用户名: 密码: 验证码:
基于提高麦秸厌氧消化性能的碱预处理方法研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出了通过碱预处理显著改善和提高麦秸的可生物降解性能,然后通过厌氧消化方法把麦秸转化成沼气(biogas)这一生产生物能源新的技术途径。开展了如下多方面的试验和机理研究,并对研究结果进行了工程应用。
     1.不同碱预处理剂对麦秸厌氧消化性能影响的试验研究。选择氢氧化钾(KOH)、氢氧化钠(NaOH)、氢氧化钙(Ca(OH)2)和尿素(CO(NH2)3)为预处理剂,采用四个不同添加量(1%,2%,4%,6%)对麦秸进行预处理,然后在四个有机负荷率(35,50,65和80 g·L-1)下对预处理麦秸进行了厌氧消化产气性能试验。发现NaOH预处理麦秸在65 g·L-1有机负荷率下取得了最好的厌氧消化产气效果,因此选择NaOH作为适宜麦秸的预处理剂。
     2. NaOH预处理参数试验研究及其优化参数确定。研究了不同NaOH预处理参数对麦秸厌氧消化性能的影响,这些参数包括NaOH添加量、预处理时间、预处理温度、物料含水率、物料粒度、接种物等。研究发现:①与未处理麦秸相比,在各种添加水平下,预处理麦秸的产气率、平均甲烷含量、TS和VS降解率都得到了明显提高,其中2%、4%NaOH预处理麦秸的产气率提高的最为显著,分别提高了44.0%、48.0%,两者之间无显著区别。因此,从经济效益上考虑,选用2%作为最佳NaOH预处理添加量。②经过不同温度预处理后,麦秸的产气率、平均甲烷含量、TS和VS降解率并无显著差异,但10℃的消化时间(dT80)比30℃的缩短了4天,且在大多数情况下,10℃在室温下即可达到,因此,确定10℃为适宜预处理温度。③NaOH添加到麦秸后,只需3天时间即可被基本利用完。试验结果表明,3天和6天预处理对麦秸的厌氧消化产气性能没有明显影响,更长的预处理时间没有实际意义。因此,确定3天预处理时间为宜。④与600%含水率相比,900%预处理含水率的产气率和TS/VS降解率上分别提高了6.1%、5.1%/4.9%,消化时间(dT80)缩短了2天,说明900%含水率有利于NaOH对麦秸结构的破坏和组分的降解。⑤麦秸的产气率、TS和VS降解率随着物料粒度的减小而增大,但不呈线性关系。磨碎麦秸的产气率只比粉碎的提高2.6%,但磨碎却要消耗更多的电能;揉搓的产气率稍低,但与粉碎相比,产气率相差不大,而能耗却明显降低,因此揉搓是比较实用的选择。⑥污泥消化液作为接种物,厌氧消化效果最差,猪粪消化液和麦秸消化液接种效果较好;与猪粪消化液相比,麦秸消化液的产气率、TS和VS降解率略高,且可就地取材,应是首要选择。
     综上所述,确定NaOH的最佳预处理参数为:添加量2%、预处理温度10℃、预处理时间3天、有机负荷率65 g·L-1、搓揉处理、以麦秸消化液为接种物。
     3. NaOH预处理麦秸的机理研究。采用扫描电镜(SEM)、傅立叶变换红外光谱(FTIR)、X-射线衍射(XRD)等先进的分析手段,对NaOH预处理提高麦秸厌氧消化产气性能的内在机理进行了探讨。发现:①在微观物理结构上。经预处理后,麦秸的表面物理结构变得疏松、碎裂,出现了明显的分层脱落现象。这种破坏有利于释放包裹在木质素和半纤维素中的纤维素,使之变得更容易被消化利用。经厌氧消化后,预处理麦秸完整的表面被彻底破坏,出现了明显的裂片、凹凸不平的沟槽和微孔,证实了NaOH预处理的有效性。②在化学结构上。预处理使得麦秸中纤维素中的重要连接键发生部分断裂和破坏,纤维素被降解成了小分子物质成分;木质素与碳水化合物之间的酯键发生了断裂,使得纤维素发生了部分降解,并被更多地从木质素的包裹中释放了出来。③在化学组分上。预处理后,麦秸的纤维素、半纤维素、木质素和木质纤维素含量分别由原来的30.6%、28.1%、12.4%和71.1%降低到25.6%、21.9%、10.8%和58.3%;冷水抽出物、热水抽出物和1%NaOH抽出物的百分比含量分别提高了92.3%、83.1%和20.0%;苯-醇抽出物百分比含量降低了37.8%;总糖百分比含量提高了106.7%。可以看出,预处理麦秸厌氧消化性能的提高并不是某一因素作用的结果,而是麦秸表面微观物理结构、化学结构和化学组分变化综合作用的结果。
     4.工程应用研究。基于课题试验研究确定的氢氧化钠预处理方法,并通过与厌氧消化、沼气净化贮存、沼气输配和沼渣沼液利用系统的集成,建成了秸秆沼气示范工程。对工程项目中的关键单元和设备进行了设计计算,对反应器内外温度、沼气产量、甲烷含量、pH值等主要性能参数进行了监测,获得了较好的实际应用效果。证明NaOH预处理方法和整个生产系统可以完全满足实际生产的要求。
     本研究发明的NaOH预处理方法,突破了利用纤维素材料生产沼气的核心关键技术,开辟了完全利用麦秸为原料生产清洁能源新的技术途径。对减少秸秆的环境污染、开发新能源具有重要意义,在我国具有十分广阔的推广应用前景。
This study developed a new method using alkali to pretreat wheat straw to obviously improve the biodegradability of wheat straw, then use the pretreated wheat straw to produce biogas. Both experimental and mechanism studies were conducted and a demonstration project was also built.
