用户名: 密码: 验证码:
波状游动物体的推进性能及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水生动物具有高效率的游动特性,蕴涵了丰富的流体力学现象。对水生动物高效游动的研究,可加深对相关自然现象及其内在规律的认识,同时为研制新一代的水下航行器提供启示。波状摆动是水生动物普遍采用的一种推进方式。本文基于无粘势流理论的面元法计算了几种波状游动物体的推进性能,并采用逐步二次规划方法对物体的摆动方式进行了优化。具体的工作和结论分述如下:
     (1)基于线化涡格法求解波动板的推进性能,发展了一套对摆动方式进行优化的方法。该方法增加摆动幅值约束以消除优化问题存在的奇性,采用逐步二次规划方法以避免传统Lagrange乘子法可能得到的鞍点。采用该方法,对波动板的摆动方式进行优化。结果表明,最优解都在幅值约束边界上获得;在前缘吸力最小值对应的频率附近,效率较大;当波数增加,该频率区域内极大效率增长较为明显,同时前缘吸力相应减小,使得前缘分离的风险减弱;0次幂和2次幂组合运动(OP02)的极大效率同0次幂和1次幂组合运动(OP01)的极大效率相近,两项组合运动的极大效率要小于三项(OP012)组合运动的极大效率;波数的增加,三维效应减弱,展弦比对力能参量的影响减弱。
     (2)基于点涡的非线性面元法求解二维大振幅波动板推进性能,并利用上述方法对波动板摆动方式进行优化。结果表明,当幅值减小、频率减小或者波数增加时,非线性波动板结果同线化波动板结果接近,最优解在约束的边界上获得;幅值较大且频率较大时,非线性波动板解远离线化解,最优解在幅值约束的边界内;极大效率随着频率的增加而减小,随着波数的增加而增加。
     (3)基于等强度源(汇)联合等强度涡的非线性面元法求解二维波动翼形的推进性能,并利用同样的方法对波动翼形的摆动方式进行优化。结果表明,当频率和幅值较小时,优化解取在幅值约束的边界,当频率和幅值较大时,优化解不在边界上,这同非线性波动板优化结果定性一致;频率的增加,使得极大效率逐渐减小,相应的前缘吸力增加;增加波数效果相反。
Many aquatic animals have developed its outstanding swimming performance,which contain abundant ?uid mechanical phenomena. The researches on the e?cientswimming of the aquatic animals can not only make us understand the related nat-ural phenomena and its intrinsic law better, but also provide the inspiration for thenew generation of man-made underwater vessels. Waving motion is widely adopted bythe aquatic animals for propulsion. The propulsive performance of several undulatoryswimming bodies are calculated by the panel method based on the in-viscid potentialtheory in this thesis. And the undulatory motion is optimized with the sequentialquadratic programming method. The results and conclusions are as follow:
     (1) The propulsive performance of the waving plate is calculated by the linearvortex lattice method, and an optimization method for the undulatory motion is de-veloped. In this method, the motion amplitude constraint is added to the optimizationproblem in order to eliminate the singularity, and the sequential quadratic program-ming method is used in order to avoid the saddle point which might be obtained by thetraditional Lagrange multiplier method. With the method, the waving plate motion isoptimized. The results reveal that, the optimum solutions are obtained on the boundaryof the amplitude constraint. The e?ciency is high when frequency is in a small stretchabout the one where the leading edge suction force is a minimum. As wave-numberincreases, the e?ciency in this range increases rapidly, and the corresponding leadingedge suction force decreases which reduce the risk of leading edge stalling. For thesame amplitude constraint, the maximum e?ciency of motion with quadratically vary-ing amplitude where the linear term does not occur (OP02) is close to that with linearlyvarying amplitude (OP01), and either of them is less than the maximum e?ciency ofmotion with quadratically varying amplitude (OP012). As frequency increases, threedimensional e?ects decreases, i.e. the in?uences of aspect ratio on the hydrodynamicquantities decrease.
