用户名: 密码: 验证码:
四醚脂质体作为口服载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物大分子药物如蛋白、核酸等口服给药的生物利用度相当低,其原因之一在于蛋白或核酸等分子在苛刻的胃肠道环境中很不稳定,极易被胃肠道的酸性环境,多种蛋白酶,以及胆汁盐所降解。为了避免蛋白或核酸药物遭受胃肠道中的攻击,研究人员选用不同载体来保护这些生物活性药物。
     脂质体由于大小、表面电荷以及膜流动性的可控,作为口服载体的研究备受青睐。以酯键构成的普通脂质体,能够装载多肽或核酸药物,并对它们具有一定的保护作用。然而,普通脂质体作为口服输送载体,仍然面临的最大障碍之一就是:它们在肠道胆汁盐的作用下极不稳定,尤其是胆汁盐与肠道酶协同作用时。因此,我们期望寻求更加稳定的脂质体以口服输送生物活性药物。
     古细菌脂质体是脂质体的一种,是由古细菌细胞膜上提取的脂质组成。古细菌脂质包括二醚脂质和四醚脂质。四醚脂质的核心部分就是由40个碳原子构成的饱和类异戊二烯侧链并通过醚键与甘油骨架的2、3位碳原子相连接。而普通脂质体中的磷脂侧链是由不饱和脂肪酸链组成,并以酯键与甘油骨架的1、2位碳原子相连接。另外,由四醚脂质形成的脂质体的膜是由多个具有单分子层跨度的醚脂组成,这种独特的结构给予四醚脂质体稳定的特性。
     本研究就是从古细菌Sulfolobus acidocaldarius提取四醚脂质PLFE,考察由PLFE制备的四醚脂质体的体外稳定性特征,并着重评价了四醚脂质体作为口服疫苗载体在诱导粘膜免疫、系统免疫和细胞免疫中的作用以及作为多肽药物(胰岛素)的口服输送载体在糖尿病小鼠中的降血糖效果。最后结合小动物成像等技术初步分析了四醚脂质体口服后的在胃肠道中的滞留情况。本论文研究的主要内容及结果总结如下:
     收集生长成熟的古细菌S. acidocaldarius,成功的分离纯化得到醚脂,并通过薄层层析分析、质谱分析、红外光谱分析以及核磁共振分析进行表征。分析结果均表明我们提取、分离和纯化得到的脂质为极性醚脂—PLFE。
     我们以薄膜分散法制备四醚脂质体,并通过原子力显微镜对其进行形态表征,结果显示四醚脂质体外形成球形或近球形,分散效果好;颗粒边缘清晰且平均直径大小为210 nm左右。这个结果也与激光粒度测定仪测定的结果一致。而且,Zeta电位测定仪测得四醚脂质体的表面电荷为-35.1 mV,这样的电位使四醚脂质体具有好的分散性,不容易聚集。作为多肽药物和疫苗的口服载体,具有良好的稳定性特征是极其重要的。本研究中我们以钙黄绿素为渗透标记物,并模拟人的肠道环境在体外考察了普通脂质体和四醚脂质体对钙黄绿素的释放情况。结果表明:与普通脂质体相比,无论在模拟的肠道环境溶液中,由PLFE制备的四醚脂质体是相当稳定的。
     基于醚脂的独特结构和四醚脂质体的稳定特性,我们着重评估了四醚脂质体作为口服载体在疫苗中的作用。结果表明,与普通脂质体相比,四醚脂质体包裹的卵清蛋白(OVA)溶液经口服后,BALB/c小鼠体内不但产生了持久的、更强的系统免疫反应,而且也利于粘膜免疫反应的产生。而且,四醚脂质体在诱导体外CD8+ T细胞增殖反应方面也有着较普通脂质体超越的能力。为了初步探索脂质体经小鼠口服后的吸收或分布情况,我们首先借助于荧光标记脂质(Rhodamine-DHPE)来考察不同脂质体吸收后的情况,结果表明相对于普通脂质体,罗丹明标记的四醚脂质体被小肠吸收的总量更高,而且持续吸收的时间更长。其次我们合成了Cy5.5-OVA作为水相的荧光标记蛋白,并通过小鼠体内成像系统考察不同脂质体口服后的滞留情况,结果同样表明:相对于普通脂质体,装载Cy5.5-OVA的四醚脂质体被小肠吸收的荧光强度更强,而且在胃肠中能持续更长的时间。这两个实验中,然而无论是标记的荧光脂质,还是标记的荧光蛋白,它们的吸收以及持续特性的结果都是一致的。而且,在罗丹明标记的脂质体吸收实验中,小肠各部位对颗粒吸收的程度也是不一样的。相对于普通脂质体,罗丹明标记的四醚脂质体更容易被小肠回肠的尾部吸收;而且从离体小肠的荧光影像实验也得到类似的结果:四醚脂质体包裹的Cy5.5-OVA更多的被回肠下部分所吸收。这些也部分解释了四醚脂质体作为口服疫苗载体的体液免疫能力作用。然而真正的作用机理还需要进一步研究。尽管如此,我们的实验数据还是说明了四醚脂质体在发展成口服疫苗载体方面具有很大潜力。
     同时,我们也着重考察了四醚脂质体作为载体在口服胰岛素中的应用。首先,我们考察了普通脂质体和四醚脂质体在人工模拟的胃肠环境中对胰岛素的释放情况,结果表明相对于普通脂质体,无论是在胃环境还是肠道环境缓冲液中,由PLFE制备的四醚脂质体都是比较稳定的。其次,在体内试验中,我们建立的糖尿病小鼠口服不同的胰岛素溶液后体内降血糖的效果是不一样的。即相比较胰岛素的PBS溶液和普通脂质体包裹的胰岛素溶液,四醚脂质体包裹的胰岛素溶液经口服后有着较大的降血糖效果而且这种降血糖作用也会持续更长的时间。我们推测这也可能与脂质体的稳定性有关。因为进一步的体内荧光影像实验结果表明:在口服传递过程中,与普通脂质体相比,四醚脂质体包裹的Cy5.5-Insulin在胃肠道中能够滞留更长的时间,有利于药物的吸收。第三,我们在体外建立了人小肠上皮细胞的体外模型—Caco-2细胞模型,并应用此模型评估了脂质体包裹胰岛素的吸收情况。结果表明:与普通脂质体相比,四醚脂质体促进胰岛素经单层Caco-2细胞的转运量更低些。我们推测这可能归结于组成普通脂质体的磷脂与细胞膜磷脂具有类似性有关,虽然具体的吸收机制还有待于进一步证明,但提示我们:在设计药物的口服载体系统中,我们不但要考虑载体的稳定性,还要考虑载体促进小肠上皮细胞对药物的吸收能力。因此,我们也期待以四醚脂质体为基础结合靶向来改进口服载体,增加肠道对四醚脂质体胰岛素的吸收,提高生物利用度。
Administering drugs orally is by far the most widely used route of administration, although it is generally not feasible for peptide and protein drugs. The main reasons for the low oral bioavailability of biologicals are presystemic enzymatic degradation. Various strategies have been pursued to overcome such barriers and to develop safe and effective oral delivery systems for biologicals.
