用户名: 密码: 验证码:
空间生态传染病模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态传染病学这一新兴的交叉学科已成为当今生物数学研究中的前沿与热点。本论文选题于该领域的新焦点,即具有空间结构的生态传染病。空间生态传染病理论的提出扩展和丰富了种群及群落传染病研究,为环境变化和栖息地破坏下遭受疾病感染的濒危物种的研究提供了新颖的理论依据,并与空间技术相结合为从不同尺度研究疾病传播规律提供了深层次的生态与模型机理。本论文首先对生态传染病学的概念,理论,研究现状与进展进行综述,进而介绍了空间生态传染病的相关理论及模型;其次,基于疾病在捕食者中传播的生态传染病模型研究了Allee效应可能产生的复杂性动态以及疾病传播的时空动态与空间尺度,随机生境破坏和统计随机性之间的关系;再次,揭示生境破坏引起的空间环境异质性是如何影响空间宿主-寄生传染病系统中病毒的入侵,传播及物种分布模式,并阐述空间异质性的两个组分(丧失斑块的数量及其聚集程度)之间的相互关联性;最后,建立了宿主-寄生-捕食生态传染病模型,重点研究了生境破坏的不同空间格局对生态传染病动态的影响,并阐述了生态传染病系统内在的生物机制。其中,对捕食-食饵作用的生态传染病模型进行空间上的延伸以及讨论具有空间结构的生境破坏对生态传染病系统动态的影响都属于创新性的工作。论文主要采用两种研究手法:一是构建微分动力系统模型,例如偶对近似模型,利用相平面分析以及数值解对系统的平衡点及其稳定性进行阐述;二是建立空间显含的模拟模型,实现空间模式、结构与动态的可视化,弥补空间隐含模型对空间结构研究的不足。通过上述几个方面的研究,主要得出如下新结果:(1)Allee效应在种群动态中扮演稳定还是不稳定角色取决于它的强度;(2)感染率和捕食率都是影响生态传染病系统中物种空间模式的关键因素;(3)均匀场假设、局部相互作用以及统计随机性对病毒入侵和分布模式均有着重要的影响;(4)种群个体间相互作用的空间尺度复杂地影响了疾病传播的时空动态。随着邻体数目的增加,病毒的感染力度变得更大而且在空间上形成聚集的波形;(5)生境破坏及其空间结构在一定范围内有利于疾病的控制,这暗示人为对生境的干扰可作为疾病控制的一个潜在方法;(6)生境破坏的数量以及不同类型生境的空间分布格局都显著地影响了寄生病毒的入侵和传播,生境破碎化程度越高(高丧失斑块的数量或低聚集程度),将越有害于病毒的入侵和传播,这暗示了空间异质性是否有益于物种的入侵依赖于所考虑的生态过程;(7)由生境破坏引起的空间异质性的两个组分之间存在负偶联关系(trade-off);(8)在适度的生境破坏范围内,宿主种群能够平衡生境破坏带来的正负两种效应并呈现增长趋势;(9)在捕食-食饵系统中,寄生感染病毒极有可能在生境破坏量较低时爆发;(10)物种在面临生境破坏或者其它环境压力时表现出更高的聚集分布策略;(11)寄生-宿主/食饵-捕食生态传染病系统与共位捕食(intraguild predation)食物网结构具有相似的生物机制,其中捕食者扮演共位捕食者的角色,已感染食饵作为共位食饵,易感染食饵扮作共同消耗的资源;(12)位于最高营养级水平的种群对生境破坏的响应不一定是最敏感的,这不仅依赖于内在的生物机制同时也依赖于外在的环境干扰。
Eco-epidemiology is a newly emerged cross discipline and now has been the frontiers and hotspots in the research of mathematical biology. The subject of this dissertation is the spatial eco-epidemiology, which is a new focus of this field. Spatial eco-epidemiology has extended and enriched the research of population and community epidemiology. It provides novel theoretical grounds for endangered species suffering a disease with the environmental changes and habitat destruction. Combined with spatial technology, it has provides deep ecological mechanisms for disease transmission at different scales. We firstly summarize the concept, theory, frontiers and development of eco-epidemiology in detail, and then discuss the theories and models in spatial eco-epidemiology. Secondly, based on the eco-epidemiological model where the predator suffering the epidemic, we investigate the complex dynamics due to Allee effect, and the effects of spatial scale, habitat loss and demographic stochasticity on the spatiotemporal dynamics of the epidemic transmission. Thirdly, we reveal how the spatial landscape heterogeneities due to habitat loss affect the invasion, transmission and distribution patterns in host-parasite epidemic system, and illustrate the relation between the two components of spatial heterogeneities. Finally, we construct the host-parasite-predation eco-epidemiologic model, and study primarily the effects of habitat loss with different spatial configuration on the dynamics of eco-epidemiologic system, and also explore the interal biological mechanism of eco-epidemiology. Among of them, the extension with eco-epidemiological model on predator-prey interactions at spatial scale, and discussion the effects of spatial structure of habitat loss on eco-epidemiological systems both are innovative works. Two approaches will be utilized in this dissertation. One is the differential dynamical system, such as pair approximation. I will use the phase plane analysis and numerical solution to illustrate the equilibriums and their stability of the system. The other is constructing the spatially explicit simulation, and then to achieve the explicit graphic mode of the spatial pattern, structure and dynamics, which can make up for the deficiency of spatially implicit model. We have obtained the following new results: (1) Allee effect is a stabilizing or a destabilizing force in ecological systems could be determined by its intensity. (2) The infection rate and predation rate both are the key factors which affecting the spatial patterns of species in the eco-epidemiological systems. (3) Mean-field assumption, local interaction and demographic stochasticity have great influence on the disease