     (2) Propulsive performance of two dimensional waving plate with large amplitudemotion is calculated by the nonlinear vortex lattice method based on point vortexelement, and the undulatory motion is optimized by the method above. The resultsreveal that, as amplitude decreases, frequency decrease or wave- number increases,the results of nonlinear vortex lattice method are close to that of linear one, and theoptimum solutions are obtained on the boundary of the amplitude constraint. Whenamplitude and frequency are large, the results are far away from the linear one, andthe optimum solutions are achieved in the interior of the boundary. The maximum efficiency decreases as frequency increase, and increases as wave-number increases.
     (3) Propulsive performance of two dimensional waving foil calculated by the non-linear vortex lattice method based on constant strength source combined with constantstrength vortex, and the undulatory motion is optimized by the same optimizationmethod. The results show that the optimum solutions are obtained on the boundary ofthe amplitude constraint when frequency or amplitude are small. And they are not onthe boundary when frequency and amplitude are large. These results are qualitativelyconsistent with that of nonlinear waving plate. As frequency increases, the maximume?ciency decreases, the corresponding leading edge suction force increases. And thee?ect of wave-number is adverse.
引文
俞经虎,竺长安,程刚,陈宏,张屹&曾议2004弹性装置提高机器鱼推进效率的研究.机器人26, 416–420.
    章永华,马记,何建慧,吴月&杨杰2006基于人工肌肉的仿生机器鱼关节机构设计与力学分析.机器人28, 40–44.
    陆夕云,杨基明,尹协振&童秉纲2007飞行和游动的生物运动力学和仿生技术研究.中国科学技术大学学报37 (10), 1159–1163.
    吴燕峰,贾来兵&尹协振2007斑马鱼s型起动运动学研究.实验力学22 (5), 519–526.
    袁亚湘&孙文瑜1999最优化理论与方法.科学出版社.
    童秉纲&陆夕云2004关于飞行和游动的生物力学研究.
    吴锤结&王亮2008二维仿生鱼群自主游动及控制的数值模拟研究。. In第十二届全国分离流、旋涡和流动控制会议论文集, pp. 275–298.中国空气动力学会,浙江杭州.
    程健宇1988水生动物游动的流体动力学研究. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    童秉纲2000关鱼类波状游动的推进机制.胡文蓉2003a鱼类单向机动运动二维流动特征的数值研究. PhD thesis,中科院研究生院,北京,中国.
    胡文蓉2003b鱼类单向机动运动二维流动特征的数值研究. PhD thesis,中国科学院研究生院,北京,中国.
    余永亮2004昆虫前飞拍翼非定常空气动力学的理论模化研究. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    张诚2005二维波动板的非线性数值分析. Master’s thesis,中国科学技术大学,合肥,安徽,中国.
    董根金2006波状摆动变形体非定常粘性绕流. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    吴冠豪2007鱼自主游动的跟踪测量研究及运动学和动力学分析. PhD thesis,清华大学,北京,中国.
    王亮2007仿生鱼群自主游动及控制的研究. PhD thesis,河海大学,南京,江苏,中国.
    杨焱2008锦鲤常规自由游动的流动物理研究. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    张杰2009流固耦合平板绕流的格子波尔兹曼数值研究. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    王思莹2010柔性体与流体耦合运动的数值模拟和实验研究. PhD thesis,中国科学技术大学,合肥,安徽,中国.
    Ahmadi, A. R. & Widnall, S. E. 1986 Energetics and optimum motion of oscillatinglifting surfaces of ?nite span. Journal of Fluid Mechanics 162, 261–282.
    Anderson, E. J., McGillis, W. & Grosenbaugh, M. A. 2001 The boundarylayer of swimming fish. Journal of Experimental Biology 204, 81–102.
    Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S.1998 Oscillating foils of high propulsive e?ciency. Journal of Fluid Mechanics 360,41–72.
    Azuma, A. 2006 The biokinetics of ?ying and swimming. AIAA.
    Bacher, E. V. & Smith, C. R. 1986 Turbulent boundary-layer modi?cation bysurface riblets. AIAA Journal 24, 1382–1385.
    Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A.& Wolfgang, M. 1999 Drag reduction in ?sh-like locomotion. Journal of FluidMechanics 392, 183–212.
