for lanthanide complexes with isotropic ligands. [J] J Chem Phys, 1983, 79: 5743
    [58] Blasse G. The luminescence of closed-shell transition-metal complexes. New developments. [M] Springer Berlin / Heidelberg 1980, 42:1-41.
    [59] Reid M F, Richardson F S. Lanthanide 4f→4f electric dipole intensity theory. [J] J Chem Phys, 1984, 88: 3579
    [60] Burdick G W, Richardson F S, Reid M F, et al. Direct calculation of lanthanide optical transition intensities Nd3+: YAG. [J] J Alloys Comp, 1995, 225: 115
    [61] Luján-Upton H, Okamoto Y. Use of terbium(III) as a probe for the ion-binding properties of tactic polyacids and triacidic model compounds. [J] J Fluor,1998, 8: 355
    [62] Misra S N, Ramchandriah G, Gagnani M A, et al. Absorption spectral studies involving 4f–4f transitions as structural probe in chemical and biochemical reactions and compositional dependence of intensity parameters. [J] Appl Spectrosc Rev, 2003, 38: 433
    [63] Kornienko A A, Kaminskii A A, Dunina E B. Dependence of the line strength of f-f transitions on the manifold energy. II. Analysis of Pr3+ in KPrP4O12. [J] Phys Stat Solidi, 1990, 157: 267-273.
    [64] Auzel F, Hubert S, Delamoye P. Absolute oscillator strengths of 5f-5f transitions of U4+ in ThBr4 and in hydrobromic acid solutions. [J] J Lumin, 1982, 26: 251
    [65] Goldner P, Auzel F. Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass. [J] J Appl Phys, 1996, 79: 7972-7977.
    [66] Gacon J C, Crystal field interaction within the Pr3+ 4f15d1 configuration. Opt. Mater., 2003, 24: 209
    [67] Mayer M G. Rare-earth and transuranic elements.[J] Phys Rev, 1941, 60: 184-187.
    [68] Cowan R D. The Theory of Atomic Structure and Spectra.[M] Berkeley: University of California, Academic Press, New York, 1981.
    [69] Rotenberg M, Bivins R, Metropolis N, et al. The 3-j and 6-j Symbols. [M] Cambridge: MIT Press, 1959.
    [70] Nielson C W, Koster G F. Spectroscopic Coefficients for the pn dn and fn Configurations. [M] Cambridge: MIT Press, 1963.
    [71] Sobelman. Theory of atomic spectra. [M] Oxford: Pergamon Press, 1972.
    [72]张思远.稀土光谱理论.北京:科学出版社,1992.
    [73]夏上达,群论与光谱,北京:科学出版社,1994.
    [74] Judd B R. Three-particle operators for equivalent electrons.[J] Phys Rev, 1966, 141:4-14.
    [75] Crosswhite H, Crosswhite H M, Judd B R. Magnetic parameters for the configuration f3.[J] Phys Rev, 1968, 174:89-94.
    [76] Carnall W T, Crosswhite H, Crosswhite H M, et al. Energy level analysis of Np3+:LaCl and Np3+:LaBr.[J] J Chem Phys, 1980, 72: 5089-5102.
    [77] Hansen, J E, Judd B R, et al. Atomic Data and Nuclear Data Tables.[M] 1996, 62:1.
    [78] Crosswhite H M. Colloques Internationaux du Centre National de la recherche Scientifique.[M] 1977, 255 :65.
    [79] Crosswhite H M, Crosswhite H. Parametric model for f-shell configurations. I. The effective-operator Hamiltonian.[J] J Opt Soc Am B, 1984 1:246-254.
    [80] Carnall W T, Goodman G L, Rajnak K, et al. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3.[J] J Chem Phys, 1989, 90: 3443-3457.
    [81]黄世华.分立中心的发光.见:徐叙瑢,苏勉曾主编.发光学与发光材料.北京:化学工业出版社, 2004, 155.