invasion and distribution patterns. (4) Spatial scale of interactions between individuals affects complexly the spatiotemporal dynamics of epidemic transmission. With increasing of neighborhood size, the infected force become stronger and form aggregated spreading wave. (5) At a certain range, habitat loss and its spatial structure can benefit the control of the epidemic disease, which indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation. (6) Not only the quantity of habitat loss but also the spatial correlations of patch types caused by nonrandom habitat loss affect the invasion and transmission of disease. More fragmented landscape (high amount of habitat loss, low clustering of lost patches) hinders the parasitic infection, which also indicates that whether the spatial heterogeneity benefits or hinders the invasion is dependent on the considered ecological process. (7) Two components of the spatial heterogeneity (the amount and spatial autocorrelation of the lost habitat) form a trade-off in determining the host-parasite dynamics. (8) Within a certain range of habitat loss, host can counterbalance the positive and negative effects, and shows a rising tendency. (9) The epidemic is more likely to break out in the prey-predator system if only a small amount of habitat loss. (10) A highly aggregated distribution of species is a common behavioral strategy when dealing with habitat loss or other environmental stresses. (11) The parasite-host/prey-predator eco-epidemiological systems have the similar mechanism with the intraguild predation systems, and the predator acts as the intraguild predation, the infected prey acts as intraguild prey, and the susceptible prey acts as shared resource. (12) Species at the highest trophic level are no longer affected the most by habitat loss, which depend not only on the biological mechanism but also on the external environmental disturbances.
引文
[1]Adler, F.R., Nuernberger, B., 1994. Persistence in patchy irregular landscapes. Theor.Popul. Biol.45, 41-75.
    [2] Allee, W.C., 1931. Animal Aggregations, a Study in General Sociology. University of Chicago Press, Chicago, USA.
    [3] Amarasekare, P., 1998. Allee effect in metapopulation dynamics. Am. Nat. 152, 298-302.
    [4] Amarasekare, P., 2004. Spatial dynamics of mutualistic interactions. J. Anim. Ecol. 73,128-140.
    [5] Amarasekare, P., 2006. Productivity, dispersal and the coexistence of intraguild predators and prey. J. Theor. Biol. 243, 121-133.
    [6] Anderson, R.M., 1991. Populations and infectious-diseases: ecology or epidemiology-the 8th Tansley lecture. J. Anim. Ecol. 60, 1-50.
    [7] Anderson, R.M., May R.M., 1978. Regulation and stability of host-parasite population interactions-Ⅰ. Regulatory processes. J. Anim. Ecol. 47, 219-247.
    [8] Anderson, R.M., May R.M., 1979. Population biology of infectious diseases: part I.Nature 280, 361-367.
    [9] Anderson, R.M., May, R.M., 1981. The population dynamics of micro-parasites and their invertebrate hosts. Philos. Trans. R. Soc. London B 291, 451-524.
    [10] Anderson, R.M., May, R.M., 1982. Population dynamics of human helminth infections:control by chemotherapy. Nature 297, 557-563.
    [11] Anderson, R.M., May, R.M., 1986. The invasion, persistence, and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314,533-570.
    [12] Andren, H., 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat-a review. Oikos 71, 355-366.
    [13] van Baalen, M., Rand, D.A. 1998. The unit of selection in viscous populations and the ecolution of altruism. J. Theor. Biol. 193, 631-648.
    [14] Bairagi, N., Chattopadhyay, J., 2008. The evolution on eco-epidemiological systems theory and evidence. Journal of Physics: Conference Series doi: 10.1088/1742-6596/96/1/012205.
    [15] Bairagi, N., Roy, P.K., Chattopadhyay, J., 2007. Role of infection on the stability of a predator-prey system with several response functions-A comparative study. J. Theor. Biol.248, 10-25.
    [16] Bascompte, J., Sole, R.V., 1998. Effects of habitat destruction in a prey-predator metapopulation model. J. Theor. Biol. 195, 383-393.