     The potential usefulness of liposomes as drug carriers has attracted considerable interest due to their controlled size, charge and membrane fluidity.These phospholipid vesicles are capable of encapsulating both hydrophobic and hydrophilic drugs. The drugs encapsulated in liposomes are sufficiently protected from enzymatic attack to some extent. In this context, nevertheless, a major drawback of liposome formulations that have been studied extensively to date is their poor stability at low pH, susceptibility to attack by bile salts and GI tract enzymes. Therefore, it was desirable to develop more stable liposome formulations to protect peptide and protein drugs.
     Archaeosomes are liposomes which are made from structurally typical of archaeobacterial membrane lipids. Archaeobacterial lipids consist of archaeol (diether) and caldarchaeol (tetraether) core structures. wherein tetraether lipids regularly branched and usually fully saturated phytanyl chains (40 carbons in length), are attached via ether bonds to the sn-2,3 carbons of the glycerol backbone. In contrast, conventional phospholipids have fatty acyl chains of variable length, which may be unsaturated, and which are attached via ester bonds to the sn-1,2 carbons of the glycerol backbone. Moreover, the lipid moieties were composed of membrane-spanning caldarchaeol lipids, known to form a monomolecular thick membrane by span the entire lamellar structure, and the unique lipid structures in general confer considerable stability to archaeosomes.
     In the present study, PLFE (polar lipid fraction E) was distilled from S. acidocaldarius, the stability of archaeosomes composed of PLFE has been examined in stimulated GI environment. The objective of our study was to evaluate the potential of archaeosomes to induce humoral and CD8+ T cell mediated immune responses to entrapped antigen via the oral immunization. As oral carrier of insulin, the hypoglycemic effect of the archaeosomes in diabetic mice was also evaluated. Finally, we examined the intestinal transit of archaeosomes through In Vivo Fluorescence Imaging. The detailed results were summarized as following:
     PLFE lipids were purified as a single fraction from the crude lipid extract of S. acidocaldarius. The isolated PLFE lipids were characterized through TLC, mass spectral, infrared spectroscopy and NMR, and these results provided conclusive support that the final product was PLFE.
     In order to investigate the shape and surface morphology of the archaeosomes, atomic force microscopy (AFM) was employed. The AFM images showed that the form of archaeosomes was nearly spherical, and that there was no aggregation or adhesion among the particles, and the AFM micrograph of the archaeosomes revealed that the mean diameter was about 210 nm, which was in good agreement with data obtained by PCS. In addition, the mean surface potential archaeosomes was measured to be -35.27 mV, which was responsible for the good poly.index. One of the requirements of a successful oral delivery system is reasonable stability in the environment of GI tract. In the present study, to determine the stability of carriers during passage through GI via oral route, our study was performed with the release of calcein from vesicles in mimic intestinal condition, and these results indicated that the archaeosomes composed of PLFE are essentially stable in these mimic intestinal conditions.
     Based on the unique structure from PLFE and stability of archaeosomes, Our studies performed in mice have indicated that archaeosomes are superior in eliciting humoral immune response, as well as CD8+ T cell mediated immune response to encapsulated antigen, compared with conventional liposomal formulation. In order to explore primarily the distribution and absorption of various liposomal formulation post vaccination orally, one hand, Rhodamine-DHPE was employed, and the results showed that Rhodamine-DHPE associated with intestine when administered archaeosomes increased and attained a higher level than that of conventional liposomes, especially in the lower ileum. In the other hand, Cy5.5-labeled OVA was used as optical tracer, and the corresponding results showed archaeosomes prolonged intestinal residence time of optical tracer in GI tract, which reversibly increased the permeability of the mucosal epithelium. Further optical imaging results from incised small intestinal suggested that archaeosomes containing optical tracer were preferentially taken up in the lower ileum. These results may also be corrected with enhanced immunity. However, the mechanisms of action require further study. Nevertheless, these available data from our study indicate that archaeosomes may hold great promise in developing oral vaccines for weak antigens.
     Subsequent, we investigated the possibility of archaeosomes as a tool for the oral delivery of insulin. Firstly, the results from stability in vitro showed the release of insulin from archaeosomes was markedly reduced not only in the acidly solution but also in the bile salts. Secondly, when insulin was orally administered to diabetic mice as either a solution or conventional liposomes, no hypoglycemic effect was observed. Whereas administration of insulin encapsulated in archaeosomes caused the rapid decrease in the plasma glucose level and the hypoglycemic effect lasted for much longer duration than that of conventional liposomes, which, we speculated, was contributed to the stability of various carriers. Further optical imaging results from in vivo showed that the slow release of insulin from archaeosomes achieved the longer duration in the small intestine, which was benefit for drug absorption. Thirdly, we established Caco-2 cell monolayer model, and evaluated the absorption characteristics of insulin as various formulations. The results showed the cumulative amount of insulin transported through Caco-2 cell monolayer for archaeosomes was lower than that of conventional liposomes, which, we speculated, was ascribed to composition prepared for liposomes. Despite, the mechanisms of action require further study, these results suggested that an ideal delivery system for oral administration should not only protect drug or antigen from the harsh environment in the GI, but also enhance the absorption of them by small intestine. Therefore, we expect to optimize the delivery system through combination the stable archaeosomes with target strategy to increase the uptake of drug and improve the bioavailability.