    [82] Wybourne B G. Spectroscopy Properities of Rare Earth.[M] New York: Wiley, 1965.
    [83] Dieke G H. Spectra and Energy Levels of Rare Earth Ions in Crystals.[M] New York: Wiley. 1968.
    [84] Carnall W T, Field P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+.[J] J Chem Phys, 1968, 49: 4424-4442.
    [85] Carnall W T, Field P R, Rajnak K. Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. II. Gd3+.[J] J Chem Phys, 1968, 49:4443-4446.
    [86] Carnall W T, Fields P R, Sarup R. 1S0 level of Pr3+ in crystal matrices and energy-level parameters for the 4f2 configuratiion pf Pr3+ in LaF3.[J] J Chem Phys, 1969, 51: 2587-2592.
    [87] Carnall W T, Fields P R, Morrison J, et al. Absorption Spectrum of Tm3+: LaF3.[J] J Chem Phys, 1970, 52: 4054-4059.
    [88] Carnall W T, Crosswhite H. Further interpretation of the spectra of Pr3+-LaF3 and Tm3+-LaF3.[J] J Less-Common Metals, 1983, 93: 127-135.
    [89] Judd B R. Operator Techniques in Atomic Spectroscopy.[M] New York: McGraw-Hill, 1963.
    [90] Loh E. Lowest 4f→5d transition of trivalent rare-earth ions in CaF2 crystals.[J] Phys Rev, 1966, 147: 332-335.
    [91] Loh E. 4fn→4fn-15d spectra of rare-earth ions in crystals.[J] Phys Rev, 1968, 175: 533-536.
    [92] Weakliem H A. Electronic Interactions in the 4f65d Configuration of Eu2+ in Crystals.[J] Phys Rev B, 1972, 6: 2743-2748.
    [93] Dorenbos P. The 5d level positions of the trivalent lanthanides in inorganic compounds.[J] J Lumin, 2000, 91: 155-176.
    [94] Laroche M, Braud A, Girard S, et al. Spectroscopic investigations of the 4f5d energy levels of Pr3+ in fluoride crystals by excited-state absorption and two-step wxcitation measurements.[J] J Opt Soc Am B, 1999, 16: 2269-2277.
    [95] Laroche M, Doualan J-L, Girard S, et al. Experimental and theoretical investigations of the 4f2→4f5d ground-state and excited-state absorption spectra of Pr3+ in LiYF4.[J] J Opt Soc Am B, 2000, 17: 1291-1303.
    [96] Duan C K, Reid M F, Burdick G W. Many-body perturbation theory for spin-forbidden two-photon spectroscopy of f-element compounds and its application to Eu2+ in CaF2.[J] Phys Rev B, 2002, 66: 155108.
    [97] Duan C K, Reid M F. A simple model for f→d transitions of rare-earth ions in crystal.[J] J Solid State Chem, 2003, 171: 299-303.
    [98] Ning L X, Duan C K, Xia S D, et al. A model analysis of 4fN–4fN-15d transitionsof rare-earth ions in crystals.[J] J Alloy Compd, 2004, 366: 34-40.
    [99] Duan C K, Xia S D, Reid M F, et al. Study of the f→d transition of heavy lanthanide and actinide ions in crystals using the simple model.[J] Phys Stat Sol (b), 2005, 242: 2503-2508.
    [100] Xia S D, Duan C K. Two representations of the simple model and its application to 4f-5d excitation spectra of Dy3+ dopants in crystals.[J] Phys Stat Sol (b), 2006, 12: 2839-2846.
    [101] Shortley G H. The computation of quadrupole and magnetic-dipole transition probabilities.[J] Phys Rev, 1940, 57: 225-234.
    [102] Racah G. Theory of complex spectra. I. [J] Phys. Rev., 1942, 61: 186-197.
    [103] Racah G. Theory of complex spectra. II. [J] Phys. Rev., 1942, 62: 438-462.