    [17] Begon, M., Bowers, R.G., 1995. Beyond host-pathogen dynamics. In: Grenfell, B.T.,Dobson, A.P. (Eds.), Ecology of Disease in Natural Populations. Cambridge University Press, Cambridge, pp 479-509.
    [18] Begon, M., Harper, J.L., Townsend, C.R., 1986. Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford.
    [19] Beltrami, E., Carroll, T.O., 1994. Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857-863.
    [20] Berec, L., Boukal, D.S., Berec, M., 2001. Linking the Allee effect, sexual reproduction,and temperature-dependent sex determination via spatial dynamics. Am. Nat. 157,217-230.
    [21] Beretta, E., Kuang, Y., 1998. Modelling and analysis of a marine bacteriophage infection.Math. Biosci. 149, 57-76.
    [22] Bj(?)rnstad, O.N., Andreassen, H.P., Ims, R.A., 1998. Effects of habitat patchiness and connectivity on the spatial ecology of the root vole Microtus oeconomus. J. Anim. Ecol.67, 127-140.
    [23] Boccara, N., Cheong, K., 1992. Automata network models for the spread of infectious diseases in a population of moving individuals. J. phys. A. 25, 2447-2461.
    [24] Bolker, B.M., Pacala, S.W., 1997. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179-197.
    [25] Bommarco, R., Firle, S.O., Ekbom, B, 2007. Outbreak suppression by predators depends on spatial distribution of prey. Ecol. Model. 201, 163-170.
    [26] Boots, M., Sasaki, A., 2001. Parasite-driven extinction in spatially explicit host-parasite systems. Am. Nat. 34, 707-713.
    [27] Borer, E.T., 2006. Does adding biological detail increase coexistence in an intraguild predation model? Ecol. Model. 196, 447-461.
    [28] Brannstrom, A., Sumpter, D.J.T., 2005. Coupled map lattice approximations for spatially explicit individual-based models of ecology. Bull. Math. Biol. 67, 663-682.
    [29] Cantrell, R.S., Cosner, C, 1991. The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315-338.
    [30] Carlsson-Graner, U., 2006. Disease dynamics, host specificity and pathogen persistence in isolated host populations. Oikos 112, 174-184.
    [31] de Castro, F., Bolker, B., 2005. Mechanisms of disease-induced extinction. Ecol. Lett. 8,117-126.
    [32] Chattopadhyay, J., Arino, O., 1999. A predator-prey model with disease in the prey.Nonlinear Anal. 36, 747-766.
    [33] Chattopadhyay, J., Bariagi, N., 2001. Pelicans at risk in Salton Sea-an eco-epidemiological study. Ecol. Model. 136, 103-112.
    [34] Chattopadhyay, J., Pal, S., 2002. Viral infection on phytoplankton zooplankton system-a mathematical model. Ecol. Model. 151, 15-28.
    [35] Chattopadhyay, J., Sarkar, R.R., Ghosal, G., 2002. Removal of infected prey prevent limit cycle oscillations in an infected prey-predator system-a mathematical study. Ecol. Model.156, 113-121.
    [36] Chen, J.C., Elimelech, M., Kim, A.S., 2005. Monte Carlo simulation of colloidal membrane filtration: Model development with application to characterization of colloid phase transition. J. Membr. Sci. 255, 291-305.
    [37] Cliff, A.D., Ord, J.K., 1981. Spatial Processes. Pion, London.
    [38] Courchamp, F., Clutton-Brock, T., Grenfell, B., 2000. Multipack dynamics and the Allee effect in the African wild dog, Lycaon Pictus. Anim. Cons. 3, 277-285.
    [39] Courchamp, F., Macdonald, D.W., 2001. Crucial importance of pack size in the African wild dog Lycaon Pictus. Anim. Cons. 4, 169-174.
    [40] Cruickshank, I., Gurney, W.S.C., Veitch, A.R., 1999. The characteristics of epidemics and invasions with thresholds. Theor. Popul. Biol. 56, 279-292.
    [41] Delgado, M., Molina-Becerra, M., Suarez, A., 2005. Relating disease and predation: equilibria of an epidemic model. Math. Methods. Appl. Sci. 28, 349-362.
    [42] Deredec, A., Courchamp, F., 2003. Extinction thresholds in host-parasite dynamics. Ann.Zool. Fenn. 40, 115-130.
    [43] Deredec, A., Courchamp, F. 2006. Combined impacts of Allee effects and parasitism.Oikos 112,667-679.
    [44] Dieckmann, U., Law, R., Metz, J.A.J., 2000. The geometry of ecological interactions:simplifying spatial complexity. Cambridge University Press, Cambridge.
    [45] Durrett, R., Levin, S., 1994. The importance of being discrete (and spatial). Theor. Popul.Biol. 46, 363-394.
    [46] Durrett, R., Levin, S., 1996. Spatial model for the species-area curves. J. Theor. Biol. 179,119-127.