     1. Effects of different alkali pretreatment agents on the performances of anaerobic digestion of wheat straw. Four alkalis, which were Potassium hydroxide (KOH), Sodium hydroxide (NaOH), Calcium hydroxide (Ca(OH)2), and Urea (CO(NH2)3) in four addition amounts of 1%,2%,4%,6%, respectively, were used as chemical agents for pretreatment. Four organic loading rates (OLR) of 35,50,65 and 80 g·L-1 were used for anaerobic digestion tests for the pretreated wheat straw. Based on their effects on the performances of anaerobic digestion of wheat straw, NaOH was finally selected as optimal agent at the OLR of 65 g-L-1.
     2. Pretreatment parameters investigation and optimization. Pretreatment parameters for NaOH agent were further investigated. The parameters included NaOH addition amount, temperature, time, moisture content, straw size, and inocula. The results showed that:(1) Compared to untreated wheat straw, all pretreated ones obtained better performances.2% and 4% NaOH amounts achieved the highest biogas yields, increased to 44.0%, 48.0%, respectively, but the differences were not significant. Hence,2% addition amount was recommended. (2) There was no obvious difference in biogas yields, TS/VS reductions and average methane content at the temperatures of 10℃and 30℃, but the digestion time (dT80) of 10℃were 4 days shorter than 30℃, and 10℃is more easily achieved in practical conditions and therefore is chosed. (3) pH values were observed after NaOH were added to wheat straw when pretreated, it was found that pH values were decreased to almost neutural in three days. The wheat straws pretreated by 3 days and 6 days were anaerobically digested. The results showed that there was no obvious difference in the performances of anaerobic digestion. Therefore,3-day pretreatment time was determined. (4) Compared to 600% moisture content, the moisture content of 900% could increase biogas yield and TS/VS reductions by 6.1%,5.1%/4.9%; shorten digestion time by 2 days; implying that this moisture content was favorable to the destruction and degradation of wheat straw. (5) The biogas yield and TS and VS reductions were increased as particle size reduced, but the relationship was not linear. The milled straw got the highest biogas yield, but needed to consume more electric energy than grinding and kneading. Although the biogas yield of the kneaded straw was lower than milled and ground ones, the difference was acceptable, thus, kneading was considered to be more cost effective and more practical. (6) Compared to the digestates from swine manure and municipal actived sludge, the inoculum from stalk digester achieved the best anaerobic digestion performance. Another adavantage is the easier availability and lower cost. Hence, the digestate from stalk digester is recommended for the inoculation of wheat straw digestion.
