用户名: 密码: 验证码:
Achromobacter sp. CH-1菌解毒铬渣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬渣是铬盐等行业在生产过程中排放的有毒废渣,我国目前年产生铬渣近60万t,历年堆存量已达400万t。铬渣中水溶性的六价铬是致癌物,对环境及人类造成严重威胁,已成为社会亟待解决的问题。2003年发生的两起铬渣严重污染事故,引起世人的高度重视,铬渣治理势在必行。铬渣治理方法概括起来,主要有干法解毒和湿法解毒,但这两类方法存在或者解毒不够彻底、易于引起二次污染,或者处理成本过高等原因,还没有实施广泛的应用,至今尚未能彻底解决铬渣污染问题。
     为寻求一种高效低廉的铬渣解毒方法,首先对铬渣的性质及不同条件下的浸出特性进行了详细研究。铬渣是一种物相组成较为复杂的危险固体废物,其中含有易浸出的水溶性Cr(Ⅵ)和难浸出的酸溶性Cr(Ⅵ)。摇瓶实验结果表明反应温度、颗粒细度、搅拌速度对Cr(Ⅵ)浸出率有较大的影响,在铬渣渗滤柱水浸实验中,六价铬的浸出速率与液固比成反比关系,Cr(Ⅵ)浸出速率是逐渐减小的。进行了铬渣酸浸实验,得出HCl浸出Cr(Ⅵ)的最佳实验条件为:pH 3,液固比5:1,流速180ml/min,温度40℃。铬渣HCl浸出过程的数学模型为:v=11.58t~(-0.54)。在铬渣盐浸实验中,NaCl浸出的动力学方程为:v=3.38×10~(-7)C_(NaCl)~(0.26)。铬渣NaCl浸出反应表观活化能为34.24kJ/mol,Cr(Ⅵ)浸出速率受温度影响较大,κ与温度关系式为:κ(T)=exp(13.71—4117.9/T)。研究结果对铬渣解毒工艺及其参数的选择提供理论依据。
     从铬渣堆放场分离到一株能还原碱性介质中高浓度Cr(Ⅵ)的细菌,经鉴定为无色细菌属杆状菌(Achromobacter sp.),将其命名为CH-1菌。研究发现,CH-1菌适宜于碱性环境(8<pH<11)、好氧、中温(25-35℃)的条件下生存,可以利用有机碳和有机氮作为营养源。CH-1菌耐盐性能高,可达20 g/L;有效还原Cr(Ⅵ)达1.5g/L,耐受Cr(Ⅵ)能力可达4g/L。阳离子对还原抑制较大,阴离子影响较小;铬渣渗滤液经细菌处理后产生蓝灰色Cr(OH)_3沉淀。CH-1菌还原Cr(Ⅵ)的反应为零级反应。起到铬渣解毒细菌大规模培养。
     利用高效铬还原菌Achromobacter sp.CH-1进行了铬渣解毒实验,原渣摇瓶解毒Cr(Ⅵ)的浸出率达到88.69%,结果表明铬渣的微生物解毒具有可行性。提出并研究了“铬渣造粒—细菌解毒—回收铬”新工艺,铬渣柱浸解毒实验结果表明在最佳工艺条件下,Cr(Ⅵ)浸出率达到92.088%,解毒后的铬渣浸出液铬含量达到国家规定的废水排放标准(GB 8978-1996);解毒后废渣的浸出毒性达到国家固体废物浸出毒性鉴别标准(GB 5085.3-2007)的要求。
     研究了细菌解毒铬渣的机制。细菌解毒铬渣主要表现为浸出还原的直接作用机制,铬渣中的物相在细菌作用下发生解离,这种溶蚀慢慢向矿物颗粒的间隙和深层延伸,并进一步促进溶蚀作用的进行;细菌还原溶液中Cr(Ⅵ)为Cr(OH)_3。解毒后铬渣中的Ca_(12)Al_(14)O_(33)和Ca_4Al_2SO_(10)·16H_2O消失,方镁石(MgO)的含量也有较大降低,包裹于这些物质中的酸溶性Cr(Ⅵ)被释放,细菌高效解毒铬渣的关键在于细菌提高了铬渣中酸溶性Cr(Ⅵ)的浸出率。
     采用“铬渣造粒—细菌堆浸”工艺进行了现场中试研究,运行了10t/批、20t/批规模的细菌解毒铬渣的处理工程。优化了工艺参数,经过7-10天的运行,铬渣解毒彻底,达到国家危险废物浸出毒性鉴别标准(GB 5085.3-2007)的限值,且能回收90%左右的Cr(Ⅵ)。铬渣解毒成本初步估算为200元/t渣,证明了铬渣细菌解毒工业化的可行性,为铬渣的解毒提供了一条新途径。
Chromium-containing slag is a kind of the poisonous slag generated from chromate industry.The accumulated amount of chromium-containing slag in China was more than 4 million tons and 600 thousand tons are being discharged annually.Water soluble Cr(Ⅵ) in chromium-containing slag is a carcinogenic substance,which caused a seriously environmental threat and has become a urgent problem to be solved.Since two serious accident occurred by chromium-containing slag in 2003,much more attentions were paid on the detoxification of chromium-containing slag.Generally,the detoxification of chromium-containing slag includes dry-detoxification and wet-detoxification.The above two methods was not widely applied because of high cost or incomplete detoxification that results in the secondary pollution.Therefore,the pollution problem of the chromium-containing slag is still not solved.