引文
[1] Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov 2005 Apr;4(4):298-306.
    [2] Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug Discov Today 2003;8(6):259-66.
    [3] Shah RB, Ahsan F, Khan MA. Oral delivery of proteins: progress and prognostication. Crit Rev Ther Drug Carrier Syst 2002;19(2):135-69.
    [4] Mahato RI, Narang AS, Thoma L, Miller DD. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 2003;20(2-3):153-214.
    [5] Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs 2005;19(3):165-77.
    [6] Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 1998;6(4):317-24.
    [7] Rubas W, Cromwell MEM, Shahrokh Z, Villagran J, Nguyen TN, Wellton M, et al. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 1996;85(2):165-9.
    [8] Bendayan M, Ziv E, Gingras D, Ben-Sasson R, Bar-On H, Kidron M. Biochemical and morpho-cytochemical evidence for the intestinal absorption of insulin in control and diabetic rats. Comparison between the effectiveness of duodenal and colon mucosa. Diabetologia 1994 Feb;37(2):119-26.
    [9] Agarwal V, Khan MA. Current status of the oral delivery of insulin. Pharm Technol 2001;25(10):76-90.
    [10] Bastian SEP, Walton PE, Ballard FJ, Belford DA. Transport of IGF-I across epithelial cell monolayers. J Endocrinol 1999;162(3):361-9.
    [11] Morishita M, Morishita I, Takayama K, Machida Y, Nagai T. Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol Pharm Bull 1993;16(1):68-72.
    [12] Tozaki H, Odoriba T, Iseki T, Taniguchi T, Fujita T, Murakami M, et al. Use of protease inhibitors to improve calcitonin absorption from the small and large intestine in rats. J Pharm Pharmacol 1998;50(8):913-20.
    [13] Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999 Dec;51(4):691-743.
    [14] Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 2000;3(10):346-58.
    [15] Salamat-Miller N, Johnston TP. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm 2005;294(1-2):201-16.
    [16] Salama NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 2006;58(1):15-28.
    [17] Prego C, Garcia M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release 2005 Jan 3;101(1-3):151-62.
    [18] Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug DelivRev 2005 Nov 3;57(11):1569-82.
    [19] Yen WC, Lee VHL. Penetration enhancement effect of Pz-peptide, a paracellularly transported peptide, in rabbit intestinal segments and Caco-2 cell monolayers. J Control Release 1995;36(1-2):25-37.
    [20] Gangwar S, Pauletti GM, Wang B, Siahaan TJ, Stella VJ, Borchardt RT. Prodrug strategies to enhance the intestinal absorption of peptides. Drug Discov Today 1997;2(4):148-55.
    [21] Mizuma T, Koyanagi A, Awazu S. Intestinal transport and metabolism of glucose-conjugated kyotorphin and cyclic kyotorphin: Metabolic degradation is crucial to intestinal absorption of peptide drugs. Biochim Biophys Acta 2000;1475(1):90-8.
    [22] Hichens M. A comparison of thyrotropin-releasing hormone with analogs: Influence of disposition upon pharmacology. Drug Metab Rev 1983;14(1):77-98.
    [23] Hashimoto M, Takada K, Kiso Y, Muranishi S. Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm Res 1989;6(2):171-6.
    [24] Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2003 Apr;2(4):289-95.
    [25] Calceti P, Salmaso S, Walker G, Bernkop-Schnurch A. Development and in vivo evaluation of an oral insulin-PEG delivery system. Eur J Pharm Sci 2004 Jul;22(4):315-23.
    [26] Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006 May-Jun;17(3):618-30.
    [27] Wang J, Chow D, Heiati H, Shen WC. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 2003 Mar 26;88(3):369-80.
    [28] Kipnes M, Dandona P, Tripathy D, Still JG, Kosutic G. Control of postprandial plasma glucose by an oral insulin product (HIM2) in patients with type 2 diabetes. Diabetes Care 2003 Feb;26(2):421-6.
    [29] Kidron M, Dinh S, Menachem Y, Abbas R, Variano B, Goldberg M, et al. A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects. Diabet Med 2004 Apr;21(4):354-7.
    [30] Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000;2(1):E6.
    [31] Varma MVS, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: A perspective from bioavailability enhancement. Pharmacol Res 2003;48(4):347-59.
    [32] Russell-Jones GJ. Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target 2004;12(2):113-23.
    [33] Kim SH, Jeong JH, Joe CO, Park TG. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate. J Control Release 2005;103(3):625-34.
    [34] Lim CJ, Shen WC. Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs. J Control Release 2005 Sep 2;106(3):273-86.
    [35] Bai Y, Ann DK, Shen WC. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci U S A 2005 May 17;102(20):7292-6.
    [36] Trehin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004 Sep;58(2):209-23.
    [37] Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005 Feb 28;57(4):529-45.
    [38] Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999 Sep 3;285(5433):1569-72.
    [39] Vives E. Present and future of cell-penetrating peptide mediated delivery systems: "is the Trojan horse too wild to go only to Troy?". J Control Release 2005 Dec 5;109(1-3):77-85.
    [40] Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles. Int J Pharm 2001 Jan 5;212(1):1-9.
    [41] Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov Today 2005 Sep 1;10(17):1145-57.
    [42] Shakweh M, Besnard M, Nicolas V, Fattal E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer's patches in mice. Eur J Pharm Biopharm 2005 Sep;61(1-2):1-13.
    [43] Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997 Nov;14(11):1568-73.
    [44] Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002 Dec 5;249(1-2):139-47.
    [45] Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005 Apr 11;293(1-2):271-80.
    [46] Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 2005 May;25(1):133-43.
    [47] Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 2004 Feb;12(2):65-70.
    [48] Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006;3(1):139-62.
    [49] Yuan X, Harada A, Yamasaki Y, Kataoka K. Stabilization of lysozyme-incorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups. Langmuir 2005 Mar 29;21(7):2668-74.
