用户名: 密码: 验证码:
山黧豆(Lathyrus Sativus L.)种质资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牧草在畜牧业发展、生物多样性保护、环境保持和土壤改良等多方面都具有重要作用。开展牧草种质资源评价研究,可深入了解种质材料的特性并获得优异的基因资源,是牧草育种工作的首要任务。山黧豆抗旱、耐涝、耐贫瘠、产量稳定,品质性状好,可作为牧草、绿肥或饲食两用作物,具有较高的经济价值。
     本研究从国际家畜研究所(International Livestock Research Institute ILRI)引进了50份山黧豆种质材料,分别在中国的兰州大学榆中校区和ILRI的埃塞俄比亚的Debre Zeit试验站评价了产量性状(干草、秸秆和种子产量,每株生殖枝数,每生殖枝荚果数,每荚果种子数,百粒重,开花期,种子成熟期和收获指数等),采用近红外光谱技术(Near Infrared Reflectance Spectroscopy NIRS)技术评价了饲草(开花期)和秸秆的品质性状(DM,OM,CP,NDF,NDFD,TIVOMD和P含量等),应用了多因素方差分析、通径、主成分和聚类分析等统计方法进行了多方位和综合评价。旨在深入了解山黧豆种质资源特性及其与环境的互作,为不同性状的育种筛选优异材料。主要结果如下:
     1山黧豆的产量性状和品质性状均具有较大的变异性:如50个山黧豆品系在中国开花期的草产量变化范围为144.67-732.67 Kg/ha,在埃塞俄比亚为437.73-975.40 Kg/ha;其开花期蛋白含量在中国的变化范围为28.94%-35.27%,在埃塞俄比亚为26.62%-38.12%。
     2基因型、环境及两者的互作显著影响山黧豆的产量性状表现,具体表现为:干草、秸秆和种子产量、百粒重、开花期、种子成熟期和收获指数等性状主要由环境效应决定,表现为环境>基因型>基因型×环境;生殖枝数和每株豆荚数表现为环境>基因型×环境>基因型;而每荚种子数只受基因型的极显著影响,环境及二者的互作不显著。
     3山黧豆种子产量高,在中国和埃塞俄比亚的平均产量分别为822.93与959.25 Kg/ha。对种子产量构成因素的分析发现,秸秆产量和收获指数是影响种子产量的直接因素,如在中国其直接相关系数分别为0.9474和0.8968,而在埃塞俄比亚则分别为0.806和1.057。
     4山黧豆品质性状较好,其开花期平均蛋白含量在中国和埃塞俄比亚分别为31.99%和32.60%,即使在成熟期,其蛋白含量也分别可达18.62%和12.04%。但其纤维含量较高,开花期在中国和埃塞俄比亚的中性纤维平均含量分别为32.96%和29.38%,到成熟期显著增加到42.04%和49.58%,说明降低纤维含量是培育优质山黧豆品种的重要目标。
     5获得一些具有优异产量性状的种质材料,如可以作为选育绿肥和饲用作物的基础材料在中国为种质5340,5344和5280,在埃塞俄比亚为种质5321,5332,5337与5380;可以作为选育食用和饲食两用的基础材料在中国为种质5404,在埃塞俄比亚为5337;种质5404和5415在中国可以作为食用作物的基础材料,而在埃塞俄比亚则为种质5325,5326和5329。
     6获得一些具有优异品质性状的种质材料,如开花期种质5358,5312,5396和5339在中国选育的基础材料,而在埃塞俄比亚则为种质5325,5363,5350和5354;成熟期种质5345和5362在中国可以作为选育的基础材料,在埃塞俄比亚为5334和5344。
     7通过对不同种质材料在两地和两个收获期的大量样本的分析,获得了NDF,CP与TIVOMD的NIRS定标方程,可以运用到山黧豆品质性状评价以及标准制定。
     8通过对山黧豆产量性状与品质性状的主成分和聚类分析,提出了山黧豆的综合评价方法。
     本研究创新之处在于首次将NIRS技术用于山黧豆品质研究,在中国首次系统地开展了山黧豆种质资源的评价工作。
The forages play an important role in animal husbandry production, biologicaldiversity conservation, environment protection, soil improving and so on. Thegermplasm evaluation work should be executed to understand the good traits and getexcellent gene resources, which is the priority for breeding programme. Grasspea(Lathyrus sativus) is legume forage plant with drought resistant, flooding resistant,high nutrition value and can grow in poor soil with low-input and stable yield.Grasspea has high economic value which can be used as forage, green manure andfood-feed dual purpose crop。
     In this study, 50 accessions of grasspea obtained from International LivestockResearch Institute (ILRI) were observed respectively in China (Yuzhong Campus ofLanzhou University) and Ethiopia (Debre Zeit experimental Station of ILRI-ETH) toevaluate the yield traits including hay (DW), residual (RY) and seed yield (SY),number of reproductive shoots per plant (NS), number of pods per shoot (NPP),number of seeds per pod (NSP), 100 seed weight (HSW), days of 50% flowering aftersowing (DFAS), days of seed maturity after sowing (DSMAS) and harvest index (HI);and the nutritious traits of stems and leaves at both flowering stage and seed maturitystage by NIRS technology, and the parameters included DM, OM, CP, NDF, NDFD,TIVOMD and P were measured. Furthermore, multivariate analysis, path analysis,principle component and cluster analysis were applied to analyze all collected data tounderstand characters of grasspea germplasm and its interaction with environment,and to select some excellent materials which could be used as breeding materials fordifferent usage. The major results are as following:
