用户名: 密码: 验证码:
Ti改性USY型分子筛特性及其重油催化裂化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加氢裂化作为重油高效催化转化和可直接生产符合欧IV标准清洁油品的技术,日益受到重视。Ti改性USY型分子筛在重油裂化过程中表现出较高的中油收率和良好的催化剂寿命。研究改性对载体酸性的影响以及改性分子筛在重油裂化反应中的催化活性,可为新型高效催化剂的设计和开发提供重要的理论支持。本文采用分子模拟与实验相结合的方法研究了Ti改性USY型分子筛的结构、酸性及其在重油裂化反应中的催化性能。
     首先采用分子模拟的方法研究了Ti骨架内改性和TiO2骨架外改性USY型分子筛结构特性和电子特性。Ti原子对USY型分子筛骨架内改性的计算结果表明,Ti原子更容易替换USY型分子筛骨架内的Al原子,Ti原子骨架替换Al原子的替换能为13.9kcal/mol,替换Si原子时最小的替换能为41.3kcal/mol。Ti原子骨架外改性的计算结果表明,TiO2团簇与分子筛间有两种不同的相互作用方式,分别为环状构型(L)和桥状构型(J),且经TiO2骨架外改性后,提供裂化活性的H从USY型分子筛表面转移到了TiO2团簇上。
     其次利用密度泛函理论分析不同改性方法对USY型分子筛酸性地调变。改性USY型分子筛中H的电荷、去质子化能以及H-O键的键级计算结果表明,Ti骨架内替换Al原子和Si原子后,去质子化能数值变化不大,即骨架内改性对USY型分子筛酸性影响不明显;TiO2骨架外改性后形成了Ti-OH酸性位,改变了USY型分子筛的酸强度分布。与未改性USY型分子筛的Al-OH相比,Ti-OH中H的电荷减少,USY型分子筛的去质子化能和H-O键的键级增大,即Ti-OH具有比Al-OH弱的B酸性。TiO2骨架外改性较明显地改变了分子筛酸中心的强度分布,可能更适宜催化重油裂化反应。
     再次用分子模拟的方法探究TiO2骨架外改性分子筛在重油裂化过程中的催化性能。TiO2骨架外改性USY型分子筛的催化裂化性能计算结果表明,改性降低了USY型分子筛与重油模型化合物间的HOMO-LUMO gap值,减小了电子跃迁的难度,增强了分子筛与重油模型化合物之间的吸附,降低了模型化合物中环烷环C2-C3键的键级,使其更加容易断裂。改性后,重油模型化合物初始裂化反应的活化能由改性前的74.8kcal/mol降至49.3kcal/mol。
     最后采用浸渍法制备了Ti改性USY型分子筛,利用场发射透射电子显微镜、红外光谱和程序升温脱附的实验方法,对Ti改性USY型分子筛的结构、酸性进行研究,并设计实验考察了重油模型化合物在改性USY型分子筛上的催化裂化活性。红外光谱和场发射透射电子显微镜的表征结果表明,分子筛骨架外存在TiO2纳米团簇,且Ti原子与分子筛骨架中的O原子发生了相互作用。吡啶-IR和吡啶-TPD的实验结果表明,Ti改性改变了USY型分子筛的酸强度分布。重油模型化合物裂化反应实验结果表明,四氢化萘的转化率由USY型分子筛上的42.3%升高为改性USY型分子筛上的71.1%。Ti改性提高了USY型分子筛的催化裂化活性。
As an efficient catalytic conversion technology of heavy oil and the only way toproduce the clean oil, which can meet the Euro IV standards, the hydrocracking ofheavy oil receives increasingly attentions. Ti modified USY zeolite exhibits higheryield of middle oil and it is favorable to enhance catalyst service life in the heavy oilcracking process. The reaserch on the influence of modification on acidity of carrieras well as the catalytic activity of zeolite in cracking of heavy oil could provide animportant theoretical support for the deisgn and development of new, efficient andlow-cost catalyst. In this paper, molecular simulation combined with experimentalmethods are employed to study the structural characteristics, acidity and the catalyticcracking activity of Ti modified USY zeolite.
     The structural characteristics and electronic properties of Ti modified USY zeoliteare investigated by molecular simulation method. The calculation results on Ti atomsubstituted in framework atom of USY zeolite show that the substitution energy of Tiatom to replace Al atom is13.9kcal/mol, whereas the minimum substitution energy ofTi atom to replace Si atom is41.3kcal/mol, which indicates that Ti atom is easier toreplace the Al atom in framework of USY zeolite. The results of TiO2extra-framework modified USY zeolite show that there exist two kinds of interactionways between TiO2and zeolite, which named as ring-form configuration (L) andbridge-form configuration (J) respectively. After the extra-modification of TiO2, the Hproton provided the activity of cracking is transferred from the pore surface of USYzeolite to TiO2cluster.
     The DFT method is employed to analyze the influence of different modificationmethods on acidity of USY zeolite. The calculations on the charges of H proton, thedeprotonation energy of USY zeolite and the bond order of H-O bond show that thedeprotonation energy is changed little after the substitution of Al and Si atoms by Tiatoms in framework of USY zeolite, which suggests that there is little influence on theacidity of USY zeolite after the substitution of the framework atoms. The Ti-OHacidic site is formed after the extra-framework modification of TiO2in the USYzeoilte, thus the acidity distribution is changed. By comparing with the Al-OHstructure in unmodified USY zeolite, the changes of H proton decrease, and the deprotonation energy of USY zeolite and the bond order of H-O bond in Ti-OHincrease, which indicates a weaker B acidic strength than Al-OH. Theextra-framework modification of TiO2significantly alters the intensity distribution ofthe USY zeolite acid centers, which might be more suitable for catalytic cracking ofheavy oil.
     The performance of TiO2modified USY zeolite in cracking of heavy oil isinvestigated with the DFT method. The results show that the modification of Tireduces the HOMO-LUMO gap value, which indicates a reduction of the difficultiesfor electronic transfer between zeolite and heavy oil model compound. By thecalculation of adsorption geometry and adsorption energies, it is found that Timodification enhances the adsorption of reactant and reduces the bond order of C-Cbond in naphthenic ring, which makes it easier to break up. The activation energy ofinitial cracking reaction of heavy oil model compound is decreased from74.8kcal/molbefore the modification to49.3kcal/mol after the modification.