     In this dissertation,the characteristics of chromium-containing s lag and its leaching were investigated in order to seek an effective and cheap method for detoxification of chromium-containing slag. Chromium-containing slag is a kind of hazardous solid waste with complicated phase composition.Chromium-containing slag contains both water-soluble Cr(Ⅵ) that is susceptible to leached out and aci d-soluble Cr(Ⅵ) that is difficult to be leached out.It was found th at temperature,particle diameter,stirring speed obviously affected Cr(Ⅵ) leaching ratio in shaking experiment.In water leaching expe riment,the leaching velocity was inversely proportional to the ratio of solid to liquid.In acid leaching experiment,the optimum condit ion for Cr(Ⅵ) leaching by HCl were pH 3.0,5:1 of liquid to solid ratio,180mL/min of stirring speed,40℃of temperature.The kinet ics of Cr(Ⅵ) leaching by HCl can be described with the followin g model:v=11.58t~(-0.54).And the kinetics model of Cr(Ⅵ) leaching by NaCl were:v=3.38×10~(-7) c_(Nacl)~(0.26) with the apparent activation energy of 34.24kJ/mol.The Cr(Ⅵ) leaching velocity was obviously influen ced by temperature and the relationship between k and temperature can be described with following equation:k(T)=exp(13.71—4117.9/ T).The results can provide theoretic basis to select technique and i ts parameters for the detoxification
     A bacterial strain that can reduce high concentrations of Cr(Ⅵ) in alkaline medium was isolated from chromium-containing slag site.It was identified as Achromobacter sp.and nominated as CH-1.Strain CH-1 grew in alkaline(8<pH<11) and aerobic condition,middle temperature (25-35℃) and organic carbon and organic nitrogen as nutrient source. Strain CH-1 was resistant to 20 g/L salt and 4 g/L Cr(Ⅵ).Its ability for Cr(Ⅵ) reduction reached up tol.5g/L.Moreover,cations showed significantly inhibitory effect on Cr(Ⅵ) reduction than anions.Blue Cr(OH)_3 precipitate was observed,during Cr(Ⅵ) reduction by CH-1.The reaction of Cr(Ⅵ) reduction by CH-1 was zero reaction.
     The detoxification of Cr(Ⅵ) containing slag with Achromobacter sp. CH-1 was carried out.The results revealed that Cr(Ⅵ) removal reached up to 88.69%in shaking experiment,implying that detoxification of chromium-containing slag with Achromobacter sp.CH-1 was practically feasible.Moreover,a novel technique of "granulation of chromium-containing slag-microbial detoxification-chromium recovery" was put forward in this study.In column leaching experiment,Cr(Ⅴ) reaching ratio was 92.088%under the optimum condition.Cr(Ⅵ) concentration in leachate of the detoxified slag met the waste water discharge standard(GB 8978-1996).The detoxified slag met the identification standard for hazardous waste- identification for extraction toxicity(GB 5085.3-2007).