    [50] Mathot F, van Beijsterveldt L, Preat V, Brewster M, Arien A. Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. J Control Release 2006 Mar 10;111(1-2):47-55.
    [51] van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001 Nov 5;52(2):139-44.
    [52] Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 2005 Aug 11;299(1-2):155-66.
    [53] McGhee JR, Mestecky J, Dertzbaugh MT, Eldridge JH, Hirasawa M, Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 1992;10(2):75-88.
    [54] Mestecky J, McGhee JR. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987;40:153-245.
    [55] Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 2001;51(1-3):81-96.
    [56] Regnstrom K, Ragnarsson EGE, Koping-Hoggard M, Torstensson E, Nyblom H, Artursson P. PEI - A potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther 2003;10(18):1575-83.
    [57] Rothberg RM, Kraft SC, Michalek SM. Systemic immunity after local antigenic stimulation of the lymphoid tissue of the gastrointestinal tract. J Immunol 1973 Dec;111(6):1906-13.
    [58] Mowat AM, Parrot DM. Immunological responses to fed protein antigens in mice. IV. Effects ofstimulating the reticuloendothelial system on oral tolerance and intestinal immunity to ovalbumin. Immunology 1983 Dec;50(4):547-54.
    [59] Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch. Cell Tissue Res 1987 Mar;247(3):537-46.
    [60] Bland PW, Britton DC. Morphological study of antigen-sampling structures in the rat large intestine. Infect Immun 1984 Feb;43(2):693-9.
    [61] Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. I. Kinetics, antigen specificity and blocking by anti-Ia antisera. Immunology 1986 May;58(1):1-7.
    [62] Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. II. Selective induction of suppressor T cells. Immunology 1986 May;58(1):9-14.
    [63] Russell-Jones GJ. Oral vaccine delivery. J Control Release 2000 Mar 1;65(1-2):49-54.
    [64] Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin Drug Deliv 2007 Jul;4(4):323-40.
    [65] Dickinson BL, Clements JD. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 1995 May;63(5):1617-23.
    [66] Belyakov IM, Ahlers JD, Clements JD, Strober W, Berzofsky JA. Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific CTL. J Immunol 2000 Dec 1;165(11):6454-62.
    [67] Kotloff KL, Sztein MB, Wasserman SS, Losonsky GA, DiLorenzo SC, Walker RI. Safety and immunogenicity of oral inactivated whole-cell Helicobacter pylori vaccine with adjuvant among volunteers with or without subclinical infection. Infect Immun 2001 Jun;69(6):3581-90.
    [68] Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 2001 Mar 1;166(5):3451-7.
    [69] McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 2002 Oct 1;169(7):3914-9.
    [70] Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997 Aug;3(8):849-54.
    [71] Jones TR, Obaldia N, 3rd, Gramzinski RA, Charoenvit Y, Kolodny N, Kitov S, et al. Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine 1999 Aug 6;17(23-24):3065-71.
    [72] Aggarwal A, Kumar S, Jaffe R, Hone D, Gross M, Sadoff J. Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J Exp Med 1990 Oct 1;172(4):1083-90.
    [73] Ertl HC, Xiang Z. Novel vaccine approaches. J Immunol 1996 May 15;156(10):3579-82.
    [74] Piedra PA, Poveda GA, Ramsey B, McCoy K, Hiatt PW. Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: implication for gene therapy with adenovirus vectors. Pediatrics 1998 Jun;101(6):1013-9.
    [75] Daniell H. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 2006 Oct;1(10):1071-9.
    [76] Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. CurrOpin Biotechnol 2007 Apr;18(2):134-41.
    [77] Baca-Estrada ME, Foldvari M, Babiuk SL, Babiuk LA. Vaccine delivery: lipid-based delivery systems. J Biotechnol 2000 Sep 29;83(1-2):91-104.
    [78] Levine MM. Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr 2000 Oct;31(4):336-55.
    [79] Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Today 1990 Mar;11(3):89-97.
    [80] Moser C, Metcalfe IC, Viret JF. Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines 2003 Apr;2(2):189-96.
    [81] Jepson MA, Simmons NL, O'Hagan DT, Hirst BH. Comparison of poly(DL-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. J Drug Target 1993;1(3):245-9.
    [82] Kersten GF, Crommelin DJ. Liposomes and ISCOMs. Vaccine 2003 Feb 14;21(9-10):915-20.
    [83] Rimmelzwaan GF, Baars M, van Beek R, van Amerongen G, Lovgren-Bengtsson K, Claas EC, et al. Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and iscom vaccines. J Gen Virol 1997 Apr;78 ( Pt 4):757-65.
    [84] Vajdy M, Singh M. The role of adjuvants in the development of mucosal vaccines. Expert Opin Biol Ther 2005 Jul;5(7):953-65.
    [85] Boone DR, Whitman WB, Rouviere P. Diversity and taxonomy of methanogens. Methanogenesis 1993:35-80.
    [86] Madigan MT, Marrs BL. Extremophiles. Scientific American 1997;276(4):[d]82-7.
    [87] Basic knowledge of microbiology. Secrets Of Life.
    [88] Sprott GD. Structures of archaeobacterial membrane lipids. J Bioenerg Biomembr 1992;24:555-66.
    [89] Sprott GD, Choquet CG, Patel GB. Purification of ether lipids and liposome formation from polar lipid extracts of methanogenic archaea. Methanogens Archaea - A Laboratory Manual 1995:329-40.
    [90] De Rosa M, Gambacorta A, Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 1986 Mar;50(1):70-80.
    [91] De Rosa M, Trincone A, Nicolaus B, Gambacorta A. Archaebacteria: lipids, membrane structures, and adaptation to environmental stresses, in: G. di Prisco (Ed.), Life under Extreme Conditions, Springer. Heidelberg 1991: 61-87.
    [92] Van de Vossenberg JLCM, Driessen AJM, Konings WN. The essence of being extremophilic: The role of the unique archaeal membrane lipids. Extremophiles 1998;2(3):163-70.
    [93] Sprott GD, Brisson J, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, et al. A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta 1999 Sep 22;1440(2-3):275-88.