     The Ti modified USY zeolite is prepared by impregnation methods.Temperature-programmed desorption, infrared spectrometric and transmissionelectron microscopy methods are adopted to investigate the structure and acidity of Timodified USY zeolite. The characteristic results of infrared spectroscopy andtransmission electron microscopy show that there exist TiO2nano-clusters in theextra-framwork of USY zeolite, and there is an interaction between Ti atom and Oatom in the framework of zeolite. The results of Pyridine-IR and Pyridine-TPD showthat the distribution of acidic strength is changed because of the TiO2modification.The catalytic cracking activity of Ti modified USY zeolite in the model compound ofheavy oil is also discussed in a fixed bed reactor. The results show that the conversionof tetralin is increased from42.3%on USY zeolite to71.1%on the Ti modified USYzeolite after one hour reactions, i.e. the modification of Ti improves the catalyticcracking activity of USY zeolite.
引文
[1] Weitkamp J., Isomerization and hydrocracking of C9through C16n-alkanes onPt/HZSM-5zeolite, Applied Catalysis,1983,8:123-141
    [2] Corma A., Martinez A., Martinezsoria V., et al., Hydrocracking of vacuum gasoilon the novel mesoporous MCM-41aluminosilicate catalyst, Journal of Catalysis,1995,153:25-31
    [3]侯芙生.优化炼油工艺过程发展中国炼油工业.石油学报(石油化工),2005,21:7-16
    [4]张昕,马晓迅.石油炼化深度加工技术.北京:化学工业出版社,2011
    [5] Coonradt H. L., Garwood W. E., Mechanism of hydrocracking. Reactions ofparaffins and olefins, Industrial&Engineering Chemistry Process Design andDevelopment,1964,3:38-45
    [6]张学军,加氢裂化多产中间馏分油分子筛和催化剂的设计:[博士学位论文],北京:中国石油大学,2008
    [7]侯祥麟.中国炼油技术.北京:中国石化出版社,2001,164-261
    [8]王凤来,关明华.4331高活性多产中间馏分油加氢裂化催化剂的研制.抚顺烃加工技术,2001,9:6-12
    [9]王凤来,关明华,喻正南等. FC-16型高活性多产中间馏分油加氢裂化催化剂研制及工业放大.抚顺烃加工技术,2003,3:1-10
    [10] Li B. S., Xu J. Q., Li X., et al., Bimetallic iron and cobalt incorporatedMFI/MCM-41composite and its catalytic properties, Materials Research Bulletin,2012,47:1142-1148
    [11] Simacek P., Kubicka D., Pospisil M., et al., Fischer-Tropsch product as a co-feedfor refinery hydrocracking unit, Fuel,2013,105:432-439
    [12] Park J. I., Ali S. A., Alhooshani K., et al., Mild hydrocracking of1-methylnaphthalene (1-MN) over alumina modified zeolite, Journal of Industrial andEngineering Chemistry,2012,19:627-632
    [13] Kasina N., Vanbutsele G., Houthoofe K., et al., Catalytic activity and extra-largepores of germanosilicate UTL zeolite demonstrated with decane test reaction,Catalysis Science&Technology,2011,1:246-254
    [14] Garg S., Soni K., Kumar M., et al., Catalytic functionalities of FSM-16orderedmesoporus silica supported molybdenum hydroprocessing catalysts, CatalysisToday,2012,198:263-269
    [15] Sinha A. K., Anand M., Rana B. S., Development of hydroprocessing route totransportation fuels from non-edible plant-oils, Catalysis Surveys From Asia,2013,17:1-13
    [16] Gutiereez A., Arandes J. M., Castano P., et al., Preliminary studies on fuelproduction through LCO hydrocracking on noble-metal supported catalysts,Fuel,2012,94:504-515
    [17] Guo X. H., Qin Z. X., Wang B. J., et al., High silica REHY zeolite with low rareearch loading as high-performace catalyst for heavy oil conversion, AppliedCatalysis A: General,2012,413-414:254-260
    [18] Gutierrez A., Arandes J. M., Castano P., et al., Role of acidity in the deactivationand steady hydroconversion of light cycle oil on noble metal supported catalysts,Energy Fuels,2011,25:3389-3399
    [19] Krar M., Kovacs S., Kallo D., et al., Fuel purpose hydrotreating of sunflower oilon CoMo/Al2O3catalyst, Bioresource Technology,2010,101:9287-9293
    [20] Leyva C., Ancheyta J., Travert A., et al., Activity and surface properties ofNiMo/SiO2-Al2O3catalysts for hydroprocessing of heavy oils, Applied CatalysisA: General,2012,425-426:1-12
    [21] Tailleur R. G., Nascar J. R., The effect of aromatics on paraffin mildhydrocracking reactions (WNiPd/CeY-Al2O3), Fuel Processing Technology,2008,89:808-818
    [22] Anastasiya V. P., Oleg V. K., Galina A. B., et al., High-active hydrotreatingcatalysts for heavy petroleum feeds: intentional synthesis of CoMo sulfideparticles with optimal localization on the support surface, Catalysis Today,2010,150:164-170
    [23] Looi P. Y., Mohamed A. R., Tye C. T., Hydrocracking of residual oil usingmolybdenum supported over mesoporous alumina as a catalyst, ChemicalEngineering Journal,2012,181-182:717-724
    [24] Kady F. Y. A. E., Wahed A. E., Shaban S., et al., Hydrotreating of heavy gas oilusing CoMo/γ-Al2O3catalyst prepared by equilibrium deposition filtration, Fuel,2010,89:3193-3206
    [25] Jorge R., Patricia R., Aida G. A., et al., Analysis of the hydrotreatment of Mayaheavy crude with NiMo catalysts supported on TiO2-Al2O3binary oxides: Effectof the incorporation method of Ti, Catalysis Today,2005,109:54-60
    [26] Duan A. J., Li R. L., Jiang G. Y., et al., Hydrodesulphurization performance ofNiW/TiO2-Al2O3catalyst for ultra clean diesel, Catalysis Today,2009,140:187-191
    [27] Trejo F., Rana M. S., Ancheyta J., CoMo/MgO-Al2O3supported catalysts: Analternative approach to prepare HDS catalysts, Catalysis Today,2008,130:327-336
    [28] Chan K., Mi Y. K., Kyungil C., et al., Effect of phosphorus addition on thebehavior of CoMoS/Al2O3catalyst in hydrodesulfurization of dibenzothiopheneand4,6-dimethyldibenzothiophene, Applied Catalysis A: General,1999,185:19-27
    [29] Ferdous D., Dalai A. K., Adjaye J. et al., Surface morphology of NiMo/Al2O3catalysts incorporated with boron and phosphorus: Experimental and simulation,Applied Catalysis A: General,2005,294:80-91
    [30] Dominguez J. M., Hernandez J. L., Sandoval G., Surface and catalytic propertiesof Al2O3-ZrO3solid solutions prepared by sol-gel methods, Applied Catalysis A:General,2000,197:119-130