     1. There were great variations in agronomic and nutritious traits of grasspea: forexample, the DW ranged from 144.67-732.67 Kg/ha in China and437.73-975.40 Kg/ha in Ethiopia; the CP ranged from 28.94%-35.27%, and26.62%-38.12% in Ethiopia.
     2. Genotype, environment and G×E affected the production traits greatly: DW, RY, SY, HSW, DFAS, DSMAS and HI were decided by environment (E>G>G×E),but for NS and NPP, the result was E>G×E>G; for the SPP, only genotypeaffected it significantly (p<0.01), the result is G>G×E>E.
     3. The seed yield performed well in two locations, and the average seed yieldwere 822.93 and 959.25 Kg/ha in China and Ethiopia. The results of seed yieldcomponent analysis by Path analysis showed that RY and HI influenced seedyield directly, such as the direct correlation coefficiency between RY, HI andseed yield were 0.9474 and 0.8968 in China, and 0.806 and 1.057 in Ethiopia.
     4. The nutrition value of grasspea: The maximum of CP content at flowering stagewere 35.27% and 38.12% in China and in Ethiopia respectively; and themaximum of CP content at seed maturity stage was 21.48% and 15.67%;however, NDF content was high in grasspea, NDF content at flowering stagewere 32.96% and 29.38%, but they increased to 42.04% and 49.58%, whichindicates that low NDF is an breeding object.
     5. Based on the yield traits, we suggested that 5340, 5344 and 5280 could be usedas breeding materials for green manure and forage crop in China, 5321, 5332,5337 and 5380 in Ethiopia; 5404 for breeding food and feed-food crop in China,5337 in Ethiopia; 5404 and 5415 for breeding feed crop in China, 5325, 5326and 5329 in Ethiopia.
     6. Based on nutrition traits, we suggested that 5358, 5312, 5396 and 5339 atflowering stage could be used for breeding programme in China, 5325, 5363,5350 and 5354 in Ethiopia; and 5345and 5362 at maturity stage could be usedfor breeding programme in China, 5334 and 5344 in Ethiopia.
     7. Through analysis the two harvest stage of grasspea plants grown on twodifferent location, we developed the NIRS calibration equation of NDF, CP andTIVOMD, which could be used as standard analysis method in the futuregrasspea evaluation.
     8. We developed the comprehensive evaluation method for L. sativs L. bycombing Principle Component Analysis with Cluster analysis on yield andnutrious traits of grasspea.
     Present study was the first time to evaluate grasspea nutrition quality with NIRStechonology, and made a comprehensive evaluation on grasspea in China.
引文
1 包兴国,吕福海,刘生战,舒秋萍.(1995)山黧豆低毒品种的筛选及栽培利用技术研究.草业科学,12(5):48-54.