     Base on the results and findings in this section, the optimal pretreatment parameters were determined as follows:2% NaOH addition amount,10℃pretreatment temperature,3-day pretreatment time,65g·L-1 organic loading rate, kneading, and use the digestate from stalk digester as inoculum.
     3. Investigation on the mechanisms of NaOH pretreatment of wheat straw. FTIR, SEM, and XRD were used to explore the mechanisms of NaOH pretreatment. It was found after pretreatment that:(1) The micro-physical structures were changed greatly, The surface of wheat straw was damaged, and the fiber structure was loosened remarkedly. The striping phenonium was also observed. (2) Some bondings inside cellulose were broken or damaged. It was also observed that ester bond between lignin and carbonhydrate was broken, making more cellulose exposed and become available to micro-organisms. (3) The contents of cellulose, hemicellulose, lignin, and lignicellulose were decresed from 30.6%,28.1%,12.4%, and 71.1% to 25.6%,21.9%,10.8%, and 58.3%, respectively; The percentages of cold-water, hot-water, and 1%NaOH extractives were increased by 92.3%,83.1%, and 20.0%; respectively, while the percentage of beneze-ethanol extractive decreased by 37.8%; The total sugar content was increased by 106.7%. It can be seen that the improvement on biodegradability and biogas yield of wheat straw after pretreatment were not resulted in by one reason but should be contributed to the comprehensive roles of the changes of micro-physical structure, chemical structure, and chemical compositions.
     4. Engineering application. The pretreatment method developed in laboratory was applied in a practical project in Dezhou city of Shandong province. The project was built through incorperating NaOH pretreatment method with new type of anaerobic digester with green house heating system. The biogas yield, temperature, methane content ect. were monitered and tested. The results showed that the technology was applicable and reliable in large-scale biogas plant of wheat straw.
     The NaOH pretreatment technology developed in this study solves the key technic problem with the anaerobic digestion of wheat straw, providing one practical way for the clean bioenergy production from wheat straw. It is a new model for clean energy production and pollution mitigation with wheat straw.
引文
[1]中华人民共和国国家统计局编.中国统计年鉴-2008[M].北京:中国统计出版社,2008
    [2]卞有生主编.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2005,5.
    [3]李鹏,孙可伟,柴希娟.秸秆的综合利用[J].中国资源综合利用,2006,24(1):23-27.
    [4]张百良.生物质成型燃料技术及产业化前景分析[J].河南农业大学学报,2005,39(1):111-115.
    [5]张金桃,周传云.农作物秸秆能源利用现状与前景[J].酿酒,2007,34(4):12-15.
    [6]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:28-31.
    [7]聂永丰主编.三废处理工程技术手册:固体废物卷[M].北京:化学工业出版社,2000
    [8]Zhang R H, Zhang Z Q. Biogasification of rice straw with an anaerobic-phased solids digester system [J]. Bioresour. Technol.,1999,68 (3):235-245.
    [9]Ghosh S. Gas production by accelerated bioleaching of organic materials [P]. US Patent, 4396402,1983-08-02.
    [10]Walter J, Wujcik W. Anaerobic dry fermentation [J]. Biotechnol. Bioeng. Symp.,1980,10 (2):43-65.
    [11]孙国朝,邵廷杰,郭学敏.沼气干发酵工艺必须的条件:沼气新技术应用研究[M].成都:四川科学技术出版社,1988:47-58.
    [12]Ghosh S, Henry M P, Sajjad A. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion(TPAD) [J]. Water Sci. Technol.,2000,41 (3): 101-110.
    [13]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:54-58.
    [14]Lay J J, Li Y Y, Noike T, et al. Analysis of environmental-factors affecting methane production from high-solids organic waste [J]. Water Sci. Technol.,1997,36 (6-7): 493-500.