    [94] Sugai A, Sakuma R, Fukuda I, Kurosawa N, Itoh YH, Kon K, et al. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 1995;30(4):339-44.
    [95] Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 2008 Apr 16;26(17):2043-55.
    [96] Untersteller E, Fritz B, Bleriot Y, Sinay P. The structure of calditol isolated from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Compt Rend Acad Sci II C 2 1999:429.
    [97] Yamauchi K, Doi K, Yoshida Y, Kinoshita M. Archaebacterial lipids: Highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocholine. Biochimica et Biophysica Acta -Biomembranes 1993;1146(2):178-82.
    [98] Gliozzi A, Relini A, Chong PLG. Structure and permeability properties of biomimetic membranes of bolaform archaeal tetraether lipids. Journal of Membrane Science 2002;206(1-2):131-47.
    [99] Lo SL, Chang EL. Purification and characterization of a liposomal-forming tetraether lipid fraction. Biochem Biophys Res Commun 1990 Feb 28;167(1):238-43.
    [100] Clary L, Gadras C, Greiner J, Rolland JP, Santaella C, Vierling P, et al. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes. Chem Phys Lipids 1999 Jun;99(2):125-37.
    [101] Kates M. Archaebacterial lipids: structure, biosynthesis and function. Biochem Soc Symp 1992;58:51-72.
    [102] Gambacorta A, Gliozzi A, De Rosa M. Archaeal lipids and their biotechnological applications. World Journal of Microbiology & Biotechnology 1995;11(1):115-31.
    [103] Albers SV, van de Vossenberg JL, Driessen AJ, Konings WN. Adaptations of the archaeal cell membrane to heat stress. Front Biosci 2000;5:D813-20.
    [104] Yamauchi K, Doi K, Kinoshita M, Kii F, Fukuda H. Archaebacterial lipid models: Highly salt-tolerant membranes from 1,2-diphytanylglycero-3-phosphocholine. Biochimica et Biophysica Acta - Biomembranes 1992;1110(2):171-7.
    [105] Itoh YH, Sugai A, Uda I, Itoh T. The evolution of lipids. Adv Space Res 2001;28(4):719-24.
    [106] Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 1999;19(4):317-57.
    [107] Visscher I, Engberts JBFN. Vesicles of mixtures of the bolaform amphiphile sodium di-n-decyl alpha omegaeicosanyl bisphosphate and sodium di-n-decyl phosphate. Langmuir 2000;16(1):52-8.
    [108] Thompson DH, Wong KF, Humphry-Baker R, Wheeler JJ, Kim JM, Rananavare SB. Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy,31P NMR, X-ray scattering, and electron microscopy. J Am Chem Soc 1992;114(23):9035-42.
    [109] Gliozzi A, Relini A. Lipid vesicles as model systems for Archaea membranes, in: Y. Barenholz, D. Lasic (Eds.),. Handbook of Nonmedical Applications of Liposomes, CRC Press, Boca Raton, FL 1996:329-48.
    [110] Kanichay R, Boni LT, Cooke PH, Khan TK, Chong PL. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Archaea 2003 Oct;1(3):175-83.
    [111] Elferink MGL, Van Breemen J, Konings WN, Driessen AJM, Wilschut J. Slow fusion of liposomes composed of membrane-spanning lipids. Chemistry and Physics of Lipids 1997;88(1):37-43.
    [112] Fuhrhop JH, Liman U, Koesling V. A macrocyclic tetraether bolaamphiphile and an oligoamino dicarboxylate combine to form monolayered, porous vesicle membranes, which are reversibly sealed by EDTA and other bulky anions. J Am Chem Soc 1988;110(20):6840-5.
    [113] Bhattacharya S, De S. Synthesis and vesicle formation from dimeric pseudoglyceryl lipids with (CH2)m spacers: Pronounced m-value dependence of thermal properties, vesicle fusion, and cholesterol complexation. Chem A Eur J 1999;5(8):2335-47.
    [114] Relini A, Cassinadri D, Fan Q, Gulik A, Mirghani Z, De Rosa M, et al. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems. BiophysJ 1996 Oct;71(4):1789-95.
    [115] Uda I, Sugai A, Kon K, Ando S, Itoh YH, Itoh T. Isolation and characterization of novel neutral glycolipids from Thermoplasma acidophilum. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 1999;1439(3):363-70.
    [116] Sprott GD, Tolson DL, Patel GB. Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett 1997;154(1):17-22.
    [117] Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun 2000 Jan;68(1):54-63.
    [118] Sprott GD, Dicaire CJ, Gurnani K, Deschatelets LA, Krishnan L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine 2004 Jun 2;22(17-18):2154-62.
    [119] Sprott GD, Sad S, Fleming LP, Dicaire CJ, Patel GB, Krishnan L. Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen. Archaea 2003 Oct;1(3):151-64.
    [120] Krishnan L, Sad S, Patel GB, Sprott GD. Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. J Immunol 2000 Nov 1;165(9):5177-85.
    [121] Krishnan L, Sad S, Patel GB, Sprott GD. Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res 2003 May 15;63(10):2526-34.
    [122] Gurnani K, Kennedy J, Sad S, Sprott GD, Krishnan L. Phosphatidylserine receptor-mediated recognition of archaeosome adjuvant promotes endocytosis and MHC class I cross-presentation of the entrapped antigen by phagosome-to-cytosol transport and classical processing. J Immunol 2004 Jul 1;173(1):566-78.
    [123] Conlan JW, Krishnan L, Willick GE, Patel GB, Sprott GD. Immunization of mice with lipopeptide antigens encapsulated in novel liposomes prepared from the polar lipids of various Archaeobacteria elicits rapid and prolonged specific protective immunity against infection with the facultative intracellular pathogen, Listeria monocytogenes. Vaccine 2001 May 14;19(25-26):3509-17.
    [124] Krishnan L, Dennis Sprott G, Institute for Biological Sciences NRCoC. Archaeosomes as self-adjuvanting delivery systems for cancer vaccines. J Drug Target 2003;11(8-10):515-24.
