用户名: 密码: 验证码:
基于肌肉性静水骨骼原理的机器乌贼原型关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地球资源日趋紧张的21世纪,海洋资源日益凸显战略意义。水下机器人(Unmanned underwater vehicle,UUV)是人类探索、开发和保护海洋资源的重要工具。螺旋桨推进的水下机器人存在流体推进效率低、动作不灵活、噪音大、桨叶会伤害海洋动物等问题。针对这些问题,游动仿生水下机器人如机器鱼应运而生,但它们耐压能力较低。软体动物乌贼凭借喷射和鳍波动的高效、灵活的复合游动方式,成功地与鱼类竞技海洋;它们依靠肌肉性静水骨骼,活跃于从上千米的深海至海平面的广阔海域。肌肉性静水骨骼是由在三维方向上紧密排列的肌肉纤维和结缔组织纤维构成,没有硬骨骼,但能支撑身体、产生动作和输出力,具有不可压缩、耐高压等性质。本文提出的形状记忆合金(Shape memory alloy,SMA)驱动的机器乌贼原型,模拟乌贼的复合游动方式,其仿外套膜、仿乌贼鳍、仿进水膜、腕鳍等准柔性动作结构基于肌肉性静水骨骼原理,具有耐高压的能力。
     对乌贼的游动机理和外套膜、鳍这两个乌贼游动关键部件的肌肉性静水骨骼结构进行了研究。通过解剖太平洋褶柔鱼(短鳍乌贼),获得了乌贼身体结构参数。基于肌肉性静水骨骼原理,对简化鳍横截面和外套膜段横截面进行了建模和分析。乌贼在低速游动时,喷射和鳍波动频率均不高,与SMA的动作频率相接近;乌贼鳍横肌应变很小,外套膜外径应变在-8%左右,与SMA的最大应变相接近。这些发现为研制机器乌贼原型提供了可能。该原型的动作结构采用动物的弹性机制来提高能量利用率。
     身体和/或尾鳍模式(Body and/or caudal fin propulsion,BCF)和鳐科模式推进的动物的游动动作较为复杂,模拟较为困难,但若将前者沿着身体方向、后者沿着鳍宽度方向划分成足够多的小单元,将每个单元的动作简化为向左右柔性弯曲,则通过将这些弯曲单元串联或并联组合即能重现相应的游动动作。基于这一设想,研制了模拟乌贼鳍结构的柔性鳍单元,SMA丝模拟横肌,在动作过程中模拟动物的弹性机制存储和释放弹性能,减小能量消耗。结合SMA的Brinson本构模型建立了柔性鳍单元的弯曲动作理论模型。实验表明柔性鳍单元可在空气中和水中实现柔性弯曲和回复的动作。柔性鳍单元具有弯曲角度大、结构简单、质量小、输出力大、动作无声和模块化等优点。
     通过研制采用一个柔性鳍单元的尾鳍推进微型机器鱼,验证了柔性鳍单元用于水下推进的可行性。该机器鱼长146 mm(采用仿鲫鱼型尾鳍时),质量约30 g,实现了仿亚鲹科模式直线游动和仿鲹科模式游动,最大游速112 mm/s,最小转弯半径136 mm。而后利用柔性鳍单元研制了仿乌贼鳍推进器、仿进水膜和腕鳍等机器乌贼原型的关键结构。仿乌贼鳍推进器采用10个双面柔性鳍单元,模拟短鳍乌贼鳍的摆动,实现了40 mm/s的最大游动速度和22°/s的最大打转游动速度。
     机器乌贼原型的脉冲喷射推进由仿外套膜推进器来实现。仿外套膜采用SMA丝模拟乌贼的环状肌,可实现主动收缩、靠弹性能回复的动作。SMA弹簧驱动的单次脉冲喷射推进器验证了喷射推进的可行性。设计了平行布丝和垂直布丝两种SMA丝驱动的仿外套膜结构,并结合Brinson本构模型建立了动作理论模型。应用PWM波可提高仿外套膜动作频率,并减小能量消耗。研制的5个仿外套膜结构都达到了-6%以上的最大内侧应变。研制了仿外套膜推进器,其中采用平行布丝结构的仿外套膜质量799 g。实验中该推进器的最大外径应变为-8.8%,且在0.6-1.2 s内平均速度为56 mm/s。
     本文对机器乌贼原型的关键技术进行了研究,研制了仿乌贼鳍推进器、仿进水膜、腕鳍和仿外套膜推进器,为机器乌贼的实用化奠定了基础。
Ocean resources are of more strategic importance as the earth resources are drying up in the 21st century. Unmanned underwater vehicles (UUVs) are the important devices to explore, to mine and to protect the ocean resources. The screw propelled UUVs suffer from low propulsive efficiency, awkward movements, noise, and the danger of screws to marine life, etc. As to these problems, biomimetic swimming robots, such as robot fish, are invented. However, they are of low pressure resistance capability. Squid/cuttlefish, the soft bodied animals, compete with fish successfully by their high-efficient, versatile compound swimming of jetting and fin undulating. Furthermore, due to muscular hydrostat, they can migrate from the surface to a depth of over 1000 m. Muscular hydrostat, a 3D array of closely packed fibers of muscles and connective tissues without rigid skeleton, can support body, generate movements and forces, and it is incompressible and pressure resistant. A shape memory alloy (SMA) actuated robot squid prototype mimicking the compound swimming of squid is proposed. Its quasi-soft movement structures, such as biomimetic mantle, biomimetic squid fin, biomimetic inlet and arm-fin, are based on the principle of muscular hydrostat to be high pressure resistant.