    [15]边炳鑫,赵由才.农业固体废物的处理与综合利用[M].北京:化学工业出版社,2005:187-188.
    [16]吴婉娥,葛红光,张克峰.废水厌氧生物处理技术[M].北京:化学工业出版社,2003
    [17]杨淑蕙主编.植物纤维化学[M].北京:中国轻工业出版社,2001:8-10.
    [18]蔡再生主编.纤维化学与物理[M].中国纺织出版社,2009.
    [19]蒋挺大编著.木质素[M].北京:化学工业出版社,2008,12.
    [20]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989.
    [21]Zhang,Z.,R.Zhang. Anaerobic phased solids digester system for biogasification of agricultural and food wastes. Ph.D dissertation, University of California at Davis,2000.
    [22]Ghosh A, Bhattacharyya B C. Biomethanation of white rotted and brown rotted rice straw [J]. Bioprocess Engineering,1999,20:97-302.
    [23]Miiller H. W., Trosch W. Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production [J]. Appl. Microbiol. Biotechnol,1986,24(2):180-185.
    [24]Jinxin Zhang,Shen Tian,Yazhen Zhang, Xiushan Yang*. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol Appl Biochem Biotechol 2008,150:185-192.
    [25]Guoce Yu, Xianghua Wen, Dongfeng Li, Rui Li& Yi Qian. Production of the ligninolytic
    enzymes by immobilized Phanerochaete chrysosporium in an air atmosphere. World Journal of Microbiology and Biotechnology.2005,21:323-327.
    [26]蒋建国,赵振振,杜雪娟等.秸秆高固体厌氧消化预处理实验研究[J].环境科学,2007,28(4):886-890.
    [27]Colleran, E.Barry, M.&Wikie,A. The application of the anaerobic filter design to biogas production from solid and liquid agricultural wastes. In symposium papers, Energy from biomass and wastes VI. Chicago:Institute of gas technology,1982,443-482.
    [28]Luo,Q, Li, Xiujin.Anaerobic biogasification of NaOH-treated corn stalk, Transactions of Chinese Society of Agricultural Engineer[J],2005,21 (2),111-115.
    [29]Yang Dongyan, Li Xiujin, Gao Zhijian, Wang Yongwu. Improving Biogas Production of Corn Stalk through Chemical and Biological Pretreatment:a preliminary comparison study. Transactions of the Chinese Society of Agricultural Engineers,2003,19(5):209-213.
    [30]Yanfeng He, Yunzhi Pang, Yanping Liu, Xiujin Li, Kuisheng Wang. Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in Solid State for Enhancing Biogas Production. Energy& Fuels (SCI).2008,22 (4):2775-2781.
    [31]胡纪萃,周孟津,左剑恶.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [32]AD-NETT Technical summary on gas treatment. Project Fair-CT96-2083(DG12-SSMI), August.2000.
    [33]郝月谱.植物秸秆的妙用[J].化工之友,1993,(3):36-37.
    [34]翁伟,杨继涛,赵青玲,等.我国秸秆资源化技术现状及其发展方向[J].中国资源综合利用,2004,7:18-21.
    [35]邹海明.农业秸秆资源化利用途径探讨[J].农业与技术,2005,25(5):78-81.
    [36]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11-15.
    [37]栾云松.秸秆固化技术[J].农村能源,2008,2:60-61.
    [38]Scheffer T C. Natural resistance of wood to microbial deterioration [J]. Ann. review Phytopathol.,1966,4:147-170.
    [39]Claassen P A M, Van Lier J B, Lopez Contreras A M, et al. Utilization of biomass for the supply of energy carriers [J]. Appl. Microbiol. Biotechnol.,1999,52:741-755.
    [40]席北斗,魏自民,刘鸿亮,等.有机固体废物管理与资源化利用[M].北京:国防工业出版社,2006,1.
    [41]钟杭,张勇勇,林潮澜,蒋小留.麦稻草秸秆全量整草免耕还田方法和效果[J].土壤肥料,2003,(3):34-37.