    Bash, B. C. & Hancock, G. J. 1978 The unsteady motion of a two-dimensionalaerofoil in incompressible inviscid ?ow. Journal of Fluid Mechanics 87, 159–178.
    Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C. & Lauder,G. V. 2006 Passive propulsion in vortex wakes. Journal of Fluid Mechanics 549,385–402.
    Bechert, D. W. & Bartenwerfer, M. 1989 The viscous ?ow on surfaces withlongitudinal ribs. Journal of Fluid Mechanics 206, 105–129.
    Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrody-namics of carangiform swimming in the transitional and inertial ?ow regimes. Journalof Experimental Biology 211, 1541–1558.
    Borazjani, I. & Sotiropoulos, F. 2009 Numerical investigation of the hydrody-namics of anguilliform swimming in the transitional and inertial flow regimes. Journalof Experimental Biology 212, 576–592.
    Buchholz, J. H. J., Jimenez, J. M., Allen, J. J. & Smits, A. J. 2003 Hydro-dynamics of thrust production in a fish-like flapping membrane. In 13th Intl. Symp.on Unmanned Untethered Submersible Technology.. University of New Hampshire,Durham, NH.
    Carling, J., Williams, T. L. & Bowtell, G. 1998 Self-propelled anguilliformswimming: simultaneous solution of the two-dimensional navier-stokes equations andnewton’s laws of motion. Journal of Experimental Biology 201, 3143–3166.
    Carpenter, P. W., Davies, C. & Lucey, A. D. 2000 Hydrodynamics and compli-ant walls: Does the dolphin have a secret? Curr. Sci. 79, 758–765.
    Cheng, J. Y. & Chahine, G. L. 2001 Computational hydrodynamics of animalswimming:boundary element method and three-dimensional vortex wake structure.Comparative Biochemistry and Physiology 131A, 51–60.
    Cheng, J. Y., Pedley, T. J. & Altringham, J. D. 1998 A continuous dynamicbeam model for swimming ?sh. Philosophical Transactions of the Royal SocietyB:Biological Sciences. 353, 981–997.
    Cheng, J. Y., Tong, B. G. & Zhuang, L. X. 1991 Analysis of swimming 3-dimensional waving plates. Journal of Fluid Mechanics 232, 341–355.
    Cheolheui, H., Hakjin, L. & Jinsoo, C. 2008 Propulsive characteristics of dualfish-like foils. Journal of Mechanicla Science and Technology 22, 171–179.
    Chopra, M. 1976 Large amplitude lunate tail theory of ?sh locomotion. Journal ofFluid Mechanics 74, 161–182.
    Chopra, M. & Kambe, T. 1977 Hydrodynamics of lunate-tail swimming propulsion:part2. Journal of Fluid Mechanics 79, 49–69.
    Clark, R. P. & Smits, A. J. 2006 Thrust production and wake structure of a batoid-inspired oscillating ?n. Journal of Fluid Mechanics 562, 415–429.
    Deng, J., Shao, X. M. & Yu, Z. S. 2007 Hydrodynamic studies on two travelingwavy foils in tandem arrangement. Physics of Fluids 19 (1997), 113104.
    Dickinson, M. H., O., L. F. & Sane, S. P. 1999 Wing rotation and the aerodynamicbasis of insect ?ight. science 284, 1954–1960.
    Dong, G. J. & Lu, X. Y. 2005 Numerical analysis on the propulsive performance andvortex shedding of ?sh-like traveling wavy plate. International Journal for NumericalMethods in Fluids 48, 1351–1373.
    Dong, G. J. & Lu, X. Y. 2007 Characteristics of flow over traveling wavy foils in aside-by-side arrangement. Physics of Fluids 19 (1997), 057107.
    Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming ?sh:three-dimensional vortex wake dynamics quanti?ed using particle image velocimetry.Journal of Experimental Biology 202, 2393–2412.
    Drucker, E. G. & Lauder, G. V. 2002 Wake dynamics and locomotor function in?shes: interpreting evolutionary patterns in pectoral fin design. Int. Comp. Biol. 42,997–1008.
    Ellington, C. 1984 The aerodynamics of hovering insect flight. iv. aerodynamic mech-anisms. Phil. Tran. Royal Society of London B, 305, 79–113.