     Squid swimming mechanisms, and the musculatures of mantle and fin, the two key parts for swimming, are investigated. Structure specifications were obtained by the anatomy of the short-fin squids, Todarodes pacificus. Based on the principle of muscular hydrostat, simplified transverse sections models of fin and mantle segment are established and analyzed. During slow swimming of squid, the low frequency of either jetting or fin undulating is close to the frequency of SMA, while the strain of transverse muscles of squid fin is small and the mantle outer strain of about -8% is close to the maximum strain of SMA. These findss ensure the development of robot squid prototype. The movement structures of the prototype employ the elastic mechanism of animals to improve efficiency.
     The swimming movements of body and/or caudal fin propulsion (BCF) and rajiform swimmers are too complicated to be mimicked. If BCF movements are divided along the body, while rajiform movements along the fin width into enough units, of which the movement is simplified into flexible bending left and right, the corresponding movements can be imitated by integrating the bending units connected in series or in parallel. According to this hypothesis, flexible fin unit mimicking the squid fin structure was developed. SMA wires serve as“transverse muscles”. Elastic mechanism of animals is incorporated into the movements to reduce energy consumption by storing and relaxing elastic energy. A bending model is established by combining Brinson constitutive model of SMA. Experimental results show that the flexible fin unit can bend and return flexibly both in air and in water. The flexible fin unit has the merits of large bending, simple structure, light weight, large force, silent actuation and modularization.
     The feasibility of the flexible fin unit for underwater propulsion is validated by a caudal-fin propelled micro robot fish employing a flexible fin unit. The robot fish, 146 mm in length (with a carp-like caudal fin) and about 30 g in weight, realized subcarangiform- and carangiform-like swimming, and the maximum speed was 112 mm/s while the minimum turning radius 136 mm. A squid-fin like propeller, a biomimetic inlet and an arm-fin were developed. The squid fin-like propeller mimicks the fin oscillation of shotfin squid by employing 10 dual-face flexible fin units. The maximum speed was 40 mm/s and the maximum turning speed 22°/s.
     The jetting of robot squid prototype is realized by mantle-like propeller. The biomimetic mantle, employing SMA wires as“circular muscles”, contracts actively and inflates by elastic energy. The feasibility of jet propulsion is validated by an SMA spring-actuated single jet propeller. Two kinds of SMA wire-actuated biomimetic mantle, including parallel and vertical setup, are designed. A movement model is established by combining Brinson constitutive model. PWM pulses can be adopted to improve the contraction frequency and to reduce energy consumption. The maximum inner strains of the 5 boimimetic mantle structures developed all exceeded -6%. A mantle-like propeller, with a 799 g biomimetic mantle in parallel setup, was developed. In the experiments, the propeller reached a maximum strain of outside diameter of -8.8% and an average speed of 56 mm/s during 0.6-1.2 s.
     Key technologies of robot squid prototype are studied, and squid fin-like propeller, biomimetic inlet, arm-fin and mantle-like propeller were developed, which lay the foundation of the practical applications of robot squid.
引文
1彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004,(4):44~47
    2 M. S. Triantafyllou , G. S. Triantafyllou . An Efficient Swimming Machine.Scientific American,1995,272(3):64~70
    3童秉纲.鱼类波状游动的推进机制.力学与实践,2000,22(3):69~74
    4 J. Ayers,J. Witting,C. Wilbur.Biomimetic Robots for Shallow Water Mine Countermeasures . Autonomous Vehicles in Mine Countermeasures Symposium,Monterey,USA,2000,Naval Postgraduate School:1~16
    5 K. Bolstad.Deep-Sea Cephalopods:An Introduction and Overview.http:// www.tonmo.com/science/public/deepseacephs.php
    6 M. Sfakiotakis,D. M. Lane,J. B. C. Davies.Review of Fish Swimming Modes for Aquatic Locomotion.IEEE Journal of Oceanic Engineering,1999,24(2):237~252