    [42]伊晓路,孙立,生物质秸秆预处理技术[J].可再生能源,2005,2(120):31—33.
    [43]芊振明,高忠爱,祁梦兰等.固体废物的处理与处置[M].北京:高等教育出版社,1993,10.
    [44]潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响的研究[J].农机化研究,2004,(1):187-188.
    [45]Metha,V.,Gupta,J.K.and Kaushal,S.C. Cultivation of Pleurotus florida mushroom on rice straw and biogas production from the spent straw. World Journal of Microbiology and Biotechnology.1990,6:366-370.
    [46]朱惟猛,丁敏.浅谈厌氧消化效果的提高[J].中国市政工程,2005(6):36-38.
    [47]伍义泽.沼气干发酵工艺必需的条件:沼气新技术应用研究[M].成都:四川科学技
    术出版社,1988:47-58.
    [48]Jaffrey G A, Saeuga W. Hydrogen binding in biological structure second printing [M]. Berlin:Springen-veulag,1994:125-128.
    [49]Anderson D C, Ralston A T. Chemical treatment of ryegrass straw:in vitro dry matter digestibility and compositional chances [J]. J. Anim. Sci.,1973,37:148-152.
    [50]李连华,马隆龙,袁振宏等.农作物秸秆的沼气发酵试验研究.农业环境科学学报2007,26(1):335-338.
    [5l]南艳艳,邹华,严群等.秸秆沼气发酵产沼气的初步研究.食品与生物技术学报.2007,26(6):64-68.
    [52]Saint-Joly C, Desbois S, Lotti J P. Determinant impact of waste collection and composition on anaerobic digestion performance:industrial results [J]. Water Sci. Technol.,2000,41 (3):291-297.
    [53]Yu H W, Samani Z, Hanson A, et al. Energy recovery from grass using two-phase anaerobic digestion [J]. Waste Management,2002,22 (1):1-5.
    [54]李秀金.固体废物工程[M].北京:中国环境科学出版社,2003:100-101.
    [55]Gunaseelan N. Effect of inoculum/substrate ratio and pretreatments on methane yield from parthenium [J]. Biomass Bioenergy,1995,8 (5):39-44.
    [56]Hills D J, Roberts D W. Anaerobic digestion of dairy manure and field crop residues [J]. Agric. Wastes,1981,33 (3):479-489.
    [57]Mahender S, Jackson M J. The effect of different levels of hydroxide spray treatment of wheat straw on consumption and digestibility by cattle [J]. J. Agri. Sci., Camb.,1971,75: 5-10.
    [58]Sahoo B, Saraawat M L, Haque N, et al. Energy balance and methane production in sheep fed chemically treated wheat straw [J]. Small Rumin. Res.,2000,35:13-19.
    [59]Waiss A C, Guccloz J J, Kohler G O, et al. Improving digestibility of straws for ruminant feed by aqueous ammonia [J]. J. Anim. Sci.,1972,35:109-113.
    [60]Palmowski L, Muller J. Influence of the size reduction of organic waste on their anaerobic digestion [A]. In:Mata-Alvarez, J., Tilche, A., Cecchi, F. (Eds.), Proceedings of the Second Internaional Symposium on Anaerobic Digestion of Solid Wastes[C]. Barcelona: Grafiques 92,1999,1:137-144.
    [61]Ololade B G, Mowat D N, Wince J E. Effect of processing on the in vitro digestibility of sodium hydroxide treatment roughages [J]. Can. J. Anim. Sci,1971,50:657-662.
    [62]黄丹莲,曾光明,黄国和,等.白腐菌固态发酵条件最优化及其降解植物生物质的研究[J].环境科学学报,2005,25(2):232-237.
    [63]Dar G H, Troesh S M. Biogas production from pretreated wheat straw, lantana residue, apple and peach leaf litter with cattle dung [J]. Biol. Wastes,1987,21:75-83.
    [64]詹怀宇主编.纤维化学与物理[M].北京:科学出版社,2005.