    [47] Dwyer, G, Dushoff, J., Yee, S.H., 2004. The combined effects of pathogens and predators on insect outbreaks. Nature 430, 341-345.
    [48] Elton, C.S., 1958. The Ecology of Invasion by Animals and Plants. Methuen, London.
    [49] Epperson, B.K., 2003. Covariances among join-count spatial autocorrelation measures.Theor. Popul. Biol. 64, 81-87.
    [50] Fahrig, L., Merrian, G, 1994. Conservation of fragmented populations. Cons. Biol. 8,50-59.
    [51] Feagin, R.A., Wu, X.B., Feagin, T., 2007. Edge effects in Iacunarity analysis. Ecol.Model. 201, 262-268.
    [52] Fortin, M.J., Dale, M.R.T., ver Hofe, J., 2002. Spatial analysis in ecology. In:El-Shaarawi, A.H., Piegorsch, W.W. (Eds.), Encyclopedia of Environmentrics. Wiley,New York, pp 2051-2058.
    [53] Fox, J.W., Olsen, E., 2000. Food web structure and the strength of transient indirect effects. Oikos 90, 219-226.
    [54] Freedman, H.I., 1990. A model of predaor-prey dynamics as modified by the action of parasite. Math. Biosci. 99, 143-155.
    [55] Freedman, H.I., Wolkowicz, G.S.K., 1986. Predator-prey system with group defense: the paradox of enrichment revisited. Bull. Math. Biol. 48, 493-508.
    [56] Gai, F., Hasson, K.C., McDonald, J.C., Anfinrud, P.A., 1998. Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin. Science 279,1886-1891.
    [57] Gao, L.Q., Hethcote, H.W., 1992. Disease transmission models with density-dependent demographics. J. Math. Biol. 30, 717-731.
    [58] Garrett, L.J.H., Jones, C.G., Cristinacce, A., Bell, D.J., 2007. Competition or co-existence of reintroduced, critically endangered Mauritius fodies and invasive Madagascar fodies in lowland Mauritius? Biol. Conserv. 140, 19-28.
    [59] Gilpin, M.E., Rosenzweig, M.L., 1972. Enriched predator-prey systems: Theoretical stability. Science 177, 902-904.
    [60] Grassly, N.C., Fraser, C, 2006. Seasonal infectious disease epidemiology. Proc. R. Soc.B.273,2541-2550.
    [61] Greenhalgh, D., Haque, M., 2007. A predator-prey model with disease in the prey species only. Math. Meth. Appl. Sci. 30, 911-929.
    [62] Greenman, J., Kamo, M., Boots, M., 2004. External forcing of ecological and epidemiological systems: a resonance approach. Physica D 190, 136-151.
    [63] Grenfell, B.T., Bolker, B.M., Kleezkowski, A., 1995. Seasonality and extinction in chaotic metapopulations. Proc. R. Soc. London B 259, 97-103.
    [64] Grenfell, B.T., Dobson, A.P., 1995. Ecology of infectious disease in natural populations.Cambridge: Cambridge University Press.
    [65] Gulland, F.M.D., 1995. The impact of infectious diseases on wild animal populations-a review. Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge.
    [66] Hadeler, K.P., Freedman, H.I., 1989. Predator-prey populations with parasitic infection. J.Math. Biol. 27, 609-631.
    [67] Hall, S. R., Duffy, M. A., Caceres, C. E., 2005. Selective predation and productivity jointly drive complex behavior in host-parasite systems. Am. Nat. 165, 70-81.
    [68] Han, L., Ma. Z., 2001. Four-Predator Prey Models with Infectious Diseases. Math. Comput. Model. 34, 849-858.
    [69] Hanski, I., 2001. Spatially realistic theory of metapopulation ecology.Naturwissenschaften 88, 372-381.
    [70] Hanski, I., Kuussaari, M., Nieminen, M., 1994. Metapopulation structure and migration in the butterfly Melitaeacinxia. Ecology 75, 747-762.
    [71] Hansson, L., 1991. Dispersal and connectivity in metapopulations. In: Gilpin M, Hanski I (Eds) Metapopulation dynamics: brief history and conceptual domain. Academic,London, pp 89-103.
    [72] Haque, M., Venturino, E., 2006. The role of transmissible disease in the Holling-Tanner predator-prey model. Theor. Popul. Biol. 70, 273-288.
    [73] Harada, Y., Ezoe, H., Iwasa, Y., Matsuda, H., Sato, K., 1995. Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48, 65-91.
    [74] Harada, Y, Iwasa, Y, 1994. Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36, 237-249.
    [75] Hassell, M.P., May, R.M., Pacala, S.W., Chesson, P.L., 1991. Spatial structure and chaos in insect population dynamics. Nature 353, 255-258.