    7陈政宏,李志扬.浅谈流体中生物的推进方式.http://www.sciscape.org/ articles/fish_swim/index.html
    8钱俊德.动物的运动.清华大学出版社,2000:15~34
    9 C. M. Breder.The Locomotion of Fishes.Zoologica,1926,4:159~256
    10王光明,沈林成.水下仿鱼推进器的分析.兵工自动化,2006,25(5):7~9
    11 T. Minamino,K. Imada,K. Namba.Molecular Motors of the Bacterial Flagella.Current Opinion in Structural Biology,2008,18:693~701
    12鞭毛运动.http://baike.baidu.com/view/2079572.htm
    13细菌的运动.http://qstian.blog.sohu.com/39479804.html
    14 P. F. Linden,J. S. Turner.‘Optimal’Vortex Rings and Aquatic Propulsion Mechanisms.Proceedings of the Royal Society of London Ser. B,2004,271(1539):647~653
    15 K. Larsen,H. Perry.Sea Jellies of the Mississippi Sound.http://www.usm. edu/gcrl/fisheries_center/Sea_Jellies_MS_Sound.pdf?PHPSESSID=8203ca2239246264b1ab65630f8bdca7
    16 RoboTuna.http://web.mit.edu/towtank/www/Tuna/tuna.html
    17 H. Hu , J. Liu , I. Dukes , et al. . Design of 3D Swim Patterns for Autonomous Robotic Fish.Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2006,IEEE:2406~2411
    18 A. Rusu.An Aquarium with a Robot-Fish.http://news.softpedia.com/news/ an-aquarium-with-a-robot-fish-21695.shtml
    19梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨.机器人技术与应用,2003,(3):14~19
    20 Airacuda - the Remote Controlled,Pneumatically Driven Fish.http://www. festo.com/inetdomino/coorp_sites/en/f1b00561e66a68b7c12571b9002b67c3.htm
    21 Airacuda.http://www3.festo.com/__c1256d56002e7b89.nsf/html/airacuda_en.pdf/$file/airacuda_en.pdf
    22 Y. Bar-Cohen.Biologically Inspired Robots As Artificial Inspectors - Science Fiction and Engineering Reality.16th World Conference on NDT,Montial,Canada,2004
    23 Y. Bar-Cohen.Electroactive Polymers (EAP) As Actuators for Potential Future Planetary Mechanisms . Proceedings of the 2004 NASA/Dod Conference on Evolvable Hardware (EH’04),Seattle,USA,2004,IEEE:1~9
    24 B. Kim,D.-H. Kim,J. Jung,et al..A Biomimetic Undulatory Tadpole Robot using Ionic Polymer–Metal Composite Actuators.Smart Materials and Structures,2005,14(6):1579~1585
    25 X. Tan,D. Kim,N. Usher,et al..An Autonomous Robotic Fish for Mobile Sensing.Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2006,IEEE:5424~5429
    26 J. Ayers,C. Wilbur,C. Olcott.Lamprey Robots.Proceedings of the International Symposium on Aqua Biomechanisms , Hiratsuka , Japan ,2000,Tokai University:1~6
    27 A. Suleman,C. Crawford.Design and Testing of a Biomimetic Tuna using Shape Memory Alloy Induced Propulsion . Computers and Structures ,2008,86:491~499
    28 N. Shinjo,G. W. Swain.Use of a Shape Memory Alloy for the Design of an Oscillatory Propulsion System. IEEE Journal of Oceanic Engineering,2004,29(3):750~755
    29梁建宏,邹丹,王松,等.SPC-II机器鱼平台及其自主航行实验.北京航空航天大学学报,2005,31(7):709~713
    30文力,梁建宏,谢成荫,等.SPC-3 UUV仿生机器鱼及其长航时实验.机器人技术与应用,2007,(4):33~36
    31成巍.仿生水下机器人仿真与控制技术研究.哈尔滨工程大学博士学位论文,2004:21~22
    32 X. F. Ye,B. F. Gao,S. X. Guo,et al..Development of ICPF Actuated Underwater Microrobots . International Journal of Automation and Computing,2006,3(4):382~391
    33王宏,姚熊亮,戴邵仕.基于SMA的关节驱动器的力学分析及控制.传感器与微系统,2007,26(2):28~30
    34张代兵.波动鳍仿生水下推进器及其控制方法研究.国防科学技术大学博士学位论文,2007:9
    35仿生机器鱼.http://firobot.buaa.edu.cn/research/fishrobot.htm
    36 C. Zhou,M. Tan,N. Gu,et al..The Design and Implementation of a Biomimetic Robot Fish . International Journal of Advanced Robotic Systems,2008,5(2):185~192
    37朱嘉翔,竺长安,王明艳,等.仿鲹科类机器鱼的研制与实验.机械研究与应用,2005,18(2):24~31
    38俞经虎,竺长安,程刚,等.弹性装置提高机器鱼推进效率的研究.机器人,2004,26(5):416~420,438
    39章永华,马记,何建慧,等.基于人工肌肉的仿生机器鱼关节机构设计与力学分析.机器人,2006,28(1):40~44
    40章永华,何建慧,吴月华,等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析.机器人,2006,28(4):367~373
    41张振山,王志东,李瑞宏,等.仿胸鳍/尾鳍推进水下航行器方案设计与模型试验.江苏科技大学学报(自然科学版),2006,20(6):1~4
    42赵伟明.仿鱼水下机器人运动学基础理论分析及实验研究.哈尔滨工业大学硕士学位论文,2003:31~32
    43王为.仿鲹科加新月型尾鳍仿生机器鱼的研制.哈尔滨工业大学硕士学位论文,2005:29
    44戴坡.仿生机器鱼的控制系统设计与实验研究.哈尔滨工业大学硕士学位论文,2006:47
    45刘英想,刘军考,陈维山,等.新型两关节机器鱼的研制及实验研究.船舶工程,2008,39(4):28~31
    46 A. Punning,M. anton,M. Kruusmaa,et al..A Biologically Inspired Ray-Like Underwater Robot with Electroactive Polymer Pectoral Fins.Proceeding of the International IEEE Conference on Mechatronics and Robotics 2004 (Mechrob'04),Aachen,Germany,2004,IEEE:241 ~ 245
    47 K. Takagi,M. Yamamura,Z. W. Luo,et al..Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles.Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2006,IEEE:1861~1866