    [125] Krishnan L, Gurnani K, Dicaire CJ, van Faassen H, Zafer A, Kirschning CJ, et al. Rapid clonal expansion and prolonged maintenance of memory CD8+ T cells of the effector (CD44highCD62Llow) and central (CD44highCD62Lhigh) phenotype by an archaeosome adjuvant independent of TLR2. J Immunol 2007 Feb 15;178(4):2396-406.
    [126] Swain M, Brisson JR, Sprott GD, Cooper FP, Patel GB. Identification of beta-L-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum. Biochim Biophys Acta 1997;1345(1):56-64.
    [127] Freisleben HJ, Bormann J, Litzinger DC, Lehr F, Rudolph P, Schatton W, et al. Toxicity and biodistribution of liposomes of the main phospholipid from the archaebacterium Thermoplasma acidophilum in mice. J Liposome Res 1995;5(1):215-23.
    [128] Omri A, Agnew BJ, Patel GB. Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol 2003 Jan-Feb;22(1):9-23.
    [129] Patel GB, Omri A, Deschatelets L, Sprott GD. Safety of archaeosome adjuvants evaluated ina mouse model. J Liposome Res 2002 Nov;12(4):353-72.
    [130] Lee TC. Biosynthesis and possible biological functions of plasmalogens. Biochim Biophys Acta 1998;1394(2-3):129-45.
    [131] Tengerdy RP, Lacetera NG. Vitamin E adjuvant formulations in mice. Vaccine 1991 Mar;9(3):204-6.
    [132] Folkers K, Morita M, McRee Jr J. The activities of coenzyme Q10 and vitamin B6 for immune responses. Biochem Biophys Res Commun 1993;193(1):88-92.
    [133] De Rosa M, Gambacorta A, Nicolaus B, Bu'Lock JD. Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium. Phytochemistry 1980;19(5):821-5.
    [134] Bode ML, Buddoo SR, Minnaar SH, du Plessis CA. Extraction, isolation and NMR data of the tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus harvested from a bioleaching reactor. Chem Phys Lipids 2008 Aug;154(2):94-104.
    [135] Weinstein JN, Yoshikami S, Henkart P, Blumenthal R, Hagins WA. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 1977 Feb 4;195(4277):489-92.
    [136] Weinstein JN, Klausner RD, Innerarity T, Ralston E, Blumenthal R. Phase transition release, a new approach to the interaction of proteins with lipid vesicles. Application to lipoproteins. Biochim Biophys Acta 1981 Oct 2;647(2):270-84.
    [137] Weinstein JN, Ralston E, Leserman LD, Klausner RD, Dragsten P, Henkart P, et al. In liposome technology. Gregoriadis, G (ed), CRC Press Inc, Boca Raton, Florida 1984;3:183.
    [138] Allen T. In liposome technology. Gregoriadis, G (ed), CRC Press Inc, Boca Raton, Florida 1984;3:177.
    [139] Weissleder R, Mahmood U. Molecular imaging. Radiology 2001 May;219(2):316-33.
    [140] Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003 Oct 24;302(5645):605-8.
    [141] Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003 Mar 1;17(5):545-80.
    [142] Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003 Feb;2(2):123-31.
    [143] Sun X, Annala AJ, Yaghoubi SS, Barrio JR, Nguyen KN, Toyokuni T, et al. Quantitative imaging of gene induction in living animals. Gene Ther 2001 Oct;8(20):1572-9.
    [144] Funovics M, Weissleder R, Tung CH. Protease sensors for bioimaging. Anal Bioanal Chem 2003 Nov;377(6):956-63.
    [145] Wang Y, Yu YA, Shabahang S, Wang G, Szalay AA. Renilla luciferase- Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol Genet Genomics 2002 Oct;268(2):160-8.
    [146] Caceres G, Zhu XY, Jiao JA, Zankina R, Aller A, Andreotti P. Imaging of luciferase and GFP-transfected human tumours in nude mice. Luminescence 2003 Jul-Aug;18(4):218-23.
    [147] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003 Jan;13(1):195-208.
    [148] Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem 1993 Mar-Apr;4(2):105-11.
    [149] Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006 Jul-Aug;8(4):226-36.
    [150] Slepushkin VA, Simoes S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, et al. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 1997 Jan 24;272(4):2382-8.
    [151] Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 2005 Apr 27;294(1-2):247-59.
    [152] Patel GB, Agnew BJ, Deschatelets L, Fleming LP, Sprott GD. In vitro assessment of archaeosome stability for developing oral delivery systems. Int J Pharm 2000 Jan 20;194(1):39-49.
    [153] Momekova D, Rangelov S, Yanev S, Nikolova E, Konstantinov S, Romberg B, et al. Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur J Pharm Sci 2007 Dec;32(4-5):308-17.
    [154] Song S, Liu D, Peng J, Sun Y, Li Z, Gu JR, et al. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm 2008 Nov 3;363(1-2):155-61.
    [155] Levy MY, Schutze W, Fuhrer C, Benita S. Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsul 1994 Jan-Feb;11(1):79-92.
    [156] Fan Q, Relini A, Cassinadri D, Gambacorta A, Gliozzi A. Stability against temperature and external agents of vesicles composed of archael bolaform lipids and egg PC. Biochim Biophys Acta 1995 Nov 22;1240(1):83-8.
    [157] Richards MH, Gardner CR. Effects of bile salts on the structural integrity of liposomes. Biochim Biophys Acta 1978;543(4):508-22.
    [158] Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharmaceutics and Drug Disposition 1995;16(5):351-80.
    [159] O'Connor CJ, Wallace RG, Iwamoto K, Taguchi T, Sunamoto J. Bile salt damage of egg phosphatidylcholine liposomes. Biochim Biophys Acta 1985 Jul 11;817(1):95-102.
    [160] Rowland RN, Woodley JF. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta 1980 Dec 5;620(3):400-9.
    [161] Nagata M, Yotsuyanagi T, Ikeda K. A two-step model of disintegration kinetics of liposomes in bile salts. Chem Pharm Bull (Tokyo) 1988 Apr;36(4):1508-13.