    [31] Wang Y. D., Shen B.J., Wang L., et al., Effect of phosphorus modified USY oncoupled hydrogenation and ring opening performance of NiW/USY+Al2O3hydroupgrading catalyst, Fuel Processing Technology,2013,106:141-148
    [32] Da J. W., Song C. M., Qian L., et al., Pilot synthesis and commercial applicationin FCC catalyst of MCM-41zeolite, Journal of Porous Materials,2008,15:189-197
    [33] Karthikeyan D., Lingappan N., Sivasankar B., et al., Activity and selectivity forhydroisomerisation of n-decane over Ni impregnated Pd/H-mordenite catalysts,Applied Catalysis A-General,2008,1:18-27
    [34] Horacio G., Omar C.S., Jose R. L., et al., Hydroconversion of2-methylnaphthalene on Pt/Mordenite catalysts, reaction study and mathematicalmodeling, Industrial&Engineering Chemistry Research,2013,52:2510-2519
    [35] Molero H., Galarraga C., Feng F., et al., High performance Ni based catalyst fortoluene hydrocracking, Catalysis Letter,2009,132:402-409
    [36] Talebi G., Sohrabi M., Royaee S. J., et al., Synthesis and activity measurement ofthe some bifunctional platinum loaded Beta zeolite catalysts for n-heptanehydroisomerization, Journal of Industrial and Engineering Chemistry,2008,14:614-621
    [37] Cui Q. Y., Zhou Y. S., Wei Q., et al., Performance of Zr-and P-modifiedUSY-based catalyst in hydrocracking of vacuum gas oil, Fuel ProcessingTechnology,2013,106:439-446
    [38] Zhang X. W., Guo Q., Qin B., et al., Structural features of binary microporouszeolite composite Y-Beta and its hydrocracking performance, Catalysis Today,2010,149:212-217
    [39] Zhang X. J., Zhang F. Q., Yan X. W., et al., Hydrocracking of heavy oil usingzeolites Y/Al-SBA-15composites as catalyst supports, Journal of PorousMaterials,2008,15:145-150
    [40] Li B. S., Xu J. Q., Li X., et al., Bimetallic iron and cobalt incorporatedMFI/MCM-41composite and its catalytic properties, Materials Research Bulletin,2012,47:1142-1148
    [41] Ishihara A., Inui K., Hashimoto T., et al., Preparation of hierarchical β and Yzeolite-containing mesoporous silica-aluminas and their properties for catalyticcracking of n-dodecane, Journal of Catalysis,2012,295:81-90
    [42] Usui K., Kidena K., Murata S., et al., Catalytic hydrocracking ofpetroleum-derived asphaltenes by transition metal-loaded zeolite catalysts, Fuel,2004,83:1899-1906
    [43] Alsobaai A. M., Zakaria R., Hameed B. H., Gas oil hydrocracking on NiW/USYcatalyst: Effect of tungsten and nickel loading, Chemical Engineering Journal,2007,132:77-83
    [44] Sato K., Nishimura Y., Matsubayashi N., et al., Structural changes of Y zeolitesduring ion exchange treatment: effects of Si/Al ratio of the starting NaY,Microporous and Mesoporous Materials,2003,59:133-146
    [45] Sato K., Nishimura Y., Honna K, et al., Role of HY zeolite mesopores inhydrocracking of heavy oils, Journal of Catalysis,2001,200:288-297
    [46] Rana M. S., Ancheyta J., Maity S. K., et al., Heavy crude oil hydroprocessing: Azeolite-based CoMo catalyst and its spent catalyst characterization, CatalysisToday,2008,130:411-420
    [47] Tan Q. F., Bao X. J., Song T. C., et al., Synthesis, characterization, and catalyticproperties of hydrothermally stable macro-meso-micro-porous compositematerials synthesized via in situ assembly of preformed zeolite Y nanoclusters onkaolin, Journal of Catalysis,2007,251:69-79
    [48] Liu X. M., Yan Z. F., Optimization of nanopores and acidity of USY zeolite bycitric modification, Catalysis Today,2001,68:145-154
    [49] Denayer J. F., Baron G., Hydrocracking of n-alkane mixtures on Pt/H-Y zeolite:chain length dependence of the adsorption and the kinetic constants, Industrialand Engineering Chemistry Research,1997,36:3242-3247
    [50] Zhang W. M., Smirniotis P. G., Effect of zeolite structure and acidity on theproduct selectivity and reaction mechanism for n-octane hydroisomerization andhydrocracking, Journal of Catalysis,1999,182:400-416
    [51] Qin B., Zhang X. W., Zhang Z. Z., et al., Synthesis, characterization and catalyticproperties of Y-β zeolite composites, Petroleum Chemistry,2011,8:224-228
    [52] Welters W. J J., Waerden O. H., Beer V. H. J., et al., Hydrocracking of n-decaneover zeolite-supported metal sulfide catalysts.2. Zeolite Y-supported Ni andNi-Mo sulfides, Industrial and Engineering Chemistry Research,1995,34:1166-1171
    [53] Yan T. Y., Zeolite-based catalysts for hydrocracking, Industrial&EngineeringChemistry Process Design and Development,1983,22:154-160
    [54] Sato K., Nishimura Y., Shimada H., Preparation and activity evaluation of Yzeolites with or without mesoporosity, Catalysis Letters,1999,60:8-87
    [55] Verboekend D., Vile G., Perez R. J., Mesopore formation in USY and Betazeolites by base leaching: selection criteria and optimization of pore-directingagents, Crystal Growth&Design,2012,12:3123-3132
    [56] Al Z. D., Bashir Y., Holmes R. J., et al., Study of the relationship betweenframework cation levels of Y zeolites and behavior during calcinations, steaming,and n-heptane cracking processes, Industrial&Engineering Chemistry Research,2012,51:6648-6657
    [57] McDaniel C. V., Laurel, Maher P. K., Stabilized Zeolites [P]. USP3449070,1969
    [58] Maher P. K., Baltimore, McDaniel C. V., Zeolite Z-14US and method ofpreparation thereof [P], USP3293192,1966
    [59] Ward J. W., Thermal decomposition of ammonium Y zeolite, Journal of Catalysis,1970,18:348-351
    [60] Wang Q. L., Giannetto G., Torrealba M., et al., Dealumination of zeolites II.Kinetic study of the dealumination by hydrothermal treatment of a NH4NaYzeolite, Journal of Catalysis,1991,130:459-470
    [61] Petkov P. S., Aleksandrov H. A., Valtchev V., et al., Framework stability ofheteroatm-substitutied forms of extra-large-pore Ge-silicate molecular sieves: thecase of ITQ-44, Chemistry of Materials,2012,24:2509-2518