    48 K. H. Low,A. Willy.Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins . IEEE International Conference on Mechatronics & Automation , Niagara Falls , Canada , 2005 , IEEE :958~963
    49 A. Willy,K. H. Low.Initial Experimental Investigation of Undulating Fin.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,Edmonton,Canada,2005,IEEE:1600~1605
    50 B. Christensen.Robot Swims Like a Squid.http://www.livescience.com/ technology/061113_technovelgy.html
    51 Vishal . Squid Robot Underwater Inspector Armed with Biomimetic Propulsion Technique . http://www.robotster.org/entry/squid-robot-underwater-inspector-has-biomimetic-propulsion-technique/
    52 Fluidic Muscles Make Robot Mimic Manta Ray.http://www.engineeringtalk. com/news/fes/fes242.html
    53 J. Gao,S. Bi,Y. Xu,et al..Development and Design of a Robotic Manta Ray Featuring Flexible Pectoral Fins . Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,Sanya,China,2007,IEEE:519~523
    54 Y. Xu,G. Zong,S. Bi,et al..Initial Development of a Flapping Propelled Unmanned Underwater Vehicle (UUV) . Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,Sanya,China,2007,IEEE:524~529
    55郑精辉.基于波动机理的仿生鱼探测器研究.浙江大学硕士学位论文,2007:64~65
    56章永华,何建慧,张世武,等.仿生鱼鳍中形状记忆合金驱动器的水下变形精度分析.机器人,2007,29(4):320~325
    57 Y. Zhang,J. He,J. Yang,et al..A Computational Fluid Dynamics (CFD) analysis of an Undulatory Mechanical Fin Driven By Shape Memory Alloy.International Journal of Automation and Computing,2006,(4):374~381
    58杨少波,韩小云,卞文杰,等.胸鳍摆动式鱼类的泳动仿真.计算机辅助工程,2006,15(增刊):109~112
    59杨少波,韩小云,张代兵,等.一种新型的胸鳍摆动模式推进机器鱼设计与实现.机器人,2008,30(6):508~515
    60 M. A. Maciver,E. Fontaine,J. W. Burdick.Designing Future Underwater Vehicles:Principles and Mechanisms of the Weakly Electric Fish.IEEE Journal of Oceanic Engineering,2004,29(3):651~659
    61王光明,胡天江,李非,等.长背鳍波动推进游动研究.机械工程学报,2006,42(3):89~92
    62 T. Hu,L. Shen,P. Gong.CFD Validation of the Optimal Arrangement of the Propulsive Dorsal Fin of Gymnarchus Niloticus . Journal of Bionic Engineering,2006,3:139~146
    63 G. Wang,L. Shen,Y. Wu.Research on Swimming by Undulatory Long Dorsal Fin Propulsion.Front. Mech. Eng. China,2007,2(1):77~81
    64谢海斌,沈林成,张代兵.柔性长鳍波动推进动力学分析.力学与实践,2006,(4):14~19
    65张代兵,谢海斌,林龙信,等.柔性长鳍仿生水下推进器测控系统的设计与实现.计算机测量与控制,2007,15(2):205~207
    66 N. Kato . Median and Paired Fin Controllers for Biomimetic Marine Vehicles.Applied Mechanics Reviews,2005,58(4):239~252
    67 N. Kato.Control Performance in the Horizontal Plane of a Fish Robot with Mechanical Pectoral Fins.IEEE Journal of Oceanic Engineering,2000,25(1):121~129
    68 F. E. Fish,G. V. Lauder,R. Mittal,et al..Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics . Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology. Autonomous Undersea Systems Institute,Durham,USA,2003
    69 E. G. Drucker,G. V. Lauder.Wake Dynamics and Locomotor Function in Fishes : Interpreting Evolutionary Patterns in Pectoral Fin Design.Integrative and Comparative Biology,2002,42(5):997~1008
    70 E. G. Drucker,G. V. Lauder.Function of Pectoral Fins in Rainbow Trout:Behavioral Repertoire and Hydrodynamic forces . The Journal of Experimental Biology,2003,206(5):813~826
    71 C. D. Wilga,G. V. Lauder.Locomotion in Sturgeon:Function of the Pectoral Fins.The Journal of Experimental Biology,1999,202(18):2413–2432
    72 C. D. Wilga , G. V. Lauder . Three-Dimensional Kinematics and Wake Structure of the Pectoral Fins During Locomotion in Leopard Sharks Triakis Semifasciata . The Journal of Experimental Biology , 2000 , 203(15) :2261–2278
    73 C. D. Wilga,G. V. Lauder.Functional Morphology of the Pectoral Fins in Bamboo Sharks,Chiloscyllium Plagiosum:Benthic Vs. Pelagic Station-Holding.Journal of Morphology,2001,249(3):195–209
    74 G. V. Lauder,B. C. Jayne.Pectoral Fin Locomotion in Fishes:Testing Drag-Based Models using Three-Dimensional Kinematics . American Zoologist,1996,36(6):567~581
    75 T. E. Higham,B. Malas,B. C. Jayne,et al..Constraints on Starting and Stopping:Behavior Compensates for Reduced Pectoral Fin Area During Braking of the Bluegill Sunfish Lepomis Macrochirus . The Journal of Experimental Biology,2005,208(24):4735~4746
    76 G. V. Lauder,P. G. Madden,R. Mittal,et al..Locomotion with Flexible Propulsors : I. Experimental analysis of Pectoral Fin Swimming in Sunfish.Bioinspiration & Biomimetics,2006,1:S25~S34