     Macroscopic mechanism of microbial-detoxification of chromium containing slag was also studied in this study.The results showed that Cr(Ⅵ) was leached from chroraium-containing slag followed by the direct reduction by bacterial stains.Consequently,the phase composition of slag was decomposed by bacterial stains and this erosion action slowly extended into interspaces between slag particles,which further promoted the proceedings of erosion.The precipitation of Cr(OH)_3 was obtained during Cr(Ⅵ) reduction processes.Ca_(12)Al_(14)O_(33) and Ca_4Al_2SO_(10)·16H_2O in the detoxified slag disappeared.The content of periclase substantially decreased.Consequently,the enwrapped acid soluble Cr(Ⅵ) was released from the above chromium-containing substances.Thus,the key point of microbial-detoxification of chromium-containing slag was to enhance the leaching ratio of acid soluble Cr(Ⅵ).
     The pilot experiment for the detoxification of chromium-containing slag was carried out using the technique of "granulation of chromium-containing slag-microbial heap leaching".The project run 10t/batch and 20t/batch,respectively.Based on the optimization of technique parameters,chromium-containing slag was completely detoxified after running 7-10 days.The detoxified slag met the identification standard for hazardous waste- identification for extraction toxicity(GB 5085.3-2007) Meanwhile,about 90%of Cr(Ⅵ)was recovered.It was approximately estimated that the expenses of microbial detoxification for chromium-containing slag was 200 yuan per ton slag. The results verified that it is practically feasible on full scale.The outcome provides a new approach for the detoxification of chromium-containing slag.
引文
[1]成思危.铬盐生产工艺[M].北京:化学工业出版社,1988:18
    [2]纪柱.铬渣的物相组成及其对铬渣解毒和综合利用的影响[J].化工环保,1984,4(1):37-41
    [3]兰嗣国,殷惠民,狄一安等.浅谈铬渣解毒技术[J].环境科学研究,1998,11(3):53-56
    [4]中国经济信息网,环境发展:国家正在制定方案彻底治理铬渣污染 http://sdep.cei.gov.cn/index/a/aindex.htm
    [5]环境科学大辞典编辑委员会.环境科学大辞典[M].北京:中国环境科学出版社,1991.217-219
    [6]夏世钧,蔡宏道.中国大百科全书(环境科学)[M].北京:中国大百科全书出版社,1983.119-120
    [7]U.S.Environmental Protection Agency.IRIS database,October1996
    [8]丁翼.铬渣治理工作回顾及经验教训[J].化工环保,1994,14(6):210-213
    [9]杨扬.铬盐废渣污染触目惊心[J].化工管理,2003,1:4-6
    [10]王连升.环境健康化学[M].北京:科学出版社,1994.331-332
    [11]江澜,王小兰.铬的生物作用及污染治理[J].重庆工商大学学报(自然科学版),2004,11(4):335-339
    [12]谢永泉.铬的生态效应及人群保健[J].广东微量元素科学,1998,(4):13-15
    [13]顾宗勤.浅议我国铬盐行业的规划发展[J].化工技术经济,1999,17(3):11-13
    [14]刘健,张琴,代群.昔日不排污,今偿环境巨债[J].沿海经济,2003,12:38-39
    [15]胡舒为.民丰农化危机重重[J].知识经济,2003,12:42-45
    [16]重庆铬渣威胁三峡库区三峡库区环保行 http://www.envir.online.sh.cn/infor/index.asp
    [17]喻志科,言娟.长沙铬盐厂急需关停.红网 http://xwgl.rednet.com.cn/show.aspid=324924
    [18]科报网 经济特刊:铬盐废渣污染触目惊心铬盐行业现状令人痛心.http://stdaily.com/gb/economy
    [19]周跃.铬盐污染问题[J].铬盐工业,2003,5(3):37-38
    [20]兰嗣国,殷惠民.浅谈铬盐解毒技术[J].环境科学研究,1998,11(3)53-56
    [21]周跃.治理铬渣,世界难题的杀毒版 http://www.people.com. cn/GB/huanbao/1073/2759381.html
    [22]搬走毒渣山还清娄山河,青钢昨天开始处理囤积铬渣 http://www.sina-qd.com/z/2005-04-01/news_4260.shtml
    [23]饮水污染已达地下70米40年铬渣山流毒不浅 http://news.163.com/05/0419/07/1HMESJKA0001124T.html
    [24]马军,陶连印.我国铬盐生产现状及发展建议[J].无机盐工业,1990,8:1-3
    [25]中国经济信息网,环境发展:努力实现铬渣无害化处理.http://sdep.cei.gov.cn/index/a/aindex.htm
    [26]纪柱.铬渣的危害及无害化处理综述[J].无机盐工业,2003,35(3):1-4
    [27]余宇楠.国内外铬浸出渣治理方法概述[J].昆明冶金高等专科学校学报,1998,14(2):48-51
    [28]梁波,宁平,马晓利.含铬废渣的无害化研究.2003.16(4):23-26
    [29]Chai Li-yuan,He De-wen,Yu Xia,etal.Technological progress on detoxification and comprehensive utilization of chromium containing slag.Trans.Nonferrons Met.Soc.China2002,12(3).