    Ellington, C., den Berg C., V. & Thomas, A. 1996 Leading edge vortices ininsect flight. Nature 384 (6610), 626–630.
    Eloy, C., Souilliez, C. & Schouveiler, L. 2007 Flutter of a rectangular plate.Journal of Fluids and Structures 23, 904–919.
    Fish, F. E. 1993 In?uence of hydrodynamic design and propulsive mode on mammalianswimming energetics. Australian J. Zool. 42, 79–101.
    Fish, F. E. 1998 Comparative kinematics and hydrodynamics of odontocetecetaceans:morphological and ecological correlates with swimming performance. Journal of Ex-perimental Biology 201, 2867–2877.
    Fish, F. E., Innes, S. & Ronald, K. 1988 Kinematics and estimated thrust pro-duction of swimming harp and ringed seals. Journal of Experimental Biology 137,157–173.
    Fremuth, P. 1988 Propulsive vortical signature of plunging and pitching airfoils.AIAA Journal 26 (3), 881–883.
    Gao, T. & Lu, X. Y. 2008 Insect normal havering fight in ground e?ect. Physics offluids 20, 087101.
    Glauert, H. 1929 The force and moment on an oscillating aerofoil. Tech. Rep. Aero.Res. Comm. 1242, 742.
    Gopalkrishnan, R., Triantfyllou, M. S., Triantafyllou, G. S. & Barrett,D. 1994 Active vorticity control in a shear flow using a flapping foil. Journal of FluidMechanics 274, 1–21.
    Gray, J. 1936 Studies in animal locomotion VI.the propulsive powers of the dolphin.The Journal of Experimental Biology 13, 192–199.
    Gursul, I. & Ho, C. 1992 High aerodynamic loads on an airfoil submerged in anunsteady stream. Am. Inst. Aeronaut. Astronaut. J. 30, 1117–1119.
    Gad-el Hak, M. 1987 Compliant coatings research: a guide to the experimentalist.Journal of Fluids and Structures 1, 55–70.
    Jia, L. B., Li, F., Yin, X. Z. & Yin, X. Y. 2007 Coupling modes between two?apping ?laments. Journal of Fluid Mechanics 581, 199–220.
    Jia, L. B. & Yin, X. Z. 2008a Passive oscillations of two tandem ?exible ?laments ina ?owing soap ?lm. Physics Review Letters 100, 228104.
    Jia, L. B. & Yin, X. Z. 2008b Response modes of a ?exible ?lament in the wake ofa cylinder in a ?owing soap ?lm. Physics of Fluids 21, 101704.
    Jimenez, J. M., Buchholz, J. H. J., Staples, A. E., Allen, J. J. & Smits, A.J. 2003 Flapping membranes for thrust production. In IUTAM Symp. on IntegratedModeling of Fully Coupled Fluid–Structure Interactions Using Analysis, Computa-tions, and Experiments, Rutgers University, New Brunswick, NJ (ed. H. Benaroya &T. Wei), pp. 115–124. Kluwer.
    Jing, J., Yin, X. Z. & Lu, X. Y. 2004 The hydrodynamic analysis of c-start incrucian carp (carassius auratus). Journal of Bionics Engineering. 1, 102–107.
    Jing, J., Yin, X. Z. & Lu, X. Y. 2005 Observation and hydrodynamic analysis offast-start of yellow cat fish (pelteobagrus fulvidraco). Prog. in Natural Sci. 15, 34–40.
    Kagemoto, H., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S.2000 Force and power estimation in fish-like locomotion using a vortex-lattice method.Journal of Fluids Engineering 122, 239–253.
    Karman, T. V. & Burgers, J. M. 1934 Genaral aerodynamic theory: Perfect fluids.Aerodynamics Theory. Vol. II.. Springer-Verlag.
    Katz, J. & Plotkin, A. 2001 Low-speed aerodynamics. Cambridge university press.
    Kayan, V. P. 1974 Resistance coe?cient of the dolphin. Bionika 8, 31–35.
    Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil.AIAA Journal 27 (9), 1200–1205.
    Kramer, M. 1960a Boundary layer stabilization by distributed damping. J. Am. Soc.Naval Eng. 72, 25–33.