    [65]Bjorkman A. Studies on finely divided wood. Part I, Extraction of lignin with neutral solvents [J]. Sven. Papperstidn.,1956,59:477.
    [66]秦特夫.杉木和“三北”一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3):69-75.
    [67]刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社,2004.
    [68]Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and
    rice straw [J]. Polym. Degrad. Stab.,2001,74:307-319.
    [69]何艳峰,李秀金,方文杰,等.NaOH固态预处理对稻草中纤维素结构特性的影响[J].可再生能源,2007,25(5):31-34.
    [70]Gastaldi G, Capretti G, Focher B, et al. Characterization and proprieties of cellulose isolated from the Crambe abyssinica hull [J]. Ind. Crops Prod.,1998,8:205-218.
    [71]鲁杰,石淑兰,杨汝男,等.纤维素酶酶解苇浆纤维微观结构和结晶结构的变化[J].中国造纸学报,2005,20(2):85-90.
    [72]何建新,唐予远,王善元.醋酸纤维素的结晶结构与热性能[J].纺织学报,2008,29(10):12-16.
    [73]鲁杰,石淑兰,邢效功,等.NaOH预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1-6.
    [74]SUN J X, SUN X F, ZHAO H, et al. Isolation and characterization of cellulose from sugarcane bagasse[J]. Polymer Degradation and Stability,2004,84:331-339.
    [75]高洁,汤烈贵主编.纤维素科学[M].北京:科学出版社,1996:41-48,56.
    [76]Chen H Z, Wang H, Zhang A, et al. Biogasification of stream-exploded wheat straw by a two-phased digestion system. Trans. CSAE,2005,21 (11):116-120.
    [77]卢雪梅,刘紫鹃,高培基.木质素生物降解的化学反应机制[J].林产化学与工业,1996,16(2):75-82.
    [78]高培基,刘洁,张玉忠.天然纤维素在生物降解中超分子结构的变化-氢键断裂在纤维素降解中作用的探讨[J].自然科学进展,1998,8(4):391-397.
    [79]马邕文,陈中豪,王宗和.有机溶剂抽出物对麦草化机浆白度及可漂性的影响[J].中国造纸学报,1995,(10):20-26.
    [80]APHA. Standard Methods for the Examination of Water and Wastewater,20th edn [M]. American Public Health Association:NW, Washington, DC,1998.
    [81]石淑兰,何福望主编.制浆造纸分析与检测[M].中国轻工业出版社,2003.
    [82]张华主编.有机结构波普鉴定[M].大连理工大学出版社,2009,11.
    [83]曾幸荣,吴振耀.高分子近代测试分析技术[M].广州:华南理工大学出版社,2000.
    [84]王伟东,崔宗均*,王小芬,牛俊玲,刘建斌,Igarashi Yasuo.快速纤维素分解菌复合系MC1对秸秆的分解能力及稳定性.环境科学,2005,26(5):156-160(EI)
    [85]杭志喜,崔海丽.稀酸降解植物纤维素的研究[J].安徽工程科技学院学报,2005,20(2):16-19.
    [86]唐爱民.超声波作用下纤维素纤维结构与性质的研究[D].广州:华南理工大学,2000.
    [87]Zheng Y Z, Lin H M, Tsao T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion [J]. Biotechnol. Prog.,1998,14:890-896.
    [88]周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望[J].化工科技,2006,14(2):51-56.
    [89]许凤,钟新春,孙润仓,等.秸秆中半纤维素的结构及分离新方法综述[J].林产化学与工业,2005,25(增刊):179-182.
    [90]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2(4):11-16.
    [91]Zohar K, Dana F, Yitzhak H. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium [J]. Appl. Environ. Micro.,1992, 58(4):1121-1127.
    [92]Sarkanen K V, Ludwing C H. Definition and Nomenclature. Lignins Occurrence,
    Formation, Structure and Reactions [M]. Wiley-Interscience, New York,1971:1-17.
    [93]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005:72-74.
    [94]董国斌,李淑君,张春雷.木材的微波辅助苯-醇抽提[J].东北林业大学学报,2003,31(5):45-47.