    [30]刘大银,周才鑫,唐秋泉等.铬渣烧结矿炼制含铬生铁工业化生产试验研究[J].环境科学,1994,(5):31-33
    [31]梁爱琴,匡少平,白卯娟.铬渣治理与综合利用[J].中国资源综合利用,2003,1:15-18
    [32]董宝澍.铬渣的处理和利用[J].环境科学技术,1992,5(2):33-38
    [33]刘谟瑾.铬盐生产的三废治理[J].陕西化工,1991,1:64-67
    [34]任希廉,蒋宪玲.铬污染的防护与铬渣的综合利用[J].甘肃环境研究与监测,1996,9(1):52-54
    [35]兰嗣国,殷患民,狄一安等.浅谈铬洽解毒技术[J].环境科学研究,1998,11(3):53-56
    [36]兰嗣国,还博文.综合旋风炉焚烧处理铬渣技术.研究“八五”,国家科技攻关专题报告[M].北京:国家环境保护局科技处,1995.56
    [37]内蒙巴盟化工厂.旋风炉处理铬渣运行总结[J].化工环保,1990,10(3):8-10
    [38]刘谟瑾.我国铬盐生产铬渣衣副产品利用现状[J].无机盐工业,1988,6:24-26
    [39]方荣利.用铬渣生产水泥消除铬渣券性研究[J].四川环境.1993,2:18-21
    [40]国家环境保护局.北学工业固体废物治理[M].北京:中国环境科学出版社,1991.106-111
    [41]纪柱.铬盐生产的几项清洁工艺[M].98-99行业年会论文:13-24
    [42]丁翼.中国铬盐生产状况与展望[J].化工进展,2003,23(4):345-348
    [43]马书文.铬渣治理与资源化综述[J].无机盐工业,1997,2:19-22
    [44]郑礼胜,王士龙,李建霞.铬渣的稳定化研究[J].现代化工,1999,19(3):31-34
    [45]韩怀芬,郑庆锋,郑建军等.铬渣的长期稳定性试验研究[J].重庆环境科学,2003,25(11):48-52
    [46]纪柱.铬盐的液相氧化法工艺[J].铭盐工业,2003,1:23-28
    [47]沈镇平.河南义马万吨铬盐清洁项目顺利实施[J].皮革化工,2002,19(5):22
    [48]梁波.含铬废渣微波辐照解毒应用基础研究(博士学位论文).昆明:昆明理工大学,2002
    [49]Ti-Tin Wang.Microbial Reduction of Chromate Environrnental[J],Microbe-metal Interactions,2000 chapter10:225-232
    [50]Moore,W.A.,McDermott,GN.,Post,M.A.Mandia,J.W.,and Ettinger,M.B.Effects ofchromium on the activated sludge Progress[J].J.Water Pollut.Control Fed.,1961,33(1):50-58
    [51]Barth,E.F.,Ettinger,M.B.,Salotto,B.V.,and McDermott,G.N Summarey report on the effects of heavy metals on the biological treatment rocesses[J],J.Water pollut,control fed.1965,37(1):78-92
    [52]Lamb,A.and Tollefson,E.L.Toxic effects of cupric,chromate and chromicions on biological oxidation[J],Water Res.,1973,7(5):595-602
    [53]Prakasham R.S.,Merrie J.S,Sheela R.Biosorption of chromium by free and immobilized Rhizopus arrhizus.Environmental Pollution,1999,104(3):421-427
    [54]J.M.Tobin.Investgation of the mechanism of metal uptake by denatured rhizopus arrhizus biomass[J].Enzyme and Microbial Technoligy,1999,21(7):591-595
    [55]Romanenko V.L.et al.Patent Specification(Ⅱ)1475369[P].The patent office,London,1997
    [56]Schroeder,D.C.and Lee,G F.,Potential transformation of chromium in natural waters[J],water Air soil Pollut.1975,4(4):352-358.