    Kramer, M. 1960b The dolphins’secret. New Sci. 7, 1118–1120.
    Krasny, R. 1987 Computation of vortex sheet roll-up in the tre?tz plane. Journal ofFluid Mechanics 184, 123–155.
    Lai, J. C. S. & Platzer, M. F. 1999 Jet characteristics of a plunging airfoil. AIAAJournal 37 (12), 1529–1537.
    Lan, C. 1974 A quasi-vortex-lattice method in thin wing theory. Journal of Aircraft11 (9), 518–527.
    Lan, C. 1979 The unsteady quasi-vortex-lattice method with applications to animalpropulsion. Journal of Fluid Mechanics 93, 747–765.
    Landahl, M. T. 1962 On stability of a laminar incompressible boundary layer over aflexible surface. Journal of Fluid Mechanics 13, 609–632.
    Lauder, G. V. & Drucker, E. G. 2002 Forces, fishes, and fluids: hydrodynamicmechanisms of aquatic locomotion. News Physiol. Sci. 17, 235–240.
    Lauder, G. V., Drucker, E. G., Nauen, J. & Wilga, C. D. 2003 Experimen-tal hydrodynamics and evolution: caudal fin locomotion in fishes. In In VertebrateBiomechanics and Evolution (ed. V. Bels, J.-P. Gasc & A. Casinos), p. 117–135.Oxford: Bios Sci. Publ.
    Li, X. M., Lu, X. Y. & Yin, X. Z. 2002 Visulaization on fish’s wake. Proceedings ofthe Society of Photo-Optical Instrumentation Engineers. 4537, 473–476.
    Li, X. M., Wu, Y. F., Lu, X. Y. & Yin, X. Z. 2003 Measurements of fish’s wakeby piv. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 5058,139–145.
    Lian, Y. & Shyy, W. 2007 Aerodynamics of low reynolds number plunging airfoilunder gusty environment. AIAA paper 2007-71, Reno, NV.
    Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003a Fishexploiting vortices decrease muscle activity. Science 302, 1566–1569.
    Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003b Thekármán gait: novel body kinematics of rainbow trout swimming in a vortex street.Journal of Experimental Biology 206, 1059–1073.
    Lighthill, M. 1975 Mathematical bio?uiddynamics. Society for industrial and appliedmechanics.
    Lighthill, M. J. 1960 Note on the swimming of slender fish. Journal of Fluid Me-chanics 9, 305–317.
    Lighthill, M. J. 1969a Aquatic animal propulsion of high hydromechanical e?ciency.Journal of Fluid Mechanics 44, 265–301.
    Lighthill, M. J. 1969b Hydromechanics of aquatic animal propulsion. Annual Reviewof Fluid Mechanics 1, 413–446.
    Lighthill, M. J. 1971 Large-amplitude elongated-body theory of fish locomotion.Proceedings of the Royal Society of London 179, 125–138.
    Liu, H., Wassersug, R. & Kawachi, K. 1996 A computational fluid dynamicsstudy of tadpole swimming. Journal of Experimental Biology 199 (6), 1245–1260.
    Liu, H., Wassersug, R. & Kawachi, K. 1997 The three dimensional hydrodynamicsof tadpole locomotion. Journal of Experimental Biology 200 (1997), 2807–2819.
    Liu, P. & Bose, N. 1997 Propulsive performance from oscillating propulsors withspanwise ?exibility. Proc. R. Soc. Lond. A 453, 1763–1770.
    Lu, X. Y. & Yin, X. Z. 2005 Propulsive performance of ?sh-like traveling wavy wall.Acta Mechanica 175, 197–215.
    MacCroskey, W. J. 1982 Unsteady airfoils. Annual Review of Fluid Mechanics 14,285–311.
    Maxworthy, T. 1979 Experiments on the weis-fogh mechanism of lift generation byinsects in hovering flight. part i. dynamics of fling. Journal of Fluid Mechanics 93,47–63.
    Muller, U. K. 2003 Fish’n flag. Science. 302, 1511.