    [162] Chiang CM, Weiner N. Gastrointestinal uptake of liposomes. I. In vitro and in situ studies. Int J Pharm 1987;37(1-2):75-85.
    [163] Elferink MG, de Wit JG, Demel R, Driessen AJ, Konings WN. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem 1992 Jan 15;267(2):1375-81.
    [164] Choquet CG, Patel GB, Sprott GD, Beveridge TJ. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Applied Microbiology and Biotechnology 1994;42(2):375-84.
    [165] Sprott GD, Dicaire LP, Fleming LP, Patel GB. Stability of liposomes prepared from archaeobacterial lipids and phosphatidylcholine mixtures. Cells Mater 1996;6:143-55.
    [166] Lavelle EC, Sharif S, Thomas NW, Holland J, Davis SS. The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Deliv Rev 1995;18(1):5-22.
    [167] Gebert A, Rothkotter HJ, Pabst R. M cells in Peyer's patches of the intestine. Int Rev Cytol 1996;167:91-159.
    [168] Brayden DJ, Baird AW. Apical membrane receptors on intestinal M cells: potential targets for vaccine delivery. Adv Drug Deliv Rev 2004 Apr 19;56(6):721-6.
    [169] Porporatto C, Bianco ID, Correa SG. Local and systemic activity of the polysaccharidechitosan at lymphoid tissues after oral administration. J Leukoc Biol 2005;78(1):62-9.
    [170] Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 2005 Jan 10;57(3):333-55.
    [171] Eldridge JH, Meulbroek JA, Staas JK, Tice TR, Gilley RM. Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol 1989;251:191-202.
    [172] Foster N, Hirst BH. Exploiting receptor biology for oral vaccination with biodegradable particulates. Adv Drug Deliv Rev 2005 Jan 10;57(3):431-50.
    [173] Allaoui-Attarki K, Pecquet S, Fattal E, Trolle S, Chachaty E, Couvreur P, et al. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect Immun 1997 Mar;65(3):853-7.
    [174] Fattal E, Pecquet S, Couvreur P, Andremont A. Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens. Int J Pharm 2002 Aug 21;242(1-2):15-24.
    [175] Jones DH, McBride BW, Thornton C, O'Hagan DT, Robinson A, Farrar GH. Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infect Immun 1996 Feb;64(2):489-94.
    [176] Kofler N, Ruedl C, Rieser C, Wick G, Wolf H. Oral immunization with poly-(D,L-lactide-co-glycolide) and poly-(L-lactic acid) microspheres containing pneumotropic bacterial antigens. Int Arch Allergy Immunol 1997 Aug;113(4):424-31.
    [177] Allaoui-Attarki K, Fattal E, Pecquet S, Trolle S, Chachaty E, Couvreur P, et al. Mucosal immunogenicity elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly (D,L-lactide-co-glycolide) microspheres. Vaccine 1998 Apr;16(7):685-91.
    [178] Challacombe SJ, Rahman D, O'Hagan DT. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 1997 Feb;15(2):169-75.
    [179] Esparza I, Kissel T. Parameters affecting the immunogenicity of microencapsulated tetanus toxoid. Vaccine 1992;10(10):714-20.
    [180] Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 2001 Mar;18(3):352-60.
    [181] Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ. Oral immunization with Helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 1999 Mar;4(1):33-9.
    [182] Maloy KJ, Donachie AM, O'Hagan DT, Mowat AM. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 1994 Apr;81(4):661-7.
    [183] Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 2004 Nov;1(1):141-63.
    [184] Couvreur P. Polyalkylcyanoacrylates as colloidal drug carriers. Crit Rev Ther Drug Carr Syst 1988;5(1):1-20.
    [185] Chen H, Langer R. Oral particulate delivery: status and future trends. Adv Drug Deliv Rev 1998 Dec 1;34(2-3):339-50.
    [186] Okada J, Cohen S, Langer R. In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm Res 1995;12(4):576-82.
    [187] Chen H, Torchilin V, Langer R. Polymerized liposomes as potential oral vaccine carriers: Stability and bioavailability. J Control Release 1996;42(3):263-72.
    [188] Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226(497-509).
    [189] Ogue S, Takahashi Y, Onishi H, Machida Y. Preparation of double liposomes and their efficiency as an oral vaccine carrier. Biol Pharm Bull 2006;29(6):1223-8.
    [190] Venkatesan N, Vyas SP. Polysaccharide coated liposomes for oral immunization--development and characterization. Int J Pharm 2000 Aug 10;203(1-2):169-77.
    [191] Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000 Aug 17;406(6797):782-7.
    [192] Lefevre ME, Joel DD, Schidlovsky G. Retention of ingested latex particles in Peyer's patches of germfree and conventional mice. Proc Soc Exp Biol Med 1985 Sep;179(4):522-8.
    [193] LeFevre ME, Boccio AM, Joel DD. Intestinal uptake of fluorescent microspheres in young and aged mice. Proc Soc Exp Biol Med 1989 Jan;190(1):23-7.
    [194] Tomizawa H, Aramaki Y, Fujii Y, Hara T, Suzuki N, Yachi K, et al. Uptake of phosphatidylserine liposomes by rat Peyer's patches following intraluminal administration. Pharm Res 1993 Apr;10(4):549-52.
    [195] Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J Control Release 1990;11(1-3):205-14.
    [196] Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 2003 Dec 15;9(17):6551-9.
    [197] Sapra P, Moase EH, Ma J, Allen TM. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab' fragments. Clin Cancer Res 2004 Feb 1;10(3):1100-11.
    [198] Qian F, Cui F, Ding J, Tang C, Yin C. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules 2006 Oct;7(10):2722-7.
    [199] Kumar A, Lahiri SS, Singh H. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int J Pharm 2006 Oct 12;323(1-2):117-24.
    [200] Ling SS, Magosso E, Khan NA, Yuen KH, Barker SA. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm 2006 Mar;32(3):335-45.
    [201] Morishita M, Goto T, Nakamura K, Lowman AM, Takayama K, Peppas NA. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Release 2006 Feb 21;110(3):587-94.
    [202] Prego C, Fabre M, Torres D, Alonso MJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 2006 Mar;23(3):549-56.