    [57]Roda,I.Gand Smimov,G F.Biochemical treatment of cromium-containing,wastewater[J].Khimiya I Tekhnologiya Vody,1989,11(2):163-172
    [58]李福德.微生物治理电镀废水方法[J].电镀与精饰,2002,24(2):35-37
    [59]李福德,李昕,吴乾菁等.微生物法治理电镀废水新技术[J].给水排水,1997,23(6):25-29
    [60]汪频,李福德,刘大江.硫酸盐还原菌还原铬(Ⅵ)的研究[J].环境科学,1993,14(6):1-4
    [61]H Shen,Y T wang.Modeling Hexavalent Chromium Reduction In Escherichia Coli33456[J].Biotechnology and Bioengeering,1994,43(4):293-300
    [62]Hai Shen Yi-Tin.Biological Reduction of Chromium By E.Coli.Environmental Engineering[J],1994,120(3):560-571
    [63]H Shen,Y T wang.Hexavalent Chromium Removal In Two-Stage Bioreacter System[J].Environmental Engineering.1995,121(11):798-804
    [64]Hisao Ohtake,Eiji Fujii,Kiyoshi Toda.Bacterial Reduction of Hexavalent Chromium:Kinetic Aspects of Chromate Reduction By Enterobacter cloacae HO1[J],Biotechnology and Bioengeering 1990,4:227-235
    [65]Fujii,Kiyoshi Toda,Hisao Ohtake.Bacterial Reduction of Toxic HexavalentChromium Using a Fed-Batch Culture of Enterobacter cloacae Strain HO1.Fermentation and Bioengineering,1990,60(5):365-367
    [66]K Komori.Biological.Removal of Toxic Chromium Using an Enterobacter Cloacae Strain That Reduces Chromate Under Anaerobic Conditions[J].Biotechnology and Bioengineering,1990(35):951-954
    [67]倪修龙,王毓芳,徐章华.含铬废水的生物治理[J].上海化工,2000,25(23):4-6
    [68]周海涛,白毓谦.一株六价铬还原菌的分离及其用于含铬废水处理的初步研究[J].青岛海洋大学学报,1991,21(3):104-109
    [69]申如香,瞿建国,张晓旗等.微生物法处理冷轧含铬(Ⅵ)废水的试验研究[J].上海化工,2001(1):4-7
    [70]张建民,宋庆文,朱宝瑜等.生物法处理电镀铬废水的研究[J].西北纺织工学院学报,1999,13(4):421-424
    [71]耿振香,孙颖.微生物法处理含铬废水[J].化学工程师,2003,2:6-8
    [72]王保军,杨惠芳,李文忠.真菌还原Cr(Ⅵ)的研究[J],微生物学报 1998,(2):108-113
    [73]韩润平,蒋海涛,陆雍森.酵母菌Cr(Ⅵ)的生物吸附作用[J].环境保护科学,2001,104(27):28-31
    [74]常文越,陈晓东,冯晓斌等.含铬(Ⅵ)废物堆放场所土壤/地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境保护科学,2002,(6):32-37
    [75]纪柱.含Cr~(6+)废水废渣的治理新法[J].铬盐工业,1997,(1):21-27
    [76]曹宏斌,戴昊波,李玉平等.生物法直接解毒解铬渣[J].第一届污染控制与 资源化全国学术会议
    [77]胡勇,全学军,谭怀琴等.铬渣生物解毒实验研究[J].第一届污染控制与资源化全国学术会议
    [78]A.R.Shakoori M.Makhdoom R.U.Haq.Hexavalent chromium reduction by a dichromate-resistant gram-positivebacterium isolated from effuents of tanneries[J].Appl Microbiol Biotechnol.2000,53:348-351
    [79]U.Badar,N.Ahmed,A.J.Beswick et al Reduction of chromate by microorganisms isolated from metalcontaminated sites of karachi,Pakistan[J].Biotechnology Letters,2000.22:829-836
    [80]Carlo Viti,Luciana Giovannetti.Characterization of cultivable heterotrophic bacterialcommunities in Cr-polluted and unpolluted soilsusing Biolog and ARDRA approaches[J].Applied Soil Ecology,2004,5:1-12
    [81]赵晓红,张敏,李福德.SRV菌去除电镀废水中铜的研究[J].中国环境科学,1996,16(4):288-292
    [82]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1998.