    2 曹致中,贾笃敬,汪玺,温尚文,徐长林.(1991)甘农一号杂花苜蓿品种选育报告.草业科学,8(6):36-39.
    3 陈家树.(1992)南充地区引种扁荚山黧豆栽培情况及开发途径.四川草原,3:20-22.
    4 陈耀祖,李志孝.(1992)低毒山黧豆的筛选-毒素分析及毒理学研究.兰州大学学报(自然科学版),28(3):93-98.
    5 陈耀祖,王兴国,马昭礼,等.(1980)山黧豆研究.兰州大学学报(自然科学版),16(2):114-115.
    6 丁丽敏,计成,戎易.(2002)近红外(NIRS)和粗蛋白预测氨基酸含量的精度比较研究.饲料工业,23(4):15-18.
    7 丁丽珺,赵国华,刘勤晋.(2005)山黧豆毒素ODAP研究进展.粮食与油脂,4:6-8.
    8 董滢,姚军虎,周庆安.(2005)山黧豆作为饲料资源的研究进展.饲料博览,5:40-42.
    9 方彦.(2004)利用近红外光谱法测定玉米品质的研究.甘肃农业大学.
    10 冯平,张子仪.(1986)近红外光谱分析技术在麦鼓的饲料品质性状评定上的应用.中国畜牧杂志,2:10-14.
    11 冯新沪,史永刚.(2002)近红外光谱及其在石油产品分析中的应用.中国石化出版社.
    12 龚加顺,刘佩瑛,刘勤晋,区少梅.(2004)茶饮料品质相关成分的近红外线光谱技术分析.食品科学,25(2):135-140.
    13 郭小强.(2005)陇东地区野生蔬菜资源种类及开发利用对策.甘肃农业科技.2:29-31.
    14 侯向阳,高卫东.(1999)作物近缘野生种的保护与利用.生物多样性,7(4):327-333.
    15 胡耀高.(1996)中国苜蓿草业产业发展战略分析.草业科学,13(8):44-50.
    16 吉海彦,彦衍禄.(1998)国产近红外光谱仪实验样机上用偏最小二乘法定量分析大麦成分.分析化学,26:607-611.
    17 姜海鹰.(2004)高油玉米种质的杂种优势群划分与花粉直感效应利用研究.北京:中国农业大学,博士学位论文.
    18 蒋尤泉.(1993)牧草遗传资源研究概论.中国草地,1:1-5.
    19 蒋尤泉.(2000)牧草草种质资源研究概况.草业与西部大开发-草业与西部大开发学术研讨会暨中国草原学会2000年学术年会论文集.
    20 焦成瑾,王崇英,李志孝,王亚馥.(2005)山黧豆毒素生物化学及去毒研究进展.草业学报,14(1):100-105.
    21 兰州大学化学系.(1975)山黧豆中毒素分析与去毒方法的研究.兰州大学学报(自然科学版),11(2):45-65.
    22 Lesins K,Gilles C B,吴仁润译.(1986)苜蓿的分类学与细胞遗传学研究.苜蓿的科学与技术.中国草原学会论文集,(2):45-71.
    23 Lisa lervolino.(1993)一种新的饲料和牧草分析方法-近红外分析法.国外畜牧科技,20(2):31-32.
    24 李博,杨持.(1995)草地生物多样性保护研究.内蒙古大学出版社.
    25 李大群,王文真,张玉良.(1990)近红外漫反射光谱法测定大豆和小麦中的蛋白质含量.分析仪器,4:45-50.
    26 李世雄.(2003)中国主要苜蓿(Medicagao sativa and M.varia)品种种子产量及其构成因素的变异研究.甘肃农业大学,硕士学位论文.
    27 李守德,卢欣石,熊同铨.(1992)美国牧草资源研究与利用.兰州大学出版社.
    28 李晓芳.(2000)全国牧草种质资源保护与利用构想.中国草地,5:74-75.
    29 李鑫.(2006)水分、粒度对玉米和小麦傅里叶近红外预测模型准确性影响的研究.西川农业大学,硕士学位论文.
    30 李延莉,孙超才,钱小芳,王伟荣,庄静.(2003)油菜籽品质测定方法(近红 外反射光谱法与传统化学方法)的比较.上海农业学报,19(1):11-14.