    [62] Yang Y. S., Sun C., Du J. M., et al., The synthesis of endurable B-Al-ZSM-5catalysts with tunable acidity for methanol to propylene reaction, CatalysisCommunications,2012,24:44-47
    [63] Shah K. K., Saikia J., Saikia D., et al., Synthesis and characterization ofisomorphously zirconium substituted mobil five (MFI) zeolite, MaterialsChemistry and Physics,2012,134:43-49
    [64] Eilertsen E. A., Giordanino F., Lamberti C., et al., Ti-STT: a new zeotype shapeselective oxidation catalyst, Chemical Communications,2011,47:11867-11869
    [65] Kawagoe H., Komura K., Kim J. H., et al., Preparation of [Fe]-SSZ-24throughthe isomorphous substitution of [B]-SSZ-24with iron, and its catalytic propertiesin the isopropylation of biphenyl, Journal of Molecular catalysis A: Chemical,2011,350:1-8
    [66] Ismail M. N., Ibe U. K., Chernenko T., et al., Synthesis and characterization ofvanadosilicate AM-6with transition metal ions isomorphously substituted in theframework, Microporpous and Mesoporous Materials,2011,145:118-123
    [67] Bhange P., Bhange D. S., Pradhan S., et al., Direct synthesis of well-orderedmesoporous Al-SBA-15and its correlation with the catalytic activity, AppliedCatalysis A: General,2011,400:176-184
    [68] Li B. S., Li X., Xu J. Q., et al., Synthesis and characterization of compositemolecular sieves M1-MFI/M2-MCM-41(M1, M2=Ni, Co) with high heteroatomcontent and their catalytic properties for hydrocracking of residual oil, Journal ofColloid and Interface Science,2010,346:199-207
    [69] Zhang Y. J., Wang Y. Q., Bu Y. F. et al., Synthesis of Ti-Hβ zeolites byliquid-solid isomorphous substitution and the catalytic properties in the vaporphase Beckmann rearrangement of cyclohexanone oxime, Reaction Kinetics andCatalysis Letters,2007,90:365-372
    [70] Upare D. P., Yoon S., Lee C. W., Catalytic ring opening of MCH and MCP overIr containing USY and HZSM-5with the same SiO2/Al2O3ratio, Catalysis Letters,2012,142:744-752
    [71] Olmos A., Rigolet S., Louis B., et al., Design of Scandium-doped USY zeolite:an efficient and green catalyst for Aza-Diels-Alder reaction, Journal of PhysicalChemistry C,2012,116:13661-13670
    [72] Ward A. J., Pujari A. A., Costanzo L., et al., The one-pot synthesis,characterization and catalytic behavior of mesoporous silica-sulfated zirconiasolids, Catalysis Today,2011,178:187-196
    [73] Niwa M., Noda T., Suzuki K., et al., Acidity and cracking activity on MgHYzeolite, Microporous and Mesoporous Materials,2011,146:208-215
    [74] Maity S. K., Ancheyta J., Carbon modified Y zeolite used as support material forhydroprocessing catalysts, Catalysis Today,2010,150:231-236
    [75]陈洪林,申宝剑,潘惠芳. ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能,催化学报,2004,25:715-720
    [76] Gao X. H., Qin Z. X., Wang B. J., et al., High silica REHY zeolite with low rareearth loading as high-performance catalyst for heavy oil conversion, AppliedCatalysis A: General,2012,413-414:254-260
    [77] Honna K., Araki Y., Enomoto T., et al., Titanium modified USY zeolite-basedcatalysts for hydrocracking residual oil (part1) preparation and activity test ofmolybdenum supported catalysts, Journal of the Japan Petroleum Institute,2003,46:249-258
    [78] Enomoto T., Aizono H., Ueki H., et al., Titanium modified USY zeolite-basedcatalysts for hydrocracking residual oil (part2) development of catalysts for fixedbed reactors, Journal of the Japan Petroleum Institute,2004,47:239-248
    [79] Shimada H., Sato K., Honna K., et al., Design and development of Ti-modifiedzeolite-based catalyst for hydrocracking heavy petroleum, Catalysis Today,2009,141:43-51
    [80] Honna K., Araki Y., Enomoto T., et al., Titanium modified USY zeolite-basedcatalysts for hydrocracking residual oil (part3) preparation and activity test ofcatalysts based on realuminated USY, Journal of the Japan Petroleum Institute,2005,48:189-196
    [81] Sabia P., Joannon D. M., Picarelli A., et al., Modeling negative temperaturecoefficient region in methane oxidation, Fuel,2012,91:238-245
    [82] Huynh L., Neale C., Pomes R., et al., Computational approaches to the rationaldesign of nanoemulsions, polymeric micelles, and dendrimers for drug delivery,Nanomedicine-Nanotechnology Biology and Medicine,2012,8:20-36
    [83] Goel S., Luo X. C., Reuben R. L., Molecular dynamics simulation model for thequantitative assessment of tool wear during single point diamond turning of cubicsilicon carbide, Computational Materials Science,2012,51:402-408
    [84] Thompson M. D., Beard D. A., Physiologically based pharmacokinetic tissuecompartment model selection in drug development and risk assessment, Journalof Pharmaceutical Sciences,2012,101:424-435
    [85] Levitt M., Warshel A., Computer simulation of protein folding, Nature,1975,253:694-698
    [86] Zamankhan P., Solid structures in a highly agitated bed of granular materials,Applied Mathematical Modelling,2012,36:414-429
    [87] Serra R. M., Miro E. E., Bolcatto P., et al., Experimental and theoretical studiesabout the adsorption of toluene on ZSM-5and mordenite zeolites modified withCs,2012,147:17-29
    [88]李炳瑞,结构化学,北京,高等教育出版社,2004
    [89]徐光宪,量子化学基本原理和从头算法,北京,科学出版社,2008
    [90] Antunes E., Azoia N. G., Matama T., et al., The acitivity of LE10peptide onbiological membranes using molecular dynamics, in vitro and in vivo studies,Colloids and surface. B. Biointerfaces,2013,106:240-247
    [91] Bai Y., Zhao S. H., Tong Y. Y., et al., Study on the structure, morphology, andproperties of end-functionalized star-shaped solution-polymerizedstyrenebutadiene rubber, Journal of Applied Polymer Science,2013,128:2516-2524
    [92] Yon R. J., Wheat-germ aspartate transcarbamoylase. Kinetic behavior suggestingan allosteric mechanism of regulation, The Biochemical Journal,1972,128:311-320
    [93] Metropolis N., Ulam S., The Monte Carlo method, Journal of the AmericanStatistical Association,1949,44:335-341