    [83]工业固体废物有害特性试验与监测分析方法组.工业固体废物有害特性试验与监测分析方法(试行)[M].北京:中国环境科学出版社,1986.
    [84]刘方,张效苏,陈超五.铬渣中全量六价铬溶取方法研究[J].环境科学研究,1995,8(4):40-42
    [85]沈萍,范秀荣,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999
    [86]Whalley C,Hursthouse A,Rowlatt S,Iqbal-Zahid,Vaughan H,Durant R.Chromium speciation in natural waters draining contaminated land,Glasgow,UK[J].Water Air Soil Pollut,1999,112:389-405
    [87]James B.R.Hexavalent chromium solubility and reduction in alkaline solids enriched with chromite ore processing residue[J].J.Environ.Qual.1994,(23):227-233.
    [88]Hillier S.,Roe M.J.,Geelhoed.J.S.,Fraser.A.R.,Farmer.J.G.,Paterson.Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J].The Science of Total Environment.2003,308(1-3):195-210
    [89]Burke T.,Fagliano J.,et al.Chromite ore processing residue in Hudson County,New Jersey[J].Environ.Health.Persp.,92,131-137.
    [90]Higgins T.E,Halloran A.R.,Dobbins M.E,and Pittignano A.J.(1998) In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue[J].J.Air waste Manag.Assoc.48,1100-1106.
    [91]莫鼎成编.冶金动力学[M].长沙:中南工业大学出版社,1987,1
    [92]Chih-huang Weng,Huang C.P.and Paul F.Sanders.Effect of pH on Cr(Ⅵ)leaching from soil enriched in chromite ore processing residue[J].Environmental Geochemitry and Health,2001(23):207-211
    [93]Banks M.K.,Schwab A.P.,Carlos Henderson.Leaching and reduction of chromium in soil as affected by soil organic content and plants[J].Chemosphere 62(2006),255-264.
    [94]Zachara J.M.,Ainsworth C.C.,Cowan C.E.,Resch C.T.,1989.Adsorption of chromate by subsurface soil horizons[J].Soil.Soc.Am.J.53,418-428.
    [95]Zachara J.M.,Girvin D.C.,Schmidt R.L.,Resch C.T.,1987.Chromate adsorption on amorphous ion oxyhydroxide in the presence of major groundwater ions[J].Environ.Sci.Technol.21,589-594.
    [96]Imai Q.,Gloyna E.F.,1990.Effects of Ph and oxidation state of chromium on the behavior of chromium in the activated sludge process[J].Water Res.24,1443-1450.
    [97]纪柱.治理铬渣的两个关键[J].无机盐工业,2004,36(5):1-4
    [98]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社.1990,10.