    [76] Haydon, D.T., Laurenson, M.K., Sillero-Zubiri, C, 2002. Integrating epidemiology into population viability analysis: managing the risk posed by rabies and canine distemper to the Ethiopian wolf. Cons. Biol. 16, 1372-1385.
    [77] Hethcote, H.W., Wang, W.D., Han, L.T., Ma, Z.E., 2004. A predator-prey model with infected prey. Theor. Popul. Biol. 66, 259-268.
    [78] Hiebeler, D., 2000. Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81, 1629-1641.
    [79] Hiebeler, D., 2004. Competition between near and far dispersers in spatially structured habitats. Theor. Popul. Biol. 66, 205-218.
    [80] Hiebeler, D., 2005. A cellular automaton SIS epidemiological model with spatially clustered recoveries. Lect. Notes Compu. Sci. 3515, 360-367.
    [81] Hiebeler, D., Morin, B., 2007. The effect of static and dynamic spatially structured disturbances on a locally dispersing population. J. Theor. Biol. 246, 136-144.
    [82] Hirzel, A.H., Nisbet, R.M., Murdoch, W.W., 2007. Host-parasitoid spatial dynamics in heterogeneous landscapes. Oikos 116, 2082-2096.
    [83] Holmes, J.C., Bethel, W.M., 1972. Modification of intermediate host behavior by parasites. In: Canning E.V., Wright C.A. (Ed.), Behavioral aspects of parasite transmission. Suppl. I to Zool. f. Linnean Soc. 51, 123.
    [84] Holt, R.D., Lawton, J.H., Polis, G.A., Martinez, N.D., 1999. Trophic rank and the species-area relationship. Ecology 80, 1495-1504.
    [85] Holt, R.D., Polis, G.A., 1997. A theoretical framework for intraguild predation. Am. Nat.149, 745-764.
    [86] Hudson, P.J., Greenman, J.V., 1998. Competition mediated by parasites: biological and theoretical progress. Trends Ecol. Evol. 13, 387-390.
    [87] Hui, C, Li, Z.Z., 2003. Dynamical complexity and metapopulation persistence. Ecol. Model. 164,201-209.
    [88] Hui, C, Li, Z.Z., 2004. Distribution patterns of metapopulation determined by Allee effects. Popul. Ecol. 46, 55-63.
    [89] Hui, C, McGeoch, M.A., 2007a. Spatial Patterns of Prisoner's Dilemma Game in Metapopulations. Bull. Math. Biol. 69, 659-676.
    [90] Hui, C, McGeoch, M.A., 2007b. A self-similarity model for the occupancy frequency distribution. Theor. Popul. Biol. 71, 61-70.
    [91] Hui, C, McGeoch, M.A., Warren, M., 2006. A spatially explicit approach to estimating species occupancy and spatial correlation. J. Anim. Ecol. 75, 140-147.
    [92] Hui, C, Zhang, F., Han, X., Li, Z.Z., 2005. Cooperation evolution and self-regulation dynamics in metapopulation: stage-equilibrium hypothesis. Ecol. Model. 184, 397-412.
    [93] Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat., 95, 137-147.
    [94] Ives, A.R., May, R.M., 1985. Competition within and between species in a patchy environment: relations between mircroscopic and macroscopic models. J. Theor. Biol.115,65-92.
    [95] Iwasa, Y., 2000. Lattice models and pair approximation in ecology. In: Dieckmann U,Law R, Metz J (Eds), The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge
    [96] Johansen, A., 1994. Spatio-temporal self-organisation in a model of disease spreading.Physica D 78, 186-193.
    [97] Julicher, F., 2006. Statistical physics of active processes in cells. Physica A 369, 185-200.
    [98] Katori, M., Konno, N., 1991. Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115-130.
    [99] Keeling, M.J., 1995. Dynamics and Evolution of spatial host-parasite systems. Ph.D.Thesis, University of Warwick.
    [100] Keeling, M.J., 1999. Correlation equations for endemic diseases: externally imposed and internally generated heterogeneity. Proc. R. Soc. London B 266, 953-961.
    [101]Keeling, M.J., Rand, D.A., 1996. Spatial correlations and local fluctuations in host-parasite ecologies. In: Glendinning P (Ed.), From Finite to Infinite Dimensional Systems. Kluwer, Amsterdam.
    [102]Keeling, M.J., Rand, D.A., Morris, A.J., 1997. Correlation models for childhood epidemics. Proc. R. Soc. London B 264, 1149-1156.
    [103]Keeling, M.J., Woolhouse, M.E., May, R.M., Davies, G, Grenfell, B.T., 2003. Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136-142.
    [104]Keeling, M.J., Woolhouse, M.E., Shaw, D.J., Matthews. L., Chase-Topping, M., Haydon,D.T., Cornell, S.J., Kappey, J., Wilesmith, J., Grenfell, B.T., 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294,813-817.
    [105]Keitt, T.H., Lewis, M.A., Holt, R.D., 2001. Allee effects, invasion pinning, and species'borders. Am. Nat. 157, 203-216.