    [94] Todorova T., Alexiev V., Weber T., Energetics and electronic properties of defectsat the (100) MoS2surface studied by the perturbed cluster method, ReactionKinetics and Catalysis Letters,2012,105:113-133
    [95] Liu D. C., Chen X. M., Li D. J., et al., Simulation of MoS2crystal structure andthe experimental study of thermal decomposition, Journal of Molecular Structure,2010,980:66-71
    [96] Schweiger H., Paybaud P., Toulhoat H., Promoter sensitive shapes of Co(Ni)MoSnanocatalysts in sulfo-reductive conditions, Journal of Catalysis,2002,212:33-38
    [97] Carolina Z. M., Jose M. M., Estrella R., et al., A DFT study of the electronicstructure of cobalt and nickel mono-substituted MoS2triangular nanosizedclusters, Journal of Molecular Catalysis A: Chemical,2009,313:49-54
    [98] Kadantsev E. S., Hawrylak P., Electronic structure of a single MoS2monolayer,Solid State Communications,2012,152:909-913
    [99] Silva A. M., Itamar B. J. R., How to find an optimum cluster size throughtopological site properties: MoSx model clusters, Journal of ComputationalChemistry,2011,32:2186-2194
    [100] Ramos M., Berhault G., Ferrer D. A., et al., HRTEM and molecular modeling ofthe MoS2-Co9S8interface: understanding the promotion effect in bulk HDScatalysts, Catalysis Science and Technology,2012,2:164-178
    [101] Chen Y. Y., Dong M., Qin Z. F., et al., A DFT study on the adsoption anddissociation of methanol over MoS2surface, Journal of Molecular Catalysis A:Chemical,2011,338:44-50
    [102] Chen Y. Y., Dong M., Wang J. G., et al., On the role of a Cobalt promoter in awater-gas-shift reaction on CoMoS2, Journal of Physical Chemistry C,2010,114:16669-16676
    [103] Patterson M. J., Lightstone J. M., White M. G., Structure of molybdenum andtungsten sulfide MxSy+clusters: Experiment and DFT calculations, Journals ofPhysical Chemistry A,2008,112,12011-12021
    [104] Travert A., Dujardin C., Mauge F., et al., CO adsorption on CoMo and NiMosulfide catalysts: A combined IR and DFT study, Journal of Physical Chemistry B,2006,110:1261-1270
    [105] Temel B., Tuxen A. K., Kibsgaard J., et al., Atomic-scale insight into the originof pyridine inhibition of MoS2-based hydrotreating catalysts, Journal of Catalysis,2010,271:280-289
    [106] Moses P. G., Hinnemann B., Topsoe H. et al., The effect of Co-promotion onMoS2catalysts for hydrodesulfurization of thiophene: A density functional study,Journal of Catalysis,2009,268:201-208
    [107] Joshi Y. V., Ghosh P., Venkataraman P. S., et al., Electronic descriptors for theadsorption energies of sulfur-containing molecules on Co/MoS2, using DFTcalculations, Journal of Physical Chemistry C,2009,113:9698-9709
    [108] Moses P. G., Mortensen J. J., Lundqvist B. I., et al., Density functional study ofthe adsorption and van der waals binding of aromatic and conjugatedcompounds on the basal plane of MoS2, The Journal of Chemical Physics,2009,130:104709-104715
    [109] Michael B., Paul J. F., Cristol S., et al., Guaiacol derivatives and inhibitingspecies adsorption over MoS2and CoMoS catalysts under HDO conditions: ADFT study, Catalysis Communications,2011,12:901-905
    [110] Topsoe N. Y., Tuxen A., Hinnemann B., et al., Spectroscopy, microscopy andtheoretical study of NO adsorption on MoS2and CoMoS hydrotreating catalysts,Journal of Catalysis,2011,279:337-351
    [111] Tuxen A., Henrik G., Hinnemann, B., et al., An atomic-scale investigation ofcarbon in MoS2hydrotreating catalysts sulfide by organosulfur compounds,Journal of Catalysis,2011,281:345-351
    [112] Krebs E., Silvi B., Daudin A., et al., A DFT study of the origin of theHDS/HydO selectivity on Co(Ni)MoS active phases, Journal of Catalysis,2008,260:276-287
    [113] Dupont C., Lemeur R., Daudin A., et al., Hydrodeoxygenation pathwayscatalyzed by MoS2and NiMoS active phases: A DFT study, Journal of Catalysis,2011,279:276-286
    [114] Ionescu A., Allouche A., Aycard J. P., et al., Study of γ-Al2O3-supportedhydrotreating catalyst: I. adsorption of bare MoS2sheets on γ-Al2O3surfaces,Journal of Physical Chemisty B,2003,107:8490-8497
    [115] Costa D., Arrouvel C., Breysse M., et al., Edge wetting effects of γ-Al2O3andanatase-TiO2supports by MoS2and CoMoS active phases: A DFT study, Journalof Catalysis,2007,246:325-343
    [116] Faye P., Payen E., Bougeard D., Density functional approach of a γ-Al2O3supported MoS2hydrotreating catalyst, Jouranl of Catalysis,1998,179:560-564
    [117] Arrouvel A., Breysse M., Toulhoat H., et al., A density functional theorycomparison of anatase (TiO2)-and γ-Al2O3-supported MoS2catalysts, Journal ofCatalysis,2005,232:161-178
    [118] Chong S. X., Wahab H. A., Abdallah H.H., Theoretical investigation into thelikely reaction mechanisms of benzyl alcohol with dimethyl carbonated over afaujasite zeolite catalyst, Computional Materials Science,2012,55:217-227
    [119] Andrey A. R., Alexander V. L., Georgii M. Z., et al., DFT investigation of COoxidation over Mg exchanged periodic zeolite models, Computational andTheoretical Chemistry,2011,964:108-115
    [120] Sung M. S., Woo T. L., Crystallographic verification that copper (II) coordinatesto four of the oxygen atoms of zeolite6-rings. Two single-crystal structures offully dehydrated, largely Cu2+-exchanged zeolite Y (FAU, Si/Al=1.56), Journalof Physical Chemisty C,2012,116:963-974
    [121] Floran S., Evgeny A. P., Robin K., et al., Nature and location of cationiclanthanum species in high alumina containing faujasite type zeolites, Journal ofPhysical Chemisty C,2011,115:21763-21776
    [122] Noda T., Suzuki K., Katada N., et al., Combined study of IRMS-TPDmeasurement and DFT calculation on B acidity and catalytic cracking activityof cation-exchanged Y zeolites, Journal of Catalysis,2008,259:203-210
    [123] Niwa M., Noda T., Suzuki K., et al., Acidity and cracking activity on MgHYzeolite, Microporous and Mesoporous Materials,2011,146:208-215