    [203] Alonso-Sande M, Cuna M, Remunan-Lopez C, Teijeiro-Osorio D, Alonso-Lebrero JL, Alonso MJ. Formation of new Glucomannan - Chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules 2006;39(12):4152-8.
    [204] Besheer A, Wood KM, Peppas NA, Mader K. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration. J Control Release 2006 Mar 10;111(1-2):73-80.
    [205] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003 Feb 24;55(3):403-19.
    [206] Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A. Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 2002 Oct 30;83(3):365-75.
    [207] Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005 Apr 11;293(1-2):261-70.
    [208] Dailey LA, Kleemann E, Wittmar M, Gessler T, Schmehl T, Roberts C, et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res 2003 Dec;20(12):2011-20.
    [209] Lasic DD. Novel applications of liposomes. Trends in Biotechnology 1998;16(7):307-21.
    [210] Goto T, Morishita M, Nishimura K, Nakanishi M, Kato A, Ehara J, et al. Novel mucosal insulin delivery systems based on fusogenic liposomes. Pharm Res 2006 Feb;23(2):384-91.
    [211] Takeuchi H, Matsui Y, Yamamoto H, Kawashima Y. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release 2003 Jan 17;86(2-3):235-42.
    [212] Okada J, Cohen S, Langer R. In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm Res 1995;12(4):576-82.
    [213] Ravily V, Santaella C, Vierling P. Membrane permeability and stability in buffer and in human serum of fluorinated di-O-alkylglycerophosphocholine-based liposomes. Biochim Biophys Acta 1996 Nov 13;1285(1):79-90.
    [214] Han M, Watarai S, Kobayashi K, Yasuda T. Application of liposomes for development of oral vaccines: study of in vitro stability of liposomes and antibody response to antigen associated with liposomes after oral immunization. J Vet Med Sci 1997 Dec;59(12):1109-14.
    [215] Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S, et al. Oral delivery of insulin by using surface coating liposomes. Improvement of stability of insulin in GI tract. Int J Pharm 1997;157(1):73-80.
    [216] Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989 Mar;96(3):736-49.
    [217] Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 1997;14(3):221-86.
    [218] Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (CACO-2) cells. Biochem Biophys Res Commun 1991;175(3):880-5.
    [219] Gan LSL, Thakker DR. Applications of the Caco-2 model in the design and development of orally active drugs: Elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 1997;23(1-3):77-98.
    [220] Gan LS, Moseley MA, Khosla B, Augustijns PF, Bradshaw TP, Hendren RW, et al. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. Drug Metab Dispos 1996 Mar;24(3):344-9.
    [221] Tjia JF, Webber IR, Back DJ. Cyclosporin metabolism by the gastrointestinal mucosa. Br JClin Pharmacol 1991 Mar;31(3):344-6.
    [222] Kolars JC, Awni WM, Merion RM, Watkins PB. First-pass metabolism of cyclosporin by the gut. Lancet 1991 Dec 14;338(8781):1488-90.
    [223] Kavimandan NJ, Peppas NA. Confocal microscopic analysis of transport mechanisms of insulin across the cell monolayer. Int J Pharm 2008 Apr 16;354(1-2):143-8.
    [224] Becker C. Medical advances. For many diabetics, development of oral insulin--whether via an inhaler or a capsule--could mean the end of daily needlesticks and the beginning of a simpler treatment regimen. Mod Healthc 2003 Sep 8;33(36):32-4.
    [225] Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 2003 Jul;20(7):1071-84.
    [226] Axt J, Sarrach D, Zipper J. Biopharmaceutical studies on phospholipid liposomes as carriers for the oral administration of insulin. Pharmazie 1983 Apr;38(4):246-8.
    [227] Yoshimoto A, Okano N, Maezawa A, Ominato K, Sato T, Koseki Y, et al. Studies on serum insulin, blood glucose and nonesterified fatty acid following the oral glucose administration to the normal subjects. Radioisotopes 1982 May;31(5):245-7.
    [228] Gordon Still J. Development of oral insulin: progress and current status. Diabetes Metab Res Rev 2002 Jan-Feb;18 Suppl 1:S29-37.
    [229] Varshosaz J, Pardakhty A, Hajhashemi VI, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv 2003 Oct-Dec;10(4):251-62.
    [230] Foss AC, Goto T, Morishita M, Peppas NA. Development of acrylic-based copolymers for oral insulin delivery. Eur J Pharm Biopharm 2004 Mar;57(2):163-9.
    [231] Ubaidulla U, Khar RK, Ahmed FJ, Panda AK. Development and in-vivo evaluation of insulin-loaded chitosan phthalate microspheres for oral delivery. J Pharm Pharmacol 2007 Oct;59(10):1345-51.
    [232] Ubaidulla U, Khar RK, Ahmad FJ, Sultana Y, Panda AK. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. J Pharm Sci 2007 Nov;96(11):3010-23.
    [233] Lee VH. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 1988;5(2):69-97.
    [234] Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res 1996 Jun;13(6):896-901.
    [235] Iwanaga K, Ono S, Narioka K, Kakemi M, Morimoto K, Yamashita S, et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transit of insulin. J Pharm Sci 1999 Feb;88(2):248-52.
    [236] Xiong XY, Li YP, Li ZL, Zhou CL, Tam KC, Liu ZY, et al. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J Control Release 2007;120(1-2):11-7.
    [237] Clark MA, Hirst BH, Jepson MA. Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev 2000 Sep 30;43(2-3):207-23.
    [238] Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994 Aug 19;269(33):20807-10.
    [239] Rini JM. Lectin structure. Annu Rev Biophys Biomol Struct 1995;24:551-77.
    [240] Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 2004 Mar 3;56(4):425-35.
    [241] Meunier V, Bourrie M, Berger Y, Fabre G. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol 1995 Aug;11(3-4):187-94.
    [242] Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 1977 Mar;72(3):440-51.
    [243] Cuvelier CA, Quatacker J, Mielants H, De Vos M, Veys E, Roels HJ. M-cells are damaged and increased in number in inflamed human ileal mucosa. Histopathology 1994 May;24(5):417-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700