    [106]Kermack, W.O., McKendrick, A.G., 1927. Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc. A 115, 700-721.
    [107] Kermack, W.O., McKendrick, A.G., 1932. Contributions to the mathematical theory of epidemics. II -The problem of endemicity, Proc. Roy. Soc. A 138, 55-83.
    [108]Kondoh, M., 2003. Habitat fragmentation resulting in overgrazing by herbivores. J.Theor. Biol. 225, 453-460.
    [109]Lafferty, K.D., Morris, A.K., 1996. Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390-1397.
    [110]Lainson, R., 1989. Demographic changes and their influence on the epidemiology of the American leishmaniases. In M Service, Demography and Vector Borne Diseases, CRC Press, Boca Raton, FL., pp 85-106.
    [11l]Lamont, B.B., Klinkhamer, P.G.L., Witkowski, E.T.F., 1993. Population fragmentation may reduce fertility to zero in Banksia goodie: a demonstration of the Allee effect.Oecologia 94, 446-450.
    [112]Law, R., Dieckmann, U., 2000. A dynamical system for neighborhoods in plant communities. Ecology 81, 2137-2148.
    [113]Law, R., Herben, T., Dieckmann, U., 1997. Non-manipulative estimates of competition coefficients in a montane grassland community. J. Ecol. 85, 505-518.
    [114]Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237-240.
    [115]Levin, S.A., 1992. The problem of pattern and scale in biology. Ecology 73, 1943-1967.
    [116]Li, Z., Gao, M., Hui, C, Han, X., Shi, H., 2005. Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecol. Model. 185,245-254.
    [117]Lin, Z., 2005. The ecological order of persisting species during habitat destruction. Ecol.Model. 184,249-256.
    [118]Liu, Q.X., Jin, Z., 2005. Cellular automata modelling of SEIRS. Chin. Phys. 14 (07),1370-1377.
    [119]MacArthure, R.H., 1972. Geographical Ecology. Harper & Row, New York.
    [120]MacNeil, C, Dick, J.T.A., Hatcher, M.J., Terry, R.S., Smith, J.E., Dunn, A.M., 2003.Parasite-mediated predation between native and invasive amphipods. Proc. R. Soc. Lond.Ser. B 270, 1309-1314.
    [121]Malchow, H., Hiker, F.M., Sarkar, R.R., Brauer, K., 2005. Spatiotemporal Patterns in an Excitable Plankton System with Lysogenic Viral Infection. Math. Comput. Model. 42,1035-1048.
    [122]Matsuda, H., Ogita, A., Sasaki, A., Sat(?), K., 1992. Statistical mechanics of population:the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035-1049.
    [123]May, R.M., Anderson, R.M., 1978. Regulation and stability of host-parasite population interactions-Ⅱ. Destabilizing processes. J. Anim. Ecol. 47, 249-267.
    [124]McCallum, H., Dobson, A., 1995. Detecting disease and parasite threats to endangered species and ecosystems. Trends. Ecol. Evol. 10, 190-194.
    [125]McCarthy, M.A., 1997. The Allee effect, finding mates and theoretical models. Ecol. Model. 103,99-102.
    [126]Melbourne, B.A., Cornell, H.V., Davies, K.F., Dugaw, C.J., Elmendorf, S., Freestone,A.L., Hall, R.J., Harrison, S., Hastings, A., Holland, M., Holyoak, M., Lambrinos, J.,Moore, K., Yokomizo, H., 2007. Invasion in a heterogeneous world: resistance,coexistence or hostile takeover? Ecol. Lett. 10, 77-94.
    [127]Melian, C.J., Bascompte, J., 2002. Food web structure and habitat loss. Ecol. Lett. 5,37-46.
    [128]Morita, S., Tainaka, K., 2006. Undamped oscillations in prey-predator models pn a finite size lattice. Popul. Ecol. 48, 99-105.
    [129]Morris, A.J., 1997. Representing spatial interactions in simple ecological models. PhD thesis, Warwick University.
    [130]Murray, J.D., 1993. Mathematical Biology. Springer Verlag, Berlin.
    [13 l]Nakagiri, N., Tainaka, K., 2004. Indirect effects of habitat destruction in model ecosystems. Ecol. Model. 174, 103-114.
    [132]Nakamaru, M., Natsuda, H., Iwasa, Y., 1997. The evolution of cooperation in lattice-structured population. Theor.Popul. Biol. 184, 65-81.
    [133]Namba, T., Umemoto, A., Minami, E., 1999. The effects of habitat fragmentation on persistence of source-sink metapopulations in systems with predators and prey or apparent competitors. Theor. Popul. Biol. 56, 123-137.
    [134]Norman, R., Bowers, R.G., Begon, M., Hudson, P.J., 1999. Persistence of tick-horne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. J. Theor. Biol. 200, 111-118.