    31 李炎,张月学,徐香玲,蒿若超.(2008)近红外反射光谱(NIRS)分析技术及其在农业上的应用.黑龙江农业科学,1:105-108.
    32 李拥军,苏加楷.(1999)中国苜蓿地方品种亲缘关系的研究Ⅰ.种子贮藏蛋白标记.草业学报,8(1):31-41.
    33 李玉中,Redmann RE,祝廷成,李建东.(2002)羊草草原豆科牧草生物固氮量研究.草地学报,10(3):164-166.
    34 练文柳,吴名剑,孙贤军,何智慧.(2005)不同预处理方法对烟草近红外光谱预测模型的影响.烟草科技,2:19-23.
    35 梁晓艳,吉海彦.(2006)近红外光谱技术在农作物品质分析方面的应用.中国农学通报,1:366-371.
    36 林淼.(1991)实用傅立叶变换红外光谱学.北京:中国环境科学出版社.pp.311.
    37 刘建学,吴守一,方如民.(2001)近红外光谱法快速检测大米蛋白质含量.农业机械学报,32:68-70.
    38 刘绪川,张国伟,李雅茹,等.(1989)山黧豆及其有毒成分(BOAA)的毒理学研究.中国农业科学,22(5):86-93.
    39 陆国权,盛家廉.(1990)近红外反射光谱法(NIRS)在甘薯品质育种上的应用.中国农业科学,23(1):76-81.
    40 陆婉珍,袁洪福,徐广通,强冬梅.(2000)现代近红外光谱分析技术.北京:中国石化出版社.
    41 陆月清.(2007)近红外光谱分析技术在饲料分析中的应用研究.广西大学,硕士论文.
    42 吕福海,包兴国.(1990)山黧豆品种资源研究.作物品种资源,3:17-19.
    43 马缘生.(1991)我国作物种质资源保存技术研究进展.作物品种资源,8:1-3.
    44 庞滂.(2008)近红外定性定量模型的建立与应用.西北大学,硕士论文.
    45 彭玉魁,李菊英.(1996)NRIS法同时测定小麦种子水分、粗蛋白、赖氨酸和粗淀粉含量研究.西北农业学报,5(3):31-34.
    46 秦华俊.(2007)近红外光谱技术在饲料、食品中的应用.南昌大学,硕士论文.
    47 任永霞,郭郁频,姜风琴,曹春梅,耿光瑞,王净.(2005)河北省北部地区天然草地豆科植物资源及其合理利用.草业科学,22(5):1-3.
    48 Salim ur R,Sarfraz H,Atif R & Muhammad S ud D.(2004)山黧豆-脱脂乳混合冰淇淋的物理化学特性.食品科学,25(4):83-86.
    49 沈恒胜,陈君深,种藏文,赵武善,倪德,汤葆莎.(2003)近红外漫反射光谱法(NIRS)分析稻草纤维及硅化物组成.中国农业科学,36(9):1086-1090.
    50 舒庆尧,吴殿星,夏英武,高明尉.(1999)用近红外反射光谱测定小样本糙米粉的品质性状.中国农业科学,32(4):92-97.
    51 宋利军,周树行,李孝发.(2001)内蒙古库都尔林业局饲用植物资源的开发利用.内蒙古林业调查设计,增刊,24:50-54.
    52 苏加楷.(1992)牧草种质资源国外研究概括及我国研究现状.北京,中国科学技术出版社,pp.16-40.
    53 苏加楷,张文淑.(2003)我国国外牧草种质资源引种的回顾和展望.中国草学会牧草遗传资源分会第二届学术研讨会会议论文.呼和浩特,中国草地.
    54 覃新程,李志孝,王亚馥.(2000)山黧豆及其神经毒素(ODAP)的研究进展.生命科学,12(2):52-56.
    55 王成.(2000)傅立叶变换近红外漫反射光谱法测定大麦粗蛋白含量.新疆农业科学,2:68-70.
    56 王多加,周向阳,金同铭,等.(2004)近红外光谱检测技术在农业和食品分析上的应用.光谱学与光谱分析,