    [104] Racah G. Theory of complex spectra. III. [J] Phys. Rev., 1949, 63: 367-382.
    [105] Racah G. Theory of complex spectra. IV. [J] Phys. Rev., 1949, 76: 1352-1365.
    [106] Pappalardo R. Calculated quantum yields for photon-cascade emission (PCE) for Pr3+ and Tm3+ in fluoride hosts. [J] J Lumin, 1976, 14: 159-193.
    [107] Weber M J, Varitimos T E, Matsinger B H. Optical intensities of rare-earth ions in yttrium orthoaluminate. [J] Phys. Rev. B, 1973, 8: 47-53.
    [108] Bowlby B E, Bartolo B Di. Applications of the Judd-Ofelt theory to the praseodymium ion in laser solids. [J] J Lumin, 2002, 100: 131-139.
    [109] Condon E U, Shortly G H. The Theory of Atomic Spectra. [M] Cambridge: Cambridge University, 1963.
    [110] Huang S H. The principles and methods of laser spectroscopy.[M] Jilin University Press, 2001.
    [111]黄世华.激光光谱学原理和方法.[M]吉林:吉林大学出版社,2002.
    [112] Eyal M, Greenberg E, Reisfeld R, et al. Spectroscopy of praseodymium(III) in zirconium fluoride glass.[J] Chem Phys Lett, 1985, 117:108-114.
    [113] Quimby R S, Miniscalco W J. Modified Judd-Ofelt technique and application to optical transitions in Pr3+ doped glass. [J] J Appl Phys, 1994, 75: 613-615.
    [114] Seeber W, Downing EA, Hesselink L, et al. Pr3+-doped fluoride glasses.[J] JNon-Cryst Solids, 1995, 189:218-226.
    [115] Ebendorffheidepriem H, Seeber W, Ehrt D. Spectroscopic properties of Nd3+ ions in phosphate-glasses.[J] J Non-Cryst Solids, 1995, 183:191-200.
    [116] Merkle LD, Zandi B, MoncorgéR, et al. Spectroscopy and laser operation of Pr, Mg: SrAl12O19.[J] J Appl Phys, 1996, 79: 1849-1856.
    [117] Levey C G, Glynn T J, Yen W M. Excitation of the 1S0 state of Pr3+ in crystal hosts.[J] J Lumin, 1984, 31&32: 245-247.
    [118] Levey C G. Excitation of the 1S0 state of Praseodymium in Insulating Crystals. [M] Madison: University of Wisconsin, 1984.
    [119] Levey C G. Enhancement of the second-order Judd-Ofelt transition rates for high-lying (4f)n states. [J] J Lumin, 1990, 45: 168-171.
    [120] Stevels A L N, Verstegen J M P J. Eu2+-Mn2+ energy transfer in hexagonal aluminates. [J] J Lumin, 1976, 14:207-218.
    [121] Stevels A L N. Ce3+ luminescence in hexagonal aluminates containing large divalent or trivalent cations.[J] J Electrochem Soc, 1978, 125:588-594.
    [122] Utsunomiya A, Tanaka K, Morikawa H, et al. Structure refinement of CaO·6Al2O3.[J] J Solid State Chem, 1988, 75:197-200.
    [123] Xie L, Cormack A N. Defect solid state chemistry of magnetoplumbite structured ceramic oxides.[J] J Solid State Chem, 1989, 83:282-291.
    [124] Kimura K, Ohgaki M, Tanaka K, et al. Study of the Bipyramidal site in magnetoplumbite-like compounds, SrM12O19 (M = Al, Fe, Ga).[J] J Solid State Chem, 1990, 87:186-194.
    [125] Srivastava A M, Beers W W. Luminescence of Pr3+ in SrAl12O19: observation of two photon luminescence in oxide lattice.[J] J Lumin, 1997, 71:285-290.
