用户名: 密码: 验证码:
多相介质弹性参数的研究及波速计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对多相介质的等效体积模量及弹性波传播速度进行了深入的研究,并在以下几方面取的了新的进展:(1) 采用新的、简单的分析方法,对Biot理论中一些物理含义理解起来不直观的弹性参数,用物理含义明确直观的基本参数表示出来。(2) 利用修正项代替修正系数,重新修正Brandt球粒模型弹性理论,导出了修正项的具体表达式。在工程中的绝大多数情况下,该结果与Biot-Geertsma理论的结果在形式及数值上几乎完全一致,从而使这两个不直接相关的经典理论较好的统一起来。(3) 在土动力学中常用的不排水条件下,分别证明了Carroll的应力-应变关系中不排水体积模量、Kuster散射波理论的体积模量与Biot-Geertsma理论是完全一致的。(4) 论证了了土动力学中串联与并联的力学模式是不排水条件下应力-应变关系的两个特例,从应力-应变关系上统一了串联与并联的力学模式,不排水条件下,应力-应变关系有一新的重要的结论是:骨架的体积应变等于总的体积应变。为实际工作中选择模式提供了理论依据。(5) 重新分析了孔隙相互孤立型土体力学模型,使该模型的应力-应变关系更加合理。(6) 提出了含水土体骨架波速的概念,用其代替干土体波速的概念,能更好地反映工程土体的性状。(7) 提出了由实测饱和土体波速计算骨架弹性参数及骨架波速的方法。认为潜水面下纵波速度能反映更多的信息,并且,横波速度与骨架的横波速度也可以由孔隙率及结构因子引起差异。(8) 根据Kuster散射波理论,计算了饱和度大于85%的准饱和土体的弹性波速,其结果与试验非常吻合;但是,通常所用的等效孔隙流体压缩系数的方法所计算的结果与实验结果差别很大,对此,笔者给予了一定的解释。(9) 通过试验运用了骨架波速和黄土加固凝聚力的概念,将饱和度的增加引起土体密度的增加对波速的影响与水破坏加固凝聚力对波速的影响区分开来;在相同的压力和饱和度(近似)条件下,采用动力作用前后分别测试弹性波速的方法,将动力荷载对加固凝聚力的破坏作用与土样自身的颗粒组分对波速的影响因素区分开来。初步研究了水及动力作用对黄土加固凝聚力的破坏及黄土波速的变化规律。
Based on quasi-static hypothesis, some parameters of Boit-Gertsma's elastic theory which could not be directly perceived through the senses, was showed by explicit physical parameters. In spite of modifying coefficient, a modifying term is used to modify Brandt's theory of sphere grain model ; this term's expression has been acquired , and the result is identical to Biot-Geertsma's theory in form and quantity, in which the two classics theories is in perfect harmony .It is also confirmed that the constitutive relation of Carroll and N.Katsube theory, and the bulk modulu of Kuster scattered waves are identical to Biot theory. Serial and parallel stress-strain relations in saturated soils have been theoretically deduced from un-drained stress-strain relations with a new condition of frame volume deformation equaling to total volume deformation, which were suggested for the first time in this thesis and proved a theoretical method to choose suitable mechanical models. The mechanipal model for saturated soils with isolated holes has been discussed in a new more reasonable way and the stress-strain relations and bulk moduli for this kinds of soils have been supposed. A new concept, the skeleton elastic wave velocity (SEWV), was introduced to replace the velocities of dry soil, which could reflect the engineering characteristic of soil more accurately .New methods to calculate SEWV from measured velocities in saturated soil were suggested. The longitudinal wave velocity in saturated soil could not only be useful , but reflect more information as well. The shear wave velocity may be different from the shear SEWV ,the difference is proved to be caused by porosity and structure factor. The fact that wave velocity in quasi-saturated soil is equal to that of fully saturated soil could not be calculated by effective fluid compressibility or explained by unwell-distributed saturation .We account for this in a new reasonable way which was based on Kuster scattering effect analysis. Based on the concepts of elastic wave velocity of skeleton and reinforced cohesion, the effect on the velocity by soil density with different saturation was distinguished from that by weakened reinforced cohesion; On the condition of same confined press and saturation, the elastic wave velocity was measured before and after soil samples were dynamically loaded, so that the elastic wave velocity changed by dynamic load was distinguished from that by soil.nature characteristic. Some regular patterns of reinforced cohesion and velocity in loess under different saturation and dynamic load have been discussed in a preliminary way. Some results of this research was applied in practical work and certain effect has bas been acquired.