    77 S. Alben,P. G. Madden,G. V. Lauder.The Mechanics of Active Fin-Shape Control in Ray-Finned Fishes.Journal of the Royal Society Interface,2007,4(13):243~256
    78 G. V. Lauder . How Fishes Swim : Flexible Fin Thrusters As an EAP Platform.Proceedings of SPIE,2007,6524:652402
    79 G. V. Lauder,E. J. Anderson,J. Tangorra,et al..Fish Biorobotics:Kinematics and Hydrodynamics of Self-Propulsion . The Journal of Experimental Biology,2007,210(16):2767~2780
    80 M. Bozkurttas,H. Dong,R. Mittal,et al..CFD Based analysis and Design of Biomimetic Flexible Propulsors for Autonomous Underwater Vehicles.37th AIAA Fluid Dynamics Conference and Exhibit,Miami,Florida,2007,AIAA:4213
    81 J. L. Tangorra,G. V. Lauder,P. G. Madden,et al..A Biorobotic Flapping Fin for Propulsion and Maneuvering.2008 IEEE International Conference on Robotics and Automation ,Pasadena,California,USA,2008,IEEE:700~705
    82 G. V. Lauder,P. Madden,I. Hunter,et al..Design and Performance of a Fish Fin-Like Propulsor for Auvs . Proceedings of 14th International Symposium on Unmanned Untethered Submersible Technology (UUST),Durham,New Hampshire,2005,Autonomous Undersea Systems Institute
    83 Y. S. Song,M. Sitti.Surface-Tension-Driven Biologically Inspired Water Strider Robots:theory and Experiments.IEEE Transactions on Robotics,2007,23(3):578~589
    84 Y. S. Song,S. H. Suhr,M. Sitti.Modeling of the Supporting Legs for Designing Biomimetic Water Strider Robots.Proceedings of the 2006 IEEE International Conference on Robotics and Automation ,Orlando,Florida,2006,IEEE:2303~2310
    85 S. H. Suhr,Y. S. Song,S. J. Lee,et al..Biologically Inspired Miniature Water Strider Robot.Proceedings of the Robotics:Science and Systems I,Boston,USA,2005:319~325
    86陈宏,竺长安,尹协振.机械胸鳍式仿生水下机器人的动力学特性研究.机械设计,2006,23(10):24~27
    87苏玉民,曹庆明,赖伟成.仿胸鳍推进系统的水动力分析.哈尔滨工程大学学报,2007,28(7):727~733
    88 B. Behkam , M. Sitti . E. Coli Inspired Propulsion for Swimming Microrobots . Proceedings of 2004 ASME International Mechanical Engineering Conference and Exposition , Anaheim , California , USA ,2004,ASME
    89 B. Behkam,M. Sitti.Modeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots . Proceeding of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Monterey,USA,2005,IEEE:37~42
    90 B. Behkam,M. Sitti.Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots.Transactions of the ASME Journal of Dynamic Systems Measurement and Control,2006,128(1):36~43
    91陈柏,顾大强,潘双夏,等.仿蝌蚪与螺旋的泳动机器人系统的设计.机械工程学报,2005,41(10):88~92
    92 D. S. Kang,J. M. Anderson,P. A. Debitetto.Draper Unmanned Vehicle System.Robotica,2000,18(3):263~272
    93 J. M. Anderson,N. K. Chhabra.Maneuvering and Stability Performance of a Robotic Tuna . Integrative and Comparative Biology , 2002 , 42(1) :118~126
    94 S. Licht,V. Polidoro,M. Flores,et al..Design and Projected Performance of a Flapping Foil AUV.IEEE Journal of Oceanic Engineering,2004,29(3):786~794
    95 J. Stanway.The Turtle and the Robot:An Old Sea Turtle Teaches a Young Engineer a Thing Or Two About Swimming.Oceanus Magazine,2008,47(1):22~25
    96 K. H. Low,C. Zhou,T. W. Ong,et al..Modular Design and Initial Gait Study of an Amphibian Robotic Turtle.Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,Sanya,China,2007,IEEE:535~540
    97 D. Chu,X. Liu,M. Zhang.Research on Turtle Hydrofoil Motion Principle and Bionics . Proceedings of the IEEE International Conference on Automation and Logistics,Jinan,China,2007,IEEE:2373~2378
    98 M. Zhang,X. Liu,D. Chu,et al..The Principle of Turtle Motion and Bio-Mechanism of Its Four Limbs Research.Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application,Wuhan,China,2008,IEEE:573~578
    99 Polymer actuator.http://altair.chonnam.ac.kr/%7Eikoh/new%20home/pa.html
    100 S. Guo,L. Shi,X. Ye,et al..A New Jellyfish Type of Underwater Microrobot. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,Harbin,China,2007,IEEE:509~514
    101 Y. Yang , X. Ye , S. Guo . A New Type of Jellyfish-Like Microrobot. Proceedings of the 2007 IEEE International Conference on Integration Technology,Shenzhen,China,2007,IEEE:673~678
    102 The Skeleton and Vertebrate Muscle System . http://www.newi.ac.uk/ buckleyc/biology/skeleton.htm