    [126] Wang X-J, Huang S, Lu L, et al. Energy transfer in Pr3+ and Er3+ codoped CaAl12O19 crystal.[J] Opt Commun, 2001, 195:405-410.
    [127] Wang Xiao-jun, Huang Shihua, Srivastave A M, et al. Photon cascade emission through energy transfer in Pr3+ and Er3+ codoped System.[J] J Rare Earth 2002,20:259.
    [128] Bykovskii P I, Lebedev V A, Pisarenko V F, et al. Structures and luminescence spectra of hexagonal rare-earth aluminates.[J] J Appl Spectrosc, 1986, 44: 425-439.
    [129] Morrison C A, Leavitt R P. Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride.[J] J Chem Phys, 1979, 71:2366-2374.
    [130] Esterowitz L, Bartoli F J, Allen R E, et al. Energy levels and line intensities of Pr3+ in LiYF4.[J] Phys Rev B, 1979, 19:6442-6455.
    [131] Porcher P, Caro P. Crystal field parameters for Eu3+ in KY3F10. II. Intensity parameters.[J] J Chem Phys, 1978, 68:4176-4182.
    [132] Reid M F, van Pieterson L, Meijerijk A. Trends in parameters for the 4fN?4fN-15d spectra of lanthanide ions in crystals.[J] J Alloy Compd, 2002, 344: 240-245.
    [133] Liu Feng, Zhang Jiahua, Lu Shaozhe, et al. Explicit effects of 4f5d configuration on 4f→4f electric dipole transitions in Pr3+-doped SrAl12O19.[J] Phys Rev B, 2006, 74:115112.
    [134] Xia S D, Duan C K. Extension of a simple model for f-d transition and applications to reassignment of excitation spectra of Ho3+-doped crystals.[J] Chin Phys Lett, 2005, 22: 2680-2683.
    [135] Xia S D, Duan C K, Deng Q, et al. Assignment of 4f→5d excitation spectra of Nd3+ in crystals using the simple model.[J] J Solid State Chem, 2005, 178: 2643-2646.
    [136] Duan C K, Reid M F, Ruan G. A simple model for the f–d transition of actinide and heavy lanthanide ions in crystals. [J] Curr Appl Phys, 2006, 6: 359-362.
    [137]夏上达,段昌奎.分析指认固体中稀土离子4f-5d跃迁光谱的简单模型. [J]发光学报. 2006, 27: 154-158.
    [138] Laroche M. Spectroscopy of Nd3+ ion doped crystal and study their potential for the implementation of UV tunable solid laser sources.[D] France:2003, 17-19.
    [139] Yanase A, Kasuya T. Mechanisms for the anomalous properties of europium-chalcogenide alloys. I.[J] J Phys Soc Jpn, 1968, 25:1025-1042.
    [140] Yanase A, Kasuya T. Magneto-optical effect due to Eu2+ ion. [J] Progr. Theor. Phys. Suppl., 1970, 46: 388-410.
    [141] Yanase A. Optical absorption of Sm2+ in CaF2 type crystals. [J] J. Phys. Soc. Jpn, 1977, 42: 1680-1686.
    [142] Morrison C A, Leavitt R P. Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride.[J] J Chem Phys, 1979, 71:2366-2374.
    [143] Reid M F, Richardson F S. Electric dipole intensity parameters for lanthanie 4f?4f transitions.[J] J Chem Phys, 1983, 79:5735-5742.
    [144] Guillot-Noel O, Bellamy B, Viana B, et al. Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-doped YMO4(M=V, P, As), Y3Al5O12, and LiYF4 matrices.[J] Phys Rev B, 1999, 60:1668-1677.
    [145] Aberg D, Edvardsson S. Direct calculation of optical absorption amplitudes for trivalent rare-earth ions in LiYF4.[J] Phys Rev B, 2002, 65:045111.
    [146] Shionoya S and Yen W M.Phosphor Handbook [M].New York:CRC Press,1998.