    [135]North, A., Ovaskainen, O., 2007. Interactions between dispersal, competition, and landscape heterogeneity. Oikos 116, 1106-1119.
    [136]Noss, R.F., Murphy, D.D., 1995. Endangered species left homeless in Sweet Home.Conserv. Biol. 9, 229-231.
    [137]Nowak, M.A., Bonhoetter, S., May, R.M., 1994. Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91, 4877-4881.
    [138]Okuyama, T., 2007. Intraguild predation with spatially structured interactions. Basic.Appl. Ecol. DOI 10.1016/j.baae.2007.01.007.
    [139]Ovaskainen, O., Sat(?), K., Bascompte. J., Hanski, I., 2002. Metapopulation models for extinction threshold in spatially correlated landscapes. J. Theor. Biol. 215, 95-108.
    [140]Packer, C, Holt, R., Hudson, P., Lafferty, K., Dobson, A., 2003. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6,797-802.
    [141]Pal, S., Kundu, K., Chattopadhyay, J., 2006. Role of standard incidence in an eco-epidemiological system: A mathematical study. Ecol. Model. 199, 229-239.
    [142] Peterson, R.O., Page, R.E., 1987. Wolf density as a predictor of predation rate. Swed.Wildlife Res. 1,771-773.
    [143]Plotnick, R.E., Gardner, R.H., 1993. Lattices and landscapes. In: Gardner, R.H. (Ed.),Predicting spatial effects in ecological systems. American Mathematical Society,Providence, Rhode Island, USA, pp 129-157.
    [144]Polis, G.A., Holt, R.D., 1992. Intraguild predation: the dynamics of complex trophic interactions. Trends. Ecol. Evol. 7, 151-154.
    [145]Prakash, S., de Roos, A.M., 2002. Habitat destruction in a simple predator-prey patch model: How predators enhance prey persistence and abundance. Theor. Popul. Biol. 62,231-249.
    [146]Rand, D.A., 1999. Correlation equations and pair approximations for spatial ecologies.In: Mclade, J. (Ed.), Advanced Ecological Theory: Principles and Applications.Blackwell Science, Oxford, pp 100-142.
    [147]Rand, D.A., Keeling, M.J., Wilson, H.B., 1995. Invasion, stability and evolution to criticality in spatially extended artificial host-pathogen ecologies. Proc. R. Soc. London B 259,55-63.
    [148]Read, J.M., Keeling, M.J., 2007. Stochasticity generates an evolutionary instability for infectious disease. Ecol. Lett. 10, 818-827.
    [149]Rhodes, C.J., Anderson, R.M., 1996. Persistence and dynamics in lattice models of epidemic spread. J. Theor. Biol. 180, 125-133.
    [150]Rhodes, C.J., Anderson, R.M., 1997. Epidemic thresholds and Vaccination in a lattice model of disease spread. Theor. Popul. Biol. 52, 101-118.
    [151]El Saadi, N., Bah, A., 2007. An individual-based model for studying the aggregation behavior in phytoplankton. Ecol. Model. 204, 193-212.
    [152]Sat(?), K., Matsuda, H., Sasaki, A., 1994. Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251-268.
    [153]Sat(?), K., Iwasa, Y., 2000. Pair approximation for lattice-based ecological models. In:Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological interactions:Simplifying spatial complexity. Cambridge University Press, Cambridge.
    [154]Sayama, H., 2004. Self-protection and diversity in self-replicating cellular automata. Artif. Life 10, 83-98.
    [155]Schreiber, S., Ludwig, K., Herrmann, A., Holzhutter, H.G., 2001. Stochastic simulation of Hemagglutinin-Mediated fusion pore formation. Biophys. J. 81, 1360-1372.
    [156]Sevenster, J.G., Van Alphen, J.M., 1993. A life history trade-off in Drosophila species and community structure in variable environments. J. Anim. Ecol. 62, 720-736.
    [157]Su, M., Hui, C, Zhang, Y., Li, Z., 2008a. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system. Bull. Math. Biol. 70, 2195-2210.
    [158]Su, M., Zhang, Y, Hui, C, Li, Z., 2008b. The effect of migration on the spatial structure of intraguild predation in metapopulations. Physica A 387, 4195-4203.
    [159]Su, M., Hui, C, Zhang, Y, Li, Z., 2009a. How does the spatial structure of habitat loss affect the eco-epidemic dynamics? Ecol. Model. 220: 51-59.
    [160]Su, M., Li, Z., Li, W., Zhang, F., Hui, C, 2009b. The effect of landscape heterogeneity on host-parasite dynamics. Ecol. Res. doi: 10.1007/s11284-008-0568-z
    [161]Susser, M., Susser, E., 1996. Choosing a Future for Epidemiology: II. From Black Box to Chinese Boxes and Eco-Epidemiology. Am. J. Pub. Heal. 86, 674-677.