    103 R. J. Baskin.Changes of Volume in Striated Muscle.American Zoologist,1967,7(3):593~601
    104 C. Alscher , W.-J. Beyn . Simulating the Motion of the Leech : a Biomechanical Application of Daes . Numerical Algorithms , 1998 ,19(1~4):1~12
    105 B. A. Skierczynski,R. J. A. Wilson,W. B. Kristan Jr,et al..A Model of the Hydrostatic Skeleton of the Leech.Journal of Theoretical Biology,1996,181(4):329~342
    106 W. M. Kier,K. K. Smith.Tongues,Tentacles and Trunks the Biomechanics of Movement in Muscular-Hydrostats.Zoological Journal of the Linnean Society,1985,83:307~324
    107 W. M. Kier , J. T. Thompson . Muscle Arrangement , Function and Specialization in Recent Coleoids . Berliner Pal?obiologische Abhandlungen ,2003,3:141~162
    108 W. M. Kier,J. L. V. Leeuwen.A Kinematic analysis of Tentacle Extension in the Squid Loligo Pealei.The Journal of Experimental Biology,1997,200(1):41~53
    109 W. M. Kier.Electromyography of the Fin Musculature of the Cuttlefish Sepia Officinalis.The Journal of Experimental Biology,1989,143(1):17~31
    110 W. M. Kier.The Fin Musculature of Cuttlefish and Squid (Mollusca,Cephalopoda) Morphology and Mechanics.Journal of Zoology (London),1989,217:23~38
    111 P. S. Macgillivray,E. J. Anderson,G. M. Wright,et al..Structure and Mechanics of the Squid Mantle.The Journal of Experimental Biology ,1999,202(6):683~695
    112木村仁,梶村文裕,丸山大輔,等.水力学的骨格を用いた完全密閉型柔軟移動ロボットの開発.第23回日本ロボット学会学術講演会,明石町,日本,2005
    113 H. Kimura,F. Kajimura,D. Maruyama,et al..Flexible Hermetically-Sealed Mobile Robot for Narrow Spaces using Hydrostatic Skeleton Driving Mechanism.Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2006,IEEE:4006~4011
    114 W. Mcmahan,V. Chitrakaran,M. Csencsits,et al..Field Trials and Testing of the Octarm Continuum Manipulator . Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,Florida,USA,2006,IEEE:2336~2341
    115 I. D. Walker,D. M. Dawson,T. Flash,et al..Continuum Robot Arms Inspired By Cephalopods.Unmanned Ground Vehicle Technology VII,Proceedings of SPIE Vol. 5804,Bellingham,USA,2005,SPIE:303~314
    116 Fishing Leeches.http://www.biopharm-leeches.com/info_fishing.htm
    117 T. Naganuma,M. Kyo,T. Ueki,et al..A New,Automatic Hydrothermal Fluid Sampler using a Shape-Memory Alloy.Journal of Oceanography,1998,54(3):541~246
    118 L. DaróCzi,D. L. Bekey,C. Lexcellent,et al..Effect of Hydrostatic Pressure on the Martensitic Transformation in Near Equiatomic Ti-Ni Alloys.Philosophical Magazine B,2002,82(1):105~120
    119杨杰,吴月华.形状记忆合金及其应用.中国科学技术大学出版社,1993:1 109
    120 T. L. Turner.Thermomechanical Response of Shape Memory Alloy Hybrid Composites.NASA-2001-Tm210656,2001
    121李明东,马培荪,马建旭,等.形状记忆合金丝驱动的仿生转动关节臂.上海交通大学学报,1999,33(10):1284~1287
    122 K. Ikuta . Micro/Miniature Shape Memory Alloy Actuator . IEEE International Conference on Robotics and Automation,Cincinnati,USA,1990,IEEE:2156~2161
    123 B. A. Davis.Investigation of the thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams.NASA/CR-2005-213929,2005
    124 L. C. Brinson,A. Bekker,S. Hwang.Deformation of Shape Memory Alloys Due to thermo-Induced Transformation.Journal of Intelligent Material Systems and Structures,1996,7(1):97~107
    125 A. Bekker , L. C. Brinson . Phase Diagram Based Description of the Hysteresis Behavior of Shape Memory Alloys.Acta Materialia,1998,46(10):3649~3665
    126朱祎国,吕和祥,杨大智.形状记忆合金的本构模型.材料研究学报,2001,15(3):263~268
    127 L. C. Brinson.One-Dimensional Constitutive Behavior of Shape MemoryAlloys:Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Varaible.Journal of Intelligent Material Systems and Structures,1993,4(2):229~242
    128 L. C. Brinson,M. S. Huang,C. Boller,et al..Analytical Treatment of Controlled Beam Deflections using SMA Wires . Journal of Intelligent Material Systems and Structures,1996,8:12~25
    129 A. J. Zak,M. P. Cartmell,W. M. Ostachowicz,et al..One-Dimensional Shape Memory Alloy Models for Use with Reinforced Composite Structures.Smart Materials and Structures,2003,12(3):338–346
    130 G. Song,V. Chaudhry,C. Batur.Precision Tracking Control of Shape Memory Alloy Actuators using Neural Networks and a Sliding-Mode Based Robust Controller.Smart Materials and Structures,2003,12(2):223~231