    Nauen, J. C. & Lauder, G. V. 2001 Locomotion in scombrid fishes: visualization offlow around the caudal peduncle and finlets of the chub mackerel scomber japonicus.Journal of Experimental Biology 204, 2251–2263.
    Neuman, J. N. 1973 The force on a slender ?sh-like body. Journal of Fluid Mechanics58, 689–702.
    Neuman, J. N. & Wu, T. Y. 1973 A generalized slender-body theory for fish-likeforms. Journal of Fluid Mechanics 57, 673–693.
    Oshima, Y. & Oshima, K. 1980 Vortical ?ow behind an oscillating foil. In Proc. 15thIUTAM Int. Congress, pp. 357–368. Amsterdam: North Holland.
    Pedley, T. J. & Hill, S. J. 1999 Large-amplitude undulatory fish swimming: fluidmechanics coupled to internal mechanics. Journal of Experimental Biology 202,3431–3438.
    Raschi, W. G. & Musick, J. A. 1984 Hydrodynamic aspects of shark scales. AppliedMarine Science and Ocean Engineering. 272, 1–82.
    Reynolds, W. C. & Carr, L. W. 1985 Review of unsteady, driven, separated flows.AIAA Paper 85, 285–311.
    Riley, J. J., Gad-el Hak, M. & Metcalfe, R. W. 1988 Compliant coatings.Annual Review of Fluid Mechanics 20, 393–420.
    Rohr, J., Latz, M. I., Fallon, S., Nauen, J. C. & Hendricks, E. 1998 Experi-mental approaches towards interpreting dolphin-stimulated bioluminescence. Journalof Experimental Biology 201, 1447–1460.
    Schouveiler, L. & Eloy, C. 2009 Coupled ?utter of parallel plates. Physics ofFluids 21, 081703.
    Shao, X. M., Pan, D. Y., Deng, J. & Yu, Z. S. 2010 Hydrodynamic performanceof a fishlike undulating foil in the wake of a cylinder. Physics of Fluids 22 (2010),111903.
    Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy ?ags undergo sponta-neous oscillations in flowing water. Physics Review Letters 94, 094302.
    Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, M. S. 2003 Turbulentflow over a flexible wall undergoing a streamwise travelling wave motion. Journal ofFluid Mechanics 484, 197–221.
    Tian, F. B., Luo, H. X., Zhu, L. D. & Lu, X. Y. 2010 Interaction between aflexible filament and a downstream rigid body. Physical Review E 82, 026301.
    Triantafullou, M. S., Techet, A. H. & Hover, F. S. 2004 Review of experi-mental work in biomimetic foils. Journal of Oceanic Engineering 29 (3), 585–594.
    Triantafyllou, G. S., Triantafyllou, M. S. & A., G. M. 1993 Optimal thrustdevelopment in oscillating foils with application to fish propulsion. Journal of FluidsStructure 7, 205–224.
    Triantafyllou, M. S., Triantafyllou, G. S. & R., G. 1991 Wake mechanicsfor thrust generation in oscillating foils. Physics of Fluids 3 (12), 2835–2837.
    Tytell, E. D. 2007 Do trout swim better than eels? challenges for estimating perfor-mance based on the wake of self-propelled bodies. Exp. Fluids. 43, 701–712.
    Vest, M. S. & Katz, J. 1996 Unsteady aerodynamic model of flapping wings. AIAAJ. 34, 1435–1440.
    Wagner, H. 1925 Uber die entsehung des dynamischen auriebes von tragflugeln.Z.F.A.M.M. 5 (1), 17–35.
    Watanabe, Y. 2002 An experimental study of paper flutter. Journal of Fluids andStructures 16 (4), 529–542.
    Wolfgang, M. J. 1999 Hydrodynamics of flexible-body swimming motions. PhDthesis, M.I.T., Boston, MA, U.S.A.
    Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M., Yue, D. & Tri-antafyllou, M. 1999 Nearbody ?ow dynamics in swimming fish. Journal of Ex-perimental Biology 202, 2303–2327.
    Wu, C. J. & Wang, L. 2009 Adaptive optimal control of the ?apping rule of a ?xed?apping plate. Advances in Applied Mathematics and Mechanics 1 (3), 402–414.