    [99]H.Y Sohn,M.E.Wadsworth等著,郑蒂基译.提取冶金速率过程[M].北京:冶金工业出版社,1984,12
    [100]Desjardina V,Bayarda R,Hucka N et al.Effect of microbial activity on the mobility of chromium in soils[J].Waste Management,2002,22(2):195-200
    [101]Viktoriya V Konovalova,Galyna M Dmytrenko,Rinat R.Nigmatullin et al.Chromium(Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells[J].Enzyme and Microbial Technology.2003,33(7):899-907
    [102]Shakoori A R,Makhdoom M.,Haq R U.Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries[J].Appl Microbial Biotechnol.2000,53(3):348-351
    [103]Tyrone L.Daulton,Brenda J.Little,Kristine Lowe et al.Electron energy loss spectroscopy techniques for the study of microbial chromium(Ⅵ) redution[J].Microbiological Methods.2002,50(1),39-54
    [104]岑沛霖,蔡谨.工业微生物[M].北京:化学工业出版社,2000.58
    [105]Shen,H.and WangY.-T.,Biological reduction of chromium by E.coli[J].J.Environ.Eng.Am.Soc.Civil Eng.1994,120(3):553-563
    [106]Ohtake,H.,Komori,K.,Cervantes,C.,and Tida,A survey effective electron-donors for reduction of toxic hexalent chromium by Enterobacter cloacaeHO IT[J].Gen.Appl.Microbiol.1990.36(3):200-208
    [107]Komori,K.,.Wong,P.,and ohtake,.H.Factors affecting chromate reduction in Enterobacter cloacae Hol Appl.Microbiol.biotechol[J].1989,31(4):564-571
    [108]Fujie,K.,Tsucgida,T.,Urano,K.,and ohtake,H.,DeveloPmeni of a bioreactorsystem for the treatment of chromate wastewater using Enterobacter cloacaeHol[J],Water Sci.Technol.1994,30(3):230-239
    [109]J.M.Tobin,J.C.Roux.Mucor biosorbent for chromium removal from tanning effluent[J].Wat.Res,1998,32(5):1407-1416
    [110]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994:156-159
    [111]马前,宋卫锋,吴斌.含Cr(Ⅵ)废水生物处理技术及影响因素[J].四川环境,2001,20(4):19-22
    [112]袁廷芬,汤琦.制粒堆浸提金在龙王山金矿的生产实践[J].黄金.1994,1(5):39-42
    [113]张大维.氧化铜矿粉的制粒及柱浸实验初探[J].矿产保护与利用.1994,3:33-35
    [114]王卉,吕萍.含泥铜矿制粒堆浸-细菌氧化浸铜试验研究[J].湿法冶金.1997,(4):23-26
    [115]王旭东.粘土状金矿制粒堆浸厂工艺设计浅析[J].云南冶金.2000.29(1):30-31
    [116]王旭东.粘土状氧化矿制粒堆浸的工艺流程及生产实践[J].黄金科学技术.2000,8(1):32-35
    [117]吕萍.低品位高含泥氧化铜矿制粒堆浸新工艺的研究[J].矿业研究与开发.2001,21(2):32-34
    [118]周晓源,王卉.制粒堆浸技犬处理含泥铜矿[J].有色金属.2002,54(1):47-49
    [119]张一敏.球团理论与工艺[M].北京:冶金工业出版社,1997:48-53
    [120]刘光全.铬的浸出毒性试验方法研究[J].环境污染与防治.2000,8:12-14
    [121]韩怀芬,黄玉柱,金浸彤.铬渣水泥固化及固化体出毒性的研究[J].2002,3(7):9-12
    [122]王素芳,齐文启,陈亚蕾等.浸出毒性试验方法的研究[J].中国环境监测.1993,9(1):9-1
    [123]齐文启,李国刚,齐斐.国外固体废物浸出液毒性试验研究的现状[J].上海环境科学.1995,14(10):1-4
    [124]齐文启,孙宗光,李国刚.我国固体废物监测中存在的问题及解决办法[J].中国环境监测.1997,13(2):10-1
    [125]苑文颖,丁庭华,赵淑霞等.北京市工业固体有害废物浸出毒性研究[J].环境工程.2001,19(6):50-52
    [126]张纯一.铬(Ⅵ)还原菌的分离筛选及应用基础研究:[硕士学位论文].上海:华东师范大学,2004
    [127]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,2000
    [128]闵航.厌氧微生物学[M].浙江:浙江大学出版社:218
    [129]马锦民.硫酸盐还原菌处理含铬(Ⅵ)废水的基础研究:[硕士学位论文].上海:华东师范大学,2005
    [130]冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理[J].环境科学与技术.2004,27(6):104-107
    [131]万海清,苏仕军,朱家骅等.硫酸盐还原菌的生长因子及脱硫性能的研究[J].高等化学工程学报.2004,2(18):217-223