    131 J. A. Balta , F. Bosia , V. Michaud , et al. . Smart Composites with Embedded Shape Memory Alloy Actuators and Fibre Bragg Grating Sensors:Activation and Control.Smart Materials and Structures,2005,14(4):457~465
    132 Z. G. Wei, R. Sandstr?m, S. Miyazaki. Shape-Memory Materials and Hybrid Composites for Smart Systems Part I Shape-Memory Materials.Journal of Materials Science,1998,33(15):3743~3762
    133 Furukawa NT Alloys . Shape Memory Alloys & Super-Elastic Alloys.http://www.fitec.co.jp/ftm/english/nt-e/product.htm
    134 F. T. Calkins,J. H. Mabe,G. W. Butler.Boeing’s Variable Geometry Chevron:Morphing Aerospace Structures for Jet Noise Reduction.SPIE Vol. 6171. 13th annual International Symposium on Smart Structures and Materials,San Diego,USA,2006:199~210
    135 X. Gao, D. Burton, T. L. Turner, et al.. Finite Element analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites.Journal of Engineering Materials and Technology,2006,128(3):285~293
    136 G. Song,N. Ma.Robust Control of a Shape Memory Alloy Wire Actuated Flap.Smart Materials and Structures,2007,16(6):N51–N57
    137 B. Selden , K. Cho , H. H. Asada . Segmented Shape Memory Alloy Actuators using Hysteresis Loop Control.Smart Materials and Structures,2006,15(2):642~652
    138 K. Delaurentis,C. Mavroidis.Mechanical Design of a Shape Memory AlloyActuated Prosthetic Hand.Technol. Health Care,2002,10(2):91~106
    139 R. Vaidyanathan,H. J. Chiel,R. D. Quinn.A Hydrostatic Robot for Marine Applications.Robotics and Autonomous Systems,2000,30(3):103~113
    140李明东.形状记忆合金驱动器及在微小型移动机器人中的应用研究.上海交通大学博士学位论文,2000:99~101
    141祝捷,曹志奎,马培荪.SMA驱动的微型双三足步行机器人作全方位运动的研究.传动技术,2002,16(4):11~15
    142祝捷,曹志奎,马培荪.关于微型六足机器人躯体柔性化的研究.机械与电子,2003,(1):29~31
    143胡昶.基于形状记忆合金的四足步行机器人.机器人技术与应用,2002,(1):29~31
    144 M. Siripong , S. Fredholm , Q. A. Nguyen , et al. . A Cost-Effective Fabrication Method for Ionic Polymer-Metal Composites.Materials Research Society Symposium Proceedings,2006,889:139~144
    145 W. Zhang,S. Guo,K. Asaka.Development of an Underwater Biomimetic Microrobot with Compact Structure and Flexible Locomotion.Microsystem Technologies,2007,13(8~10):883–890
    146 X. Ye,B. Gao,S. Guo,et al..Development of ICPF Actuated Underwater Microrobots.International Journal of Automation and Computing,2006,3(4):382~391
    147 M. Otake,Y. Kagami,M. Inaba,et al..Behavior of a Mollusk-Type Robot Made of Electro-Active Polymer Gel under Spatially Varying Electric Fields.Intelligent Autonomous Systems 6,2000:686~691
    148 M. Otake,Y. Kagami,M. Inaba,et al..Dynamics of Gel Robots Made of Electro-Active Polymer Gel.Proceedings of the 2001 IEEE International Conference on Robotics 8 Automation, Seoul, Korea, 2001, IEEE:1457~1462
    149 M. Otake,Y. Kagami,Y. Kuniyoshi,et al..Inverse Dynamics of Gel Robots Made of Electro-Active Polymer Gel.Proceedings of the 2003 IEEE International Conference on Robotics & Automation , Taipei , China ,2003,IEEE:2299~2304
    150卢普生.高聚物凝胶驱动器及其在机器人中的应用.上海大学博士学位论文,2001:72~99
    151 J.-A. Meyer,A. Guillot.Handbook of Robotics - Chapter 61:Biologically-Inspired Robots.http://83.138.128.165/ves_images/ FR_pdf_1_171. pdf
    152 X. Deng,L. Schenato,W. C. Wu,et al..Flapping Flight for Biomimetic Robotic Insects : Part I - System Modeling . IEEE Transactions on Robotics,2006,22(4):776~788
    153 L. Schenato,D. Campolo,S. Sastry.Controllability Issues in Flapping Flight for Biomimetic Micro Aerial Vehicles (MAVs).Proceedings of the 42nd IEEE Conference on Decision and Control,Maul,USA,2003,IEEE:6441~6447
    154 R. J. Wood , S. Avadhanula , M. Menon , et al. . Microrobotics using Composite Materials : the Micromechanical Flying Insect Thorax.Proceedings of the 2003 IEEE International Conference on Robotics &Automation,Taipei,China,2003,IEEE:1842~1849
    155 M. Sitti.PZT Actuated Four-Bar Mechanism with Two Flexible Links for Micromechanical Flying Insect Thorax . Proceedings of the 2001 IEEE International Conference on Robotics & Automation,Seoul,Korea,2001,IEEE:3893~ 3900
    156王姝歆,陈国平,周建华,等.压电双晶片驱动的仿生柔性扑翼机构研究.光学精密工程,2006,14(4):617~622
    157 S. Yan,F. Zhang,Z. Qin,et al..A 3-DOFs Mobile Robot Driven by a Piezoelectric Actuator. Smart Materials and Structures, 2006, 15(1):N7~N13
    158 R. Kornbluh,R. Pelrine,Q. Pei,et al..Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers.Proceeding of SPIE Smart Structure and Materials 2000:Electriactive Polymer Actuators and Devices (EAPAD),Vol. 3987,San Diego,USA,2000,SPIE:51~64