    [162]Swihart, R.K., Zhilan, F., Slade, N.A., Mason, D.M., Gehring, T.M., 2001. Effects of habitat destruction and resource supplementation in a predator-prey metapopulation model. J. Theor. Biol. 210, 287-303.
    [163]Swinton, J., 1998-2002. Dictionary of Ecological Epidemiology Online Dictionary.University of Cambridge.
    [164]Szwabinski, J., Pekalski, A., 2006. Effects of random habitat destruction in a predator-prey model. Physica A 360, 59-70.
    [165]Tainaka, K., 1993. Paradoxical effect in a three-candidate voter model. Phys. Lett. A 176, 303-306.
    [166]Tainaka, K., 1994. Intrinsic uncertainty in ecological catastrophe. J. Theor. Biol. 166,91-99.
    [167]Tainaka, K., 2003. Perturbation expansion and optimized death rate in a lattice ecosystem. Ecol. Model. 163, 73-85.
    [168]Tainaka, K., Fukazawa, S., 1992. Spatial pattern in a chemical reaction system: prey and predator in the position-fixed limit. J. Phys. Soc. Jpn. 61, 1891-1894.
    [169]Taylor, C.M., Hastings, A., 2004. Finding optimal control strategies for invasive species:a density-structured model for spartina alterniflora. J. Appl. Ecol. 41, 1049-1057.
    [170]Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75,2-16.
    [171]Tilman, D., Kareiva, P., 1997. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton.
    [172]Tobin, P.C., Bj(?)rnstad, O.N., 2005. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations. Popul.Ecol. 47,221-227.
    [173]Turing, A.M., 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B 237, 37-72.
    [174]Venturino, E., 1994. The influence of disease on Lotka-Volterra systems. Rocky Mount.J. Math. 24, 381-402.
    [175]Venturino, E., 1995. Epidemics in predator-prey models: disease in the prey. In: Arino,O., Axelrod, D., Kimmel, M., Langlais, M. (Eds.), Mathematical Population Dynamics:Analysis of Heterogeneity, vol. 1. pp 381-393.
    [176]Venturino, E., 2002. Epidemics in predator-prey models: disease in the predators. J.Math. Appl. Med. Biol. 19, 185-205.
    [177]Wang, M.H., Kot, M., 2001. Speeds of invasion in a model with strong or weak Allee effect. Math. Biosci. 171, 83-97.
    [178]Wang, G, Liang, X., Wang, F., 1999. The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124, 183-192.
    [179]Webb, S.D., Keeling, M.J., Boots, M., 2007a. Host-parasite interactions between the local and the mean-field:How and when does spatial population structure matter?J.Theor.Biol.249,140-152.
    [180]Webb,S.D.,Keeling,M.J.,Boots,M.,2007b.Spatially extended host-parasite interactions:The role of recovery and immunity.Theor.Popul.Biol.71,251-266.
    [181]Westerberg,L.,(O|¨)stman,(O|¨),Wennergren,U.,2005.Movement effects on equilibrium distributions of habitat generalists in heterogeneous landscapes.Ecol.Model.188,432-447.
    [182]Wiegand,T.,Moloney,K.A.,Nakes,J.,Knauer,F.,1999.Finding the missing link between landscape structure and population dynamics:A spatially explicit perspective.Am.Nat.154,605-627.
    [183]With,K.A.,King,A.W.,2004.The effect of landscape structure on community self-organization and critical biodiversity.Ecol.Model.179,349-366.
    [184]Woodcock,B.A.,Watt,A.D.,Leather,S.R.,2002.Aggregation,habitat quality and coexistence:a case study on carrion fly communities in slug cadavers.J.Anim.Ecol.71,131-140.
    [185]Xiao,Y.,Chen,L.,2001.Modelling and analysis of a predator-prey model with disease in the prey.Math.Biosci.171,59-82.
    [186]Zhang,F.,Hui,C.,Han X.,Li Z.,2005.Evolution of cooperation in patchy habitat under patch decay and isolation.Ecol.Res.20,461-469.
    [187]Zhou,S.R.,Liu,Y.F.,Wang,G.,2005.The stability of predator-prey systems subject to the Allee effects.Theor.Popul.Biol.67,23-31.
    [188]陆征一,周义仓,2006.数学生物学进展[M].科学出版社,北京.
    [189]惠苍,2004.空间生态学模拟研究:集合种群对环境变化的生态及进化响应.博士论文,兰州大学.
    [190]孙儒泳,2001.动物生态学原理(第三版)[M].北京师范大学出版社,北京.
    [191]张大勇,2000.理论生态学研究[M].高等教育出版社,北京.
    [192]张峰,2006.生物博弈的空间效应:生境破坏、破碎以及空间尺度对进化动态的影响.博士论文,兰州大学.
    [193]周红霞,仇小强,张志勇等,2007.生态流行病学概念.中华流行病学杂志28,712-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700