    [95]秦特夫.“I-214杨”心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究[J].林业科学研究,2001,14(4):375-382.
    [96]Ludwig C, Nist B, Mccarthy J L. The high resolution nuclear magnetic resonance spectroscopy of protons in compounds related to lignin [J]. J. Amer. Soc.,1964,86: 1186-1196.
    [97]池玉杰.6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析[J].林业科学,2005,41(2):136-140.
    [98]Marques A V, Pereira H, Rodrigues J, et al. Isolation and comparative characterization of a Bjorkman lignin from the saponified cork of Douglas-fir bark [J]. J. Anal. Appl. Pyrolysis, 2006,77:169-176.
    [99]Goto M, Yokoe Y. Ammoniation of barley straw. Effect on cellulose crystallinity and water-holding capacity [J]. Anim. Feed Sci. Technol.,1996,58:239-247.
    [100]Esat G, Mustafa U. Dependence of chemical and crystalline structure of alkali sulfite pulp on cooking temperature and time [J]. Carbohydr. Polym.,2006,65:461-468.
    [101]叶君,梁文芷,范佩明,等.超声波处理引起纸浆纤维素结晶度变化[J].广东造纸,1999,2:6-10.
    [102]Jahan M S, Nasima D A, Islam M K, et al. Characterization of lignin isolated from some nonwood available in Bangladesh [J]. Bioresour. Technol.,2007,98 (2):465-469.
    [103]Maureen C M, Mahmoud H, Reg W, et al. Fourier transform infrared microspectroscopy is a new way to look at plant cell walls [J]. Plant Physiol.,1992,100:1940-1947.
    [104]Liu C F, Xu F, Sun J X, et al. Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne) [J]. Carbohydr. Res.,2006,341:2677-2687.
    [105]Lu J, Shi S L, Yang R N, et al. Modification of reed cellulose microstructure and IT change in enzymatic hydrolysis of reed pulp [J]. Trans. China Pulp Pap.,2005,20 (2),85-90.
    [106]连海兰,尤纪雪,周定国.生物预处理对麦秸纤维板性能的影响机理[J].纤维素科学与技术,2006,14(4):9-21.
    [107]Sun R C, Tomkinson J, Ma P L, et al. Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments [J]. Carbohydr. Polym.,2000,42,111-122.
    [108]Cao Y, Tan H M. The properties of enzyme-hydrolyzed cellulose in aqueous sodium hydroxide [J]. Carbohydr. Res.,2002,337:1453-1457.
    [109]Kacurakova M, Capek P, Sasinkova V, et al. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses [J]. Carbohydr. Polym.,2000,43, 195-203.
    [110]Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition [J]. J. Dairy Sci.,1991,74: 3583-3597.
    [111]向建华,陈信波,周小云.植物角质层蜡质基因的研究进展[J].生物技术通讯,2005,16(2):224-227.
    [112]Ragauskas A J, Willians C K, Davison B H, et al. The path forward for biofuels and biomaterials [J]. Science,2006,311:484-489.
    [113]Sun Y, Lin L, Pang C S, et al. Hydrolysis of cotton fiber cellulose in formic acid [J]. Energy Fuels,2007,21:2386-2389.
    [114]吕秉峰,邵自强,严利芳.纤维素高压蒸气闪爆改性前后结构表征研究[J].华北工学院学报,2002,23(4):253-256.
    [115]Cai Z S, Paszner L. Salt catalyzed wood bonding with hemicellulose [J]. Holzforschung, 1988,42,11-20.
    [116]Sun X F, Sun R C, Tomkinson J, et al. Preparation of sugarcane bagasse hemicellulosic succinates using NBS as a catalyst [J]. Carbohydr. Polym.,2003,53,483-495.
    [117]Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresour. Technol.,2002,83,1-11.
    [118]Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis [J]. Biotechnol. Prog.,1999,15,804-816.
    [119]Xu Z, Wang Q H, Jiang Z H, et al. Enzymatic hydrolysis of pretreated soybean straw [J]. Biomass Bioenergy,2007,31:162-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700