    159追寻深海巨型乌贼(二) . http://academy2003.cpst.net.cn/popul/front/ ocean/artic/40210221303.html
    160董正之.中国动物志软体动物门头足纲.科学出版社,1988:14
    161 56ksquid2.mov.http://www.azuloceano.com/video/56ksquid2.mov
    162 C. E. Jordan.A Model of Rapid-Start Swimming at Intermediate Reynolds Number:Undulatory Locomotion in the Chaetognath Sagitta Elegans.The Journal of Experimental Biology,1992,163(1):119~137
    163 E. J. Anderson,M. E. Demont.The Mechanics of Locomotion in the Squid Loligo Pealei:Locomotory Function and Unsteady Hydrodynamics of the Jetand Intramantle Pressure.The Journal of Experimental Biology,2000,203(18):2851~2863
    164 I. K. Bartol , M. R. Patterson , R. Mann . Swimming Mechanics and Behavior of the Shallow-Water Brief Squid Lolliguncula Brevis.The Journal of Experimental Biology,2001,204(21):3655~3682
    165 W. Johnson,P. D. Soden,E. R. Trueman.A Study in Jet Propulsion:An analysis of the Motion of the Squid , Loligo Vulgaris . Journal of Experimental Biology,1972,56(1):155~165
    166 H. Neumeister,B. Ripley,T. Preuss,et al..Effects of Temperature on Escape Jetting in the Squid Loligo Opalescens.The Journal of Experimental Biology,2000,203(3):547~557
    167 J. T. Thompson,W. M. Kier.Ontogenetic Changes in Mantle Kinematics During Escape-Jet Locomotion in the Oval Squid,Sepioteuthis Lessoniana Lesson,1830.The Biological Bulletin,2001,201(2):154~166
    168吴梵,陈昕.喷水推进装置及其在舰艇上的应用.海军工程大学学报,2003,15(6):44~48
    169 M. Krieg,C. Coley,C. Hart,et al..Synthetic Jet Thrust Optimization for Application in Underwater Vehicles . Proceeding of 14th International Symposium on Unmanned Untethered Submersible Technology (UUST),Durham,USA,2005
    170 K. Mohseni.Zero-Mass Pulsatile Jets for Unmanned Underwater Vehicle Maneuvering.AIAA 3rd "Unmanned Unlimited" Technical Conference,Workshop and Exhibit,Chicago,USA,AIAA,2004
    171 E. J. Anderson,M. A. Grosenbaugh.Jet Flow in Steadily Swimming Adult Squid.The Journal of Experimental Biology ,2005,208(6):1125~1146
    172 J. E. Colgate,K. M. Lynch.Mechanics and Control of Swimming:a Review.IEEE Journal of Oceanic Engineering,2004,29(3):660~673
    173 Unknown Deep-sea Squid Jetting.http://www.mbari.org/expeditions/Hawaii/ Leg4/may16images/squid%20jetting.mov
    174 Close-up View of the Squid Swimming.http://www.mbari.org/news/news_ releases/2001/dec21_clague/Squid_closeup.mov
    175 F. E. Fish.Structure and Mechanics of Nonpiscine Control Surfaces.IEEE Journal of Oceanic Engineering,2004,29(3):605~621
    176 L. D. Zeidberg.Allometry Measurements From in Situ Video Recordings CanDetermine the Size and Swimming Speeds of Juvenile and Adult Squid Loligo Opalescens (Cephalopoda : Myopsida) . The Journal of Experimental Biology,2004,207(24):4195~4203
    177 J. M. Brian,N. A. Curtin,Q. Bone.Contractile Properties of Obliquely Striated Muscle From the Mantle of Squid (Alloteuthis Subulata) and Cuttlefish (Sepia Officinalis).The Journal of Experimental Biology,1997,200(18):2425~2436
    178 H. Itoh,Y. Yamada.Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor.Japanese Journal of Applied Physics,2006,45(5B):4643~4646
    179 D. Grant . Accurate and Rapid Control of Shape Memory Alloy Actuators.Dissertation for the Doctoral Degree of McGill University,1999:37 41
    180 T. J. Lu,J. W. Hutchinson,A. G. Evans.Optimal Design of a Flexural Actuator.Journal of the Mechanics and Physics of Solids,2001,49(9):2071–2093
    181 K. Hirata.Turning Modes for a Fish Robot.http://www.nmri.go.jp/eng/ khirata/fish/general/turn/index_e.html
    182 L. B. Scherer,C. A. Martin,M. West,et al..DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results.Proceedings of the SPIE 6th annual International Symposium on Smart Structures and Materials , Newport Beach,USA,1999,SPIE:249~259
    183 D. C. Lagoudas , J. K. Strelecz , J. Yen , et al. . Intelligent Design Optimization of a Shape Memory Alloy Actuated Reconfigurable Wing.Proceedings of SPIE,3984,Newport Beach,USA,2000,SPIE:338~348
    184 J. N. Kudva , B. Sanders , J. Pinkerton-Florance , et al. . The DARPA/AFRL/NASA Smart Wing Program-Final Overview.Proceedings of SPIE,4698,San Diego,USA,2002,SPIE:37~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700