    [147] Nakanishi Y, Yamashita H, Shimaoka G.Preparation and properties of ZnS:Ag,Cu,Cl phosphor powder emitting blue electroluminescence.[J] Jpn J Appl Phys, 1981, 20:2261-2262.
    [148] Bhalla RJR, White EW. Polarized cathodoluminescence emission from Willemite Zn2SiO4(Mn) single crystals.[J] J Appl Phys, 1970, 41:2267-2268.
    [149] Digiacom G M. Improved methods for deposition of thin-film Zn2SiO4:Mn phosphors.[J] J Electrochem Soc, 1969, 116: 313-314.
    [150] Mcallist WA. Luminescence of xZnO·(1-x)MgF2·ySiO2·zGeO2:Mn solid solutions.[J] J Electrochem Soc, 1971, 118:474-477.
    [151] Hao Zhendong, Zhang Jiahua, Zhang Xia, et al. Blue-green-emitting phosphor CaSc2O4:Tb3+: tunable luminescence manipulated by cross-relaxation.[J] JElectrochem Soc, 2009, H193-H196.
    [152] Porcher P, Caro P. Crystal field parameters for Eu3+ in KY3F10. III. Radiative and nonradiative transition probabilities.[J] J Chem Phys, 1978, 68:4183-4187.
    [153] Andraud C, Denis J P, Blanzat B, et al. Luminescent properties of Eu3+ and Tb3+ in KY3F10.[J] Chem Phys Lett, 1983, 101:357-360.
    [154] Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+.[J] J Lumin 1997, 72-74, 287-289.
    [155] Jia D, Wang X J, Kolk E, et al. Site dependent thermoluminescence of long persistent phosphorescence of BaAl2O4 Ce3+.[J] Opt Commu 2002, 204:247-251.
    [156] Jiang L, Chang C K, Mao D L. Luminescent properties of CaMgSiO6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+.[J] J Alloy Comp, 2003, 360:193-197.
    [157] Zhang J S, Hao Z D, Zhang X, et al. Color tunable phosphorescence in KY3F10:Tb3+ for X-ray or cathode ray tubes.[J] J Appl Phys, 2009, 106:034915.
    [158] Chamberlain Stephen L, Corruccini L R. Magnetic ordering in rare-earth fluorides with KY3F10 structure and axial moments.[J] Phys Rev B, 2005, 71: 024434.
    [159] Porcher P, Caro P. Crystal field parameters for Eu3+ in KY3F10.[J] J Chem Phys,1976, 65:89-94.
    [160] Heyde K, Binnemans K, G?rller-Walrand C. Spectroscopic properties of KY3F10:Er3+.[J] J Chem Soc, Faraday Trans, 1998, 94:1671-1674.
    [161] Masami Sekita, Yasuto Miyazawa, Motohiko Ishii. Stark splitting scheme and an induced emission cross section of TbAlO3.[J] J Appl Phys, 1998, 83:7940-7947.
    [162] Jenssen H P, Castleberry D, Gabbe D, et al. Stimulated emission at 5445? in Tb3+-YLF.[J] IEEE J Quantum Electron, 1973, 9:665.
    [163] Weber M J, Varitimos T E, Matsinger B H. Optical intensities of rare-earth ions in Yttium Orthoaluminate.[J] Phys Rev B, 1973, 8:47-53.
    [164] Inokuti M, Hirayama F. Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence.[J] J Chem Phys, 1963, 43:1978-1989.
    [165] Paulose P I, Jose G, Thomas V, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass.[J] J Phys Chem Solids, 2003, 64: 841-846.
    [166] Chen R. Luminescence properities of rare-earth tellurates.[J] J Electrochem Soc, 1969, 116:1250-1254.
    [167] McKeever S W S. Thermoluminescence of Solids.[M] Cambridge: Cambridge University Press, 1985, Chap 3:69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700