    [124] Kunar P., Sung C. Y., Muraza O., et al., H2S adsorption by Ag and Cu ionexchanged faujasites, Microporous and Mesoporous Materials,2011,146:127-133
    [125] Prasomsri T., Tailleur R. E. G., Alvarez W. E., et al., Conversion of1-tetraloneover HY zeolite: an indicator of the extent of hydrogen transfer, AppliedCatalysis A: General,2010,389:140-146
    [126] Suzuki K., Sastre G., Katada N., et al., Periodic DFT calculation of the energyof ammonia adsorption on zeolite B acid sites to supported the ammoniaIRMS-TPD experiment, Chemistry Letters,2009,38:354-355
    [127] Koltunov K. Y., Sobolev V. I., Efficient cleavage of cumene hydroperoxide overHUSY zeolites: the role of B acidity, Applied Catalysis A: General,2008,336:29-34
    [128] Katada N., Suzuki K., Noda T., et al., Correlation between B acid strength andlocal structure in zeolites, Journal of Physical Chemisty C,2009,113:19208-19217
    [129] Stanislav R. S., Sergey G., Kuznicki S. M., et al., Theoretical modeling ofzeolite nanoparticle surface acidity for heavy oil upgrading, Journal of PhysicalChemisty C,2008,112:6794-6810
    [130] Alexandra S., Robert G. B., Martin D. F., et al., Probing the acid strength of Bacidic with acetonitrile: An atomistic and quantum chemical study. Journal ofPhysical Chemisty B,2004,108:7152-7161
    [131] Wang Y., Zhuang J. Q., Yang G., et al., Study on the external surface acidity ofMCM-22zeolite: Theoretical calculation and31P MAS NMR, Journal ofPhysical Chemisty B,2004,108:1386-1391
    [132] Yi D. L., Zhang H. L., Deng Z. W.,1H and15N chemical shifts of adsorbedacetonitrile as measures to probe the B acid strength of solid acids: A DFT study,Journal of Molecular Catalysis A: Chemical,2010,326:88-93
    [133] Suzuki K., Katada N., Niwa M., Detection and quantitative measurements offour kinds of OH in HY zeolite, Journal of Physical Chemisty C,2007,111:894-900
    [134] Sastre G., Katada N., Suzuki K., et al., Computational study of B acidity offaujasite, Effect of the Al content on the infrared OH stretching frequencies,Journal of Physical Chemisty C,2008,112:19293-19301
    [135] Katada N., Suzuki K., Noda T., et al., Correlation between B acid strength andlocal structure in zolite, Journal of Physical Chemisty C,2009,113:19208-19217
    [136] Takaishi T, Ordered distribution of Al atoms in the framework of faujasite typeand a chiral Y, Journal of Physical Chemisty,1995,99:10982-10987
    [137] Tamas I. K., Janos B. N., Distribution of aluminum in the periodical buildingunits of faujasites, Journal of Physical Chemisty C,2007,111:2520-2524
    [138] Wang N., Zhang M. H., Yu Y. Z., Distribution of aluminum and its influence onthe acid strength of Y zeolite, Microporous and Mesoporous Materials,2013,169:47-53
    [139] Yang G., Zhou L. J., Liu X. C., et al., Configuration of MFI-type zeoliteinteracting with the probe molecule P(CH3)3–a theoretical study, StructuralChemistry,2007,18:353-356
    [140] Yang G., Zhou L. J., Liu X. C., et al., Density functional calculations on thedistribution, acidity, and catalysis of TiIV and TiIII ions in MCM-22zeolite,Chemistry A European Journal,2011,17:1614-1621
    [141] Sastre G., Corma A., Relation between structure and Lewis acidity of Ti-Betaand TS-1zelite, Chemical Physics Letters,1999,302:447-453
    [142] Claudio J. A. M., Daniel L.B., Nilton R. J., A DFT study of the acidity ofultrastable Y zeolite: where is the B/Lewis acid synergism?, AngewandteChemie International Edition,2004,43:3050-3053
    [143] Li S. H., Zheng A.M., Su Y. C., et al., B/Lewis acid synergy in dealuminatedHY zeolite: a combined solid-stated NMR and theoretical calculation study,Journal of the American Chemical Society,2007,129:11161-11171
    [144] Zhang S. F., Sun L. L., Xu J. B., et al., Aggregate structure in heavy crude oil:using a dissipative particle dynamics based mesoscale platform, Energy Fuels,2010,24:4312-4326
    [145] Alvarea F., Flores E. A., Castro L. V., et al., Dissipative paricle dynamics (DPD)study of crude oil-water emulsions in the presence of a functionalizedCo-polymer, Energy Fuels,2011,25:562-567
    [146] Luo P., Yang C. D., Gu Y. G., Enhanced solvent dissolution into in-site upgradedheavy oil under different pressures, Fluid Phase Equilibria,2007,252:143-151
    [147] Yuan H. J., Gosling C., Kokayeff P., et al., Prediction of hydrogen solubility inheavy hydrocarbons over a range of temperatures and pressures using moleculardynamics simulations, Fluid Phase Equilibria,2010,299:94-101
    [148] Schr dinger, E., Uber das Verhaltnis der Heisenberg-Born-JordanschenQuantenmechanik zu der meinem, Annalen der Physik,1926,384:734-756
    [149] Heisenberg W. K., Quantum-Theoretical Re-Interpretation of Kinematic andMechanical Relations, Zeitschrift fur Physik,1925,33:879-893
    [150] Pauling L., The nature of the chemical bond, Ithaca: Cornell University Press,New York,1960
    [151] Heitler W., London F., Wecheslwirkung neutraler atome und hom opolarebindung nach der quantenmechanic, Zeitschrift fur Physik,1927,44:455-472
    [152] Mulliken R. S., Bonding power of electrons and theory of valence, ChemicalReviews,1931,9:347-388
    [153] Fukui K., Fujimoto H., Frontier orbitals and reaction paths: Selected papers ofKenichi Fukui, Hanckensack: World Scientific Publishing Company,1997
    [154] Hudaky I., Hudaky, P., Perczel A., Solvation model induced structural changesin peptides, A quantum chemical study on ramachandran surfaces andconformers of alanine diamide using the polarizable continuum model, Journalof Computational Chemistry,2004,25:1522-1531
    [155] Moscardo F., Perez-Jimenez A. J., Correlation potentials for the He atom andthe hydrogen molecule: A comparison between the correlation factor approachand DFT correlation energy functional, International Journal of QuantumChemistry,1998,67:143-156