    [132]Gvozdyak P.L.,Mogilavich N.F.,Rylskii A.F.,and Grishchenko N.I.Reduction of hexavalent chromium by collection strains of bacteria[J].Mikrobiologiya.1986 55(6):958-966
    [133]Llovera S.,Bonet R.,Simon-Pujol M.D.,and Congregado F.Chromate reduction by reseting cells of chromate reduction by resting cells of Agrbacterium radiaobacter[J].Appl.Microbial.Biotechnol.1993,39(3):422-427
    [134]李新荣,沈德中.硫酸盐还原菌的生态特征及应用[J].应用生物学报.1999,(5):10-13
    [135]Yi-tin Wang,Chang-song Xiao.Factors affecting hexavalent chromium reduction in pure culture of bacteria[J].Water Research.1995,29(11):2467-2474
    [136]Golovacheva R.S.,Attachment of Sulfobacillus thermo sulfi- dooxidants Cells to the surface of Sulfide Minerals[J].Translated from Microbiologiya.1979,48(3):528-533
    [137]Blake R.C,McGinness S.Electron-trasfer proteins of bacteria that respire on iron.In:Torma AE,Apel ML,Brierley CL,eds[P].Biohydrometallurgical Technologies.Volm Ⅱ.Warrendale,Pen-nsylvania:TMS Press.1993:616-628
    [138]Ohmura N.and Blake R.C.Aporusticyanin Midiates the adhesion of Thibacillrs ferrooxidans to Pyrite[J].In International Biohy- drometallurgy Sympsium IBS97,Biomine 97,Sydney,Australia,1997,PBI.1-PB1.9
    [139]Silverman M.P.Mechanism of Bacterial Pyrite Oxidation[J].Bacteriol.1967,94:1046-1051
    [140]Suzuki H.,Tanaka T,Tano T,et al.Existence of sulfide binding protein in iron-oxidizing bacteria.In:Torma AE,Apel ML.Brierly CL,eds[J].Biohydrometallurgical Technologies.Vol Ⅱ.Warrendale,Pennsylvania;TMS Processing.1993:423-431
    [141]Kohr,William J.,Shrader,Vandy,Johansson Chris.Heap Bioleaching of copper from chalcopyritic ore concentrates using thermophilic bacteria for increased process temperature[P].WO 2000036168 AI 22 Jun 2000,70pp.
    [142]Sampson M.I.and Blake Ⅱ R.C.,Cell attachment and Oxygen Consumption of Two Strains of thiobacillus ferrooxidans[J].Mineral Engineering.1999,12(6):671-686.
    [143]Sampson M.I.,Philips C.V.and Blake Ⅱ R.C.,Influence of the Attachment of Acidophilic Bacteria during the oxidation of Mineral Sulfides[J].Mineral Engineering.2000,13(4):373-389
    [144]Hassen A.,Saidi N.,Cherif M.and Boudabous.Effencts of heavy metals on Pseudomonas Aeruginosa and Bacillus Thuringiensis[J].Bioresource Technology.1998,65(4):73-82
    [145]Carlos Cervante,Jus(?)s Campos-Garc(?)a,Silvia Devars,F(?)lix Guti(?)rrez-Corona,Herminia Loza-Tavera,Juan Carlos Torres-Guzm(?)n,Rafael Moreno-S(?)nchez.Interactions of chromium with microorganisms and plants[J].FEMS Microbiology Reviews.2001(25):335-347
    [146]刘斌.中南大学驯化出铬渣解毒细菌[J].中国环境报:2005-11-8(007)
    [147]李志屹.细菌解毒铬渣及其选择性回收铬的新技术通过鉴定.中国有色金属报[J]:2005-10-22(006)
    [148]胡宇芬,徐勇.淤泥中找到铬渣“解毒细菌”中南大学探索八年成果居国际领先水平.湖南日报:2005-9-22(A02)
    [149]胡宇芬,徐勇.中南大学分离出铬渣“解毒细菌”在铬渣治理的同时还可实现铬资源再生.中国矿业报:2005-11-3(006)
    [150]徐兰山,徐石平,鲁纪鸣.中南大学驯化出铬渣的“解毒细菌”.科技日报:2005-9-23(001)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700