引文
Alexander Puzrin, Sam Frydman, and Mark Talesnick,1995, Normalized nondegrading behavior of soft clay under cyclic simple shear loading: Journal of geotechnical engineering,December, P. 836-843
    Alonso E.E etc, A Constitutive Model for Partilly Saturared Soils , Geotechnique 1990.40, No. 3
    Ament W. S., 1953, Sound Propagation in gross mixtures: Journal of the acoustical society of America, Vol. 25, No. 4, P. 638-641.
    Bagi K., 1999, Microstructural stress tensor of granular assemblies with volume forces:Transaction of the ASME Journal of applied mechanics, Vol. 66, P. 934-936
    Biot M. A., 1956a,Theory of propagation of elastic waves in a fluid-saturated porous solid.Ⅰ. Low-frequency range: The Journal of the acoustical society of America. Vol. 28,168-178.
    Biot M.A.,1956b,Theory of propagation of elastic waves in a fluid-saturate soils.Ⅱ. Higher-frequency range: The Journal of the acoustical of America. Vol. 28. P. 179-191
    Biot. M.A.and Willis D.G., 1957,The elastic coefficients of the theory of consolidation: Journal of applied mechanics, Vol. 24, No. 4. P. 549-601.
    Blot M. A., 1962, The mechanics of deformation and acoustic in porous media: Journal of applied physics, Vol. 33, No. 4, P. 1482-1498.
    Blot M. A., 1962, Generalized theory of acoustic propagation in porous dissipative media: The Journal of the acoustical society of America. Vol.34, P. 1254-1264.
    Bishop A. W, Blight G. E, 1962, Some aspects of effective stress in saturated and partly saturated soils. Geotechnique, Vo1.13, No. 3, P. 177-196.
    Brandt H., Habra Land Calif, 1955, A study of the speed of sound in porous granular media: Journal of applied mechanics, Vol. 22, P. 479-486.
    Brandt H.,1960, Factors affecting compressional wave velocity in unconsolidated marine sand sediments: The Journal of the acoustical society of America. Vol. 32, No. 2 P. 171-179.
    Carroll M.M., 1980, Mechanical response, of fluid-saturated porous materials: IUTAM (International Union of Theoretical and Applied Mechanics)Proceedings of 15th International. congress of theoretical and applied mechanics, Eds by F.P.J. Rimrott, and B. Tabarrok, North-Holland, New York P. 251-262.
    
    
    Christoffersen J.,Mehrabadi M.M., and S. Nemat-nasser, 1981, Amicromechanical description of granular material behavior: Transaction of the ASME Journal of applied mechanics, Vol. 48, P. 339-344
    Digby P. J., 1981, The effective elastic Moduli of porous granular rocks: Transaction of the ASME Journal of applied mechanics, Vol.48, P. 803-808.
    Digby P. J., and Walton K., 1989, Wave propagation through elastically-anisotropic fluid-saturated porous rocks: Transaction of the ASME Journal of applied mechanics, Vol. 56,P. 744-750.
    Domenico S. N., 1977, Elastic properties of unconsolidated porous sand reservoirs:Geophysics, Vol. 42, No. 7, P. 1339-1368.
    Duffy J. and Mindlin R. D., 1957, Stress-Strain relations and vibrations of a granular medium: Transaction of the ASME Journal of applied mechanics, Vol. 24, P. 585-593.
    Dunn M. L., Ledbetter H.,1995, Elastic moduli of composites reinforced by multiphase particles: Journal of applied mechanics, Vol.62. P. 1023-1028.
    Elliot, S. E., and Wiley, B. F., 1975, Compressional velocities of partially saturated,unconsolidated sands: Geophysics, Vol. 40, P. 949-954.
    Geertsma J, and Smit, D. C.1961, Some aspects of elastic wave propagation in fluid-saturated porous solids: Geophysics, Vol. 26, P. 168-181.
    Horne M.R.,1965,The behaviour of an assembly of rotund, rigid,cohesionless particles.Ⅰ: Proceedings of the royal society, Series A, Vol.206, No.1404, P. 62-78
    Horne M.R.,1965,The behaviour of an assembly of rotund, rigid,cohesionless particles.Ⅱ: Proceedings of the royal society, Series A, Vol. 206, No. 1404, P. 79-97
    Iwan W.D., 1967, On a class of models for the yielding behavior of continuous and composite systems: Transactions of the ASME Series E Journal of applied mechanics, Vol. 34,No. 3, P. 612-617
    James G. Berryman, 1981, Elastic wave propagation in fluid-satruated porous media Ⅱ: The Journal of Acoustical Society of America, Vol.70, No. 6, P. 1752-11756.