    [156] Akinaga Y., Taketsugu T., Hirao K., Theoretical study of CH4photodissociationon Pd and Ni(111) surfaces, Journal of Chemical Physics,1998,109:11010-11017
    [157] Duan Y. H., Sorescu D. C., Density functional theory studies of the structural,electronic, and phonon properties of Li2O and Li2CO3: Application to CO2capture reaction, Physical Review B,2009,79:014301
    [158] Delley B., From molecules to solids with the DMol3approach, Journal ofPhysical Chemistry,2000,113:7756-7764
    [159] Lee C., Yang W., Parr R. G., Development of the colle-salvetticorrelation-energy formula into a functional of the electron density, PhysicalReview B: Condensed Matter,1988,37:785-789
    [160] Michel K. J., Ozolins V., Site substitution of Ti in NaAlH4and Na3AlH6, Journalof Physical Chemistry C,2011,115:21454-21464
    [161] Himeno H., Miyajima K., Yasuike T., et al., Gas phase synthesis of Au clustersdeposited on Titanium oxide clusters and their reactivity with CO molecules,Journal of Physical Chemistry A,2011,115:11479-11485
    [162] Li S. G., Dixon D. A., Molecular structures and energetic of the (TiO2)n (n=1-4)clusters and their anions, Journal of Physical Chemistry A,2008,112:6646-6666
    [163] Qu Z. W., Zhu H., Do anionic titanium dioxide nano-clusters reach bulk bandgap? A density functional theory study, Journal of Computational Chemistry,2012,31:2038-2045
    [164] Auvinen S., Alatalo M., Haario H., et al., Size and shape dependence of theelectronic and spectral properties in TiO2nanoparticles, Journal of PhysicalChemistry C,2011,115:8484-8493
    [165] Eric C. T., Melanie N., Roland M., et al., Reactivity of stoichiometric titaniumoxide cations, Physical Chemistry Chemical Physics,2011,13:4243-4249
    [166] Wang T. H., Fang Z. T., Gist N. W., et al., Computational study of the hydrolysisreactions of the ground and first excited triplet states of small TiO2nanoclusters,Journal of Physical Chemistry C,2011,115:9344-9360
    [167] Syzgantseva O. A., Navarrete P. G., Calatayud M., et al., Theoreticalinvestigation of the hydrogenation of (TiO2)N clusters (N=1-10), Journal ofPhysical Chemistry C,2011,115:15890-15899
    [168] Lundqvist M. J., Nilsing M., Persson P., et al., DFT study of bare anddye-sensitized TiO2clusters and nanocrystals, International Journal of QuantumChemistry,2006,106:3214-3234
    [169] Verboekend D., Vilé G., Pérez R. J., Hierarchical Y and USY zeolite designedby post-synthetic strategies, Advanced Functional Materials,2012,22:916-928
    [170] Sato K., Nishimura Y., Honna K., et al., Role of HY zeolite mesopores inhydrocracking of heavy oils, Journal of Catalysis,2001,200:288-297
    [171]徐如人,庞文琴等,分子筛与多孔材料化学,科学出版社,2004
    [172] Hriljac, J. A., Eddy, M. M., Cheetham, A. K., et al., Powder neutron diffractionand29Si MAS NMR studies of siliceous zeolite-Y, Journal of Solid StateChemistry,1993,106,66-72
    [173] Gao X. H., Qin Z. X., Wang B. J., et al., High silica REHY zeolite with low rareearth loading as high-performance catalyst for heavy oil conversion, AppliedCatalysis A-General,2012,413:254-260
    [174] Katada N., Suzuki K., Noda T., Sastre G., Niwa M., Correlation between B acidstrength and local structure in zeolites. Journal of Physical Chemistry C,2009,113:19208-19217
    [175] Kalita B., Ramesh C. D., Investigation of revese-Hydrogen spillover onzeolite-supported palladium tetramer by ONIOM method, Journal of PhysicalChemistry C,2009,113:16070-16076
    [176] Eichler U., Brandle M., Sauer J., Predicting absolute and site specific aciditiesfor zeolite catalysts by a combined quantum mechanics/interatomic potentialfunction approach, Journal of Physical Chemistry B.1997,101:10035-10050
    [177] Hijar C. A., Jacubinas R. M., Eckert J., et al., The siting of Ti in TS-1isnon-random. Power neutron diffraction studies and theoretical calculations ofTS-1and FeS-1, Journal of Physical Chemistry B,2000,104:12157-12164
    [178] Deka R. C., Nasluzov V. A., Shor E. A. I., et al., Comparison of all sites for Tisubstitution in zeolite TS-1by an accurate embedded-cluster method, Journal ofPhysical Chemistry B,2005,109:24304-24310
    [179] Oumi Y., Manabe T., Sasaki H., et al., Preparation of Ti incorporated Y zeolitesby a post-synthesis method under acidic conditions and their catalytic properties,Applied Catalysis A: General,2010,388:256-261
    [180] Damin A., Bordiga S., Zecchina A., Ti-chabazite as a model system of Ti(IV) inTi-zeolites: a periodic approach, Journal of Chemical Physics,2003,118:10183-10194
    [181] Hulea V., Dumitriu E., Styrene oxidation with H2O2over Ti-containingmolecular sieves with MFI, BEA and MCM-41topologies, Applied Catalysis A:General,2004,277:99-106
    [182] Tamura M., Chaikittisilp W., Yokoi T., et al., Incorporation process of Ti speciesinto the framework of MFI type zeolite, Microporous and Mesoporous Materials,2008,112:202-210
    [183] Mulliken R. S., Electronic population analysis on LCAO-MO molecular wavefunctions, Journal of Chemical Physics,1955,23:1833-1840
    [184] Shalabi A. S., Aal. S. A., Halim W. S. A., et al., Spin quenching of Mn incomplexes and CO binding with Mn deposited on MgO and CaO supports: DFTcalculations, International Journal of Quantum Chemistry,2012,112:2743-2751
    [185] Singh D. K., Asthana B. P., Srivastava S. K., Modeling the weak hydrogenbonding of pyrrole and dichloromethane through Raman and DFT study, Journalof Molecular Modeling,2012,18:3541-3552
    [186] Gelatt C. D., Williams A. R., Moruzzi V. L., Theory of bonding of transitionmetals to nontransition metals, Physical Review,1983,27:2005-2012
    [187] Suzuki K., Noda T., Sastre G., et al., Periodic density functional calculation onthe Bronsted acidity of modified Y-type zeolite, Journal of Physical ChemistryC,2009,113:5672-5680