    Wu, C. J. & Wang, L. 2010 Where is the rudder of a ?sh the mechanism of swimmingand control of self-propelled ?sh school. Acta Mechanica Sinica 26, 45–65.
    Wu, C. J., Wang, L. & Wu, J. Z. 2007a Suppression of the von karman vortexstreet behind a circular cylinder by a travelling wave generated by a flexible surface.Journal of Fluid Mechanics 574, 365–391.
    Wu, J. Z., Lu, X. Y. & Zhuang, L. X. 2007b Integral force acting on a body dueto local ?ow structure. Journal of Fluid Mechanics 576, 265–286.
    Wu, J. Z., Pan, Z. L. & Lu, X. Y. 2005 Unsteady ?uid-dynamic force solely in termsof control-surface integral. Physics of Fluids 17, 098102.
    Wu, Y. T. 1961 Swimming of a waving plate. Journal of Fluid Mechanics 10, 321–344.
    Wu, Y. T. 1971a Hydromechanics of swimming ?shes and cetaceans. Advances inApplied Mathematics 11, 1–63.
    Wu, Y. T. 1971b Hydromechanics of swimming propulsion.part 1.swimming of a twodimensional flexible plate at variable forward speeds in an inviscid fluid. Journal ofFLuid Mechanics 46, 337–355.
    Wu, Y.T. 1971c Hydromechanics of swimming propulsion.part 2. some optimum shapeproblems. Journal of FLuid Mechanics 46, 521–544.
    Wu, Y. T. 1971d Hydromechanics of swimming propulsion.part 3.swimming and op-timum movements of slender fish with side fines. Journal of FLuid Mechanics 46,545–568.
    Wu, Y. T. 2001 On theoretical modeling of aquatic and aerial animal locomotion.Advances in Applied Mechanics 38, 545–568.
    Wu, Y. T. 2005 Reflections for resolution to some recent studies on fluid mechanics.In Advances in engineering mechanics–re?ections and outlooks. (ed. W. Scientific),pp. 693–714.
    Wu, Y. T. 2006 A nonlinear unsteady flexible wing theory. Structural Control andHealth Monitoring. 13, 553–560.
    Wu, Y. T. 2007 A nonlinear theory for a flexible unsteady wing. Journal of EngineeringMathematics. 58, 279–287.
    Wu, Y. T. 2011 Fish swimming and bird/insect flight. Annual Review of Fluid Me-chanics 43, 25–58.
    Yang, T., Wei, M. J. & Zhao, H. 2010 Numerical study of flexible flapping wingpropulsion. In 48th AIAA Aerospace Sciences Meeting Including the New HorizonsForum and Aerospace Exposition.. Orlando, Florida, USA.
    Young, J. & Lai, J. C. S. 2004 Oscillation frequency and amplitude e?ects on thewake of a plunging airfoil. AIAA Journal 42 (10), 2042–2052.
    Yu, Y. L., Tong, B. G. & Ma, H. Y. 2003 An analytic approach to theoreticalmodeling of highly unsteady viscous ?ow excited by wing flapping in small insect.ACTA Mechanica Sinica 19 (6), 508–516.
    Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filamentsin a flowing soap film as a model for one-dimensional flags in a two-dimensional wind.Nature 408, 835–839.
    Zhang, J., Liu, N. S. & Lu, X. Y. 2010 Locomotion of a passively flapping flatplate. Journal of Fluid Mechanics 659, 43–68.
    Zhang, X., Ni, S. Z., Wang, S. Z. & He, G. W. 2009 E?ects of geometric shape onthe hydrodynamics of a self-propelled ?apping foil. Physics of fluids 21 (10), 103302.
    Zhu, L. D. 2009 Interaction of two tandem deformable bodies in a viscous incompress-ible flow. Journal of Fluid Mechanics 635, 455–475.
    Zhu, L. D. & Peskin, C. S. 2002 Simulation of a flapping flexbile filament in a ?owingsoap film by the immersed boundary method. Journal of Computational Physics 179,452–468.
    Zhu, Q., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 2002 Threedimensional flow structures and vorticity control in fish-like swimming. Journal ofFLuid Mechanics 468, 1–28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700