    James W. Spencer, Jr. Michael E. Cares, and Don D. Thompson, 1994, Frame modull of unconsolidated sands and sand-stones: Geophysics, Vol. 59, No. 9, P.1352-1361.
    
    
    Johnson D. L., Schwartz L. M.,. Elata D, Berryman J. G., etc, 1998, Linear and no-linear elasticity of granular media: stress-induced anisotropy of a random sphere pack:Transaction of the ASME Journal of applied mechanics, Vol. 65, P. 380-388.
    Katsube N.,1985,The constitutive theory for fluid-filled porous materials:Transaction of the ASME Journal of applied mechanics, Vol.52, P. 185-189.
    Katsube N., and Carroll M. M., 1987, The modified mixture theory for fluid-filled porous materials: Theory: Transaction of the ASME Journal of applied mechanics, Vol. 54,P. 35-40.
    Katsube N., and Carroll M. M., 1987, The modified mixture theory for fluid-filled porous materials: Applications: Transaction of the ASME Journal of applied mechanics,Vol. 54, P. 41-46.
    Korringa, J. 1981,On Biot-Geertsma equations for the elastic moduli of porous rocks (Critical comment on a paper by J. G. Berryman): The Journal of Acoustical Society of America,Vol. 70, No. 6, P. 1752-1753o
    Kruyt N. P., and Rothenburg L., 1996, Micro-mechanical definition of the strain tensor for granular materials: Transaction of the ASME Journal of applied mechanics, Vol. 118.P. 706-711
    Kuster G. T. and Toksoz M. N., 1974, Velocity and auenuatiot of seismic waves in two-phase media: part 1.the recical formulations, Geophysics, Vol.39, P. 587-618.
    Kuster G. T. and Tokoz M. N., 1974, Velocity and attention of seismic waves in two-phase media: Part 2. Experimental results: Geophysics, Vol. 39, No. 5, P. 607-618
    Nolle A. W., 1963, Acoustical properties of water-filled sands: The journal of the acoustical society of America, Vol.35, P. 1394-1408.
    Norman R. Paterson,1956, Seismic wave propagation in porous granular media:Geophysics, Vol. XXI, No. 3, P. 691-714
    Pierre-Yves Hicher, 1996, Elastic properties of soils: Journal of geotechnical engineering, Vo1.122, No. 8, P. 641-648.
    Robert Burrielge and Jossebh B. Keller, 1981, Poroelasticity equations derived from microstructure: Journal of Acoustical Society of America, Vol. 70, No. 4, P. 1140-1146.
    Walton K., and Digby P. J., 1987, Wave propagation through fluid-saturated porous rocks: Transaction of the ASME Journal of applied mechanics, Vol.54, P. 788-793.
    
    
    White J. E., 1965, Seismic waves:radiation, transmission, and attenuation:Megaw-Hill book company, New York.
    Wilfried Brutsaert, and James N. Luthin, 1964, The velocity of sound in soils near the surface as a function of the moisture content: Journal of geophysical research, Vol.69, No. 4, P. 634-652
    Wyllie M. R. J., Gregory A. R., and L. W. Gardner, 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, Vol. 21, P. 41-70.
    Wyllie M. R. J., Gregory A. R., and Gardner L. W., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, Vol.23,P. 459-493.
    Xiaoxiong Zhong Ching S. Chang , Micromechanical Modeling For Behavior Of Cementitious Granular Materials, Journal of Engineering Mechanics , 1999,November .1280-1285
    Zeon Mroz,1980, Deformation and flow of granular materials: Proc. 15th Int. congress of theoretical and applied mechanics, by Rinrott F.P.J and Tabarrok B, North-holland New York, P. 119-132
    Zwikker C. and Kosten C. W, 1949, Sound absorbing materials, Elsevier publishing company, New York.
    蔡袁强,徐长节,吴世明,1998,粘弹性饱水岩层中地震波的传播,地震学报,第20卷,第3期
    陈龙珠,饱和土中弹性波的传播速度及其应用,浙江大学博士学位论文,1987年,杭州
    陈龙珠,吴世明,1988,海底沉积物影响声速的理论讨论:海洋学报,第10卷,第3期。
    陈龙珠,黄秋菊,1997,关于“波在饱和土中传播的若干问题”一文的讨论:岩土工程学报,第19卷,第1期,104-106页。
    冯德益,聂永安等,2000,四重旋转对称含裂隙双相各向异性介质中的地震波,地震学报:第22卷,第3期
    龚晓南 著,高等土力学,浙江大学出版社,1996年,杭州
    黄克智,黄永刚编著“固体本构关系”清华大学出版社,1999年6月北京。
    蒋彭年 编著,土的本构关系,科学出版社,1982年,北京
    
    
    刘旭,1993,浅层土体中波速特征及纵横波联合探测的方法效果:高原地震,第5卷,第4期,48-55页。
    刘旭,王建荣,张森安,1995,骨架波速的获取与分析:西北地震学报,第17卷,第3期,75-79页。
    刘旭,王建荣,刘静,1998,对Brindt颗粒介质弹性理论的修正及骨架波速:岩土工程学报,第20卷,第1期,26-29页。
    刘祖典 李靖 郭增玉 饶文英,1984,陕西关中黄土变形特性和变形参数的探讨,岩土工程学报,第6卷第3期24-33页
    栾茂田 主编,土动力学理论与实践,大连理工大学出版社,第五届全国土动力学学术会议论文集,1998年,大连
    门福录,1965,关于饱和多孔隙介质中压缩波的传播特性:地球物理学报,第14卷,第2期
    门福录,1981,波在饱含流体的孔隙介质中的传播问题:地球物理学报,第24卷,第1期,65-76页。
    门福录,2001,岩土力学研究观点、方法若干问题之我见:岩土工程学报,第23卷,第3期,380-382页。
    沈珠江,1995,关于固结理论和有效应力的讨论:岩土工程学报,第17卷,第6期,118-119页。
    石兆吉,王兰民著 《土壤动力特性·液化势及危害性评价》 地震出版社,1999北京
    唐应吾,1975,弹性波在沉积物中的传播:地球物理学报,第18卷,第4期,269-278页。
    唐应吾,1982,地震波在湿颗粒介质中的传播:地球物理学报,第25卷,第4期,314-23页。
    铁道部第一勘测设计院编《工程地质实验手册》.中国铁道出版社,1982北京
    王立中,吴世明,1995,波在饱和土中传播的若干问题:岩土工程学报.第17卷,第6期,96-102页。
    王立中,1997,关于“波在饱和土中传播的若干问题”一文讨论的答复:岩土工程学报,第19卷,第1期,106-108页,
    王明洋,钱七虎,1995,爆炸波作用下准饱和土的动力模型研究:岩土工程学报,第17卷,第6期,103-110页。
    王永炎 林在贯《中国黄土的结构特征及物理力学性质》科学出版社 1990 北京
    
    
    吴东胜等,1995,应用地震波速预测砂岩孔隙率,石油与天然气地质,16(3)291—293
    吴世明 陈龙珠,1989,饱和土体的泊松比及含气量对它的影响,水利学报,(1),37—43
    吴世明著,土介质中的波,科学出版社,1997年,北京
    谢定义著 《土动力学》西安交通大学出版社1988西安
    徐长节,非饱和土及准饱和土中波的传播,浙江大学博士学位论文,1997年12月杭州
    徐永福,刘松玉编著,非饱和土强度理论及其工程应用,东南大学出版社,1999年,南京
    杨桂通著,土动力学,中国建材工业出版社,2000年,北京
    袁中夏,1999,干密度对击实黄土动力特性及其抗震性能的影响,中国地震局兰州地震研究所硕士论文
    俞茂宏著 《双剪理论及其应用》科学出版社,1998北京
    张炜 张苏民 1990非饱和黄土的结构强度特性,水文地质工程地质,第四期总114期22—25
    张炜 张苏民,1995,我国黄土工程性质研究的发展,岩土工程学报,第17卷第6期80-88页
    张振中 主编 《黄土地震灾害预测》地震出版社,1999北京
    张兆顺 崔桂香 编著 《流体力学》 清华大学出版社,1999北京
    郑晏武著 《中国黄土的湿陷性》,地质出版社,1982年6月北京
    钟晓雄,袁建新,1992,散粒体的微观组构与本构关系:岩土工程学报,第14卷,增刊,39—48页。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700