    [188] Kristina C., Nikola D., Konstantin H., FTIR evidence of different bonding ofmethane to OH groups on H-ZSM-5, HY, and SiO2, Journal of PhysicalChemisty C,2012,116:17101-17109
    [189] Shigenobu H., Natsuko K., Acid properties of H-type mordenite studied bysolid-state NMR, Microporous and Mesopoous Materials,2011,141:49-55
    [190] Li S. H., Zheng A. M., Su Y. C., et al., B/Lewis acid synergy in dealuminatedHY zeolite: A combined solid-state NMR and theoretical calculation study,Journal of American Chemical Society,2007,129:11161-11171
    [191] Mark S. S., Nicholas J. B., Density functional studies of zeolites.2. Structureand acidity of [T]-ZSM-5modles (T=B, Al, Ga and Fe), Journal of PhysicalChemistry B.,1995,99:15046-15061
    [192] Brand H. V., Curtiss L. A., Iton L. E., et al., Ab initio molecular orbital clusterstudies of the zeolite ZSM-5.1. Proton affinities, Journal of Physical Chemisty,1993,97:12773-12782
    [193] Redondo A., Hay P. J., Quantum chemical studies of acid sites in zeolite ZSM-5,Journal of Physical Chemisty,1993,97:11754-11761
    [194] Yuan S. P., Wang J. G., Li Y. W., et al., Theoretical studies on the properties ofacid site in isomorphously substituted ZSM-5, Journal of Molecular Catalysis A:Chemical,2002,178:267-274
    [195] Sirporn J., Jarum L., Jumras L., Characterization of acidity in [B],[Al], and [Ga]isomorphously substituted ZSM-5: Embedded DFT/UFF approach, InternationalJournal of Quantum Chemistry,2011,111:2275-2282
    [196] Nena R., Zvonimir B. M., Basicity of neutral organic superbases withvinamidine structure in gas phase and acetonitrile: a density functional theorystudy, Journal of Physical Organic Chemistry,2012,25:1168-1176
    [197] Chatterjee A., Iwasaki T., Ebina T., et al., Density functional study of estimatingB acid site strength in isomorphously substituted ZSM-5, Microporous andMesoporous Materials,1998,21:421-428
    [198] Yang G., Zhou L. J., Han X. W., et al., Lewis and Bronsted acidic sites inM4+-doped zeolites (M=Ti, Zr, Ge, Sn, Pb) as well as interactions with probemolecules: A DFT study, Journal of Molecular Catalysis A: Chemical,2012,363-364:371-379
    [199] Somayyeh K., Azardokht A., Alireza F., Theoretical descriptors response to thecalculations of the relative pKa values of some boronic acids in aqueoussolution: A DFT study, Computational and Theoretical Chemistry,2012,1000:1-5
    [200] Kuehne M. A., Babitz S. M., Kung H. H., et al., Effect of framework Al contenton HY acidity and cracking activity, Applied Catalysis A-General,1998,166:293-299
    [201] Almutairi S. M. T., Mezari B., Filonenko G. A., et al., Influence ofextraframework aluminum on the Bronsted acidity and catalytic reactivity offaujasite zeolite, ChemCatChem,2013,5:452-466
    [202] Behera B., Ray S. S., Singh I. D., Structural characterization of FCC feeds fromIndian refineries by NMR spectroscopy, Fuel,2008,87:2322-2333
    [203] Zhao S. Q., Xu Z. M., Xu C. M., et al., Systematic characterization of petroleumresidua based on SFEF, Fuel,2005,84:635-645
    [204] Duan A. J., Xu C. M., Gao J.S., et al., Molecular simulation for catalytichydrotreatment of coker heavy gas oil derived from Athabasca bitumen, Journalof Molecular Structure,2005,734:89-97
    [205]朱红,关润伶,胜利油田稠油组分的光谱法研究,光谱学与光谱分析,2007,27:2270-2274
    [206]王珺,许志明,李凤娟等,大港减压渣油的多层次分离与组成结构研究,燃料化学学报,2007,35:412-418
    [207] Chiaberge S., Guglielmetti G., Montanari L., et al., Investigation of asphaltenechemical structural modification induced by thermal treatments, Energy Fuels,2009,23:4486-4495
    [208] Parr R. G., Yang W., Density functional approach to the frontier-electron theoryof chemical reactivity, Journal of the American Chemical Society,1984,106:4049-4050
    [209] Eyring H., The activated complex and the absolute rate of chemical reactions,Chemical Reviews,1935,17:65-77
    [210]胡宏纹,有机化学,高等教育出版社,2006
    [211] Okumura K., Tomiyama T., Morishita N., Evolution of strong acidity andhigh-alkane-cracking activity in ammonium-treated USY zeolites, AppliedCatalysis A-General,2011,405:8-17
    [212] Souhila B., Isabelle B. G., Dominique C. J., Acidity study of X zeolitesmodified by nickel and/or chromium cations in the case of binary and ternaryexchanges, Microporous and Mesoporous Materials,2012,159:111-118
    [213] Katada N., Kageyama Y., Takahara K., et al., Acidic property of modified ultrastable Y zeolite: increase in catalytic activity for alkane cracking by treatmentwith ethylenediaminetetraacetic acid salt, Journal of Molecular Catalysis A:Chemical,2004,211:119-130
    [214] Vaschetto E. G., Monti G.A., Herrero E. R., et al., Influence of the synthesisconditions on the physicochemical properties and acidity of Al-MCM-41ascatalysts for the cyclohexanone oxime rearrangement, Applied CatalysisA-General,2013,453:391-402
    [215] Duprey E., Beaunier P., Springuel-Huet M. A., et al., Characterization ofcatalysts based on titanium silicalite, TS-1, by physicochemical techniques,Journal of Catalysis,1997,165:22-32
    [216] Scarano D., Zecchina A., Bordiga S., et al., Fourier-transform infrared andRaman spectra of pure and Al-, B-, Ti-and Fe-substituted silicalites:stretching-mode region, Journal of Chemical Society, Faraday Trans.,1993,89:4123-4130
    [217] Li F. F., Jiang Y. S., Yu L. X., et al., Surface effect of natural zeolite(clinoptilolite) on the photocatal ytic activity of TiO2, Applied Surface Science,2005,252:1410-1416
    [218] Chen H., Matsumoto A., Nishimiya N., et al., Preparation and characterizationof TiO2incorporated Y-zeolite, Colloids and Surfaces A: Physicochemical andEngineering Aspects,1999,157:295-305
    [219] Liu X. S., Lu K. K., Thomas J. K., Preparation, characterization andphotoreactivity of Titunium(IV) oxide encapsulated in zeolites, Journal ofChemical Society, Faraday Trans.,1993,89:1861-1865
    [220]唐津莲,许友好,汪燮卿等,四氢萘在分子筛催化剂上环烷环开环反应的研究,石油炼制与化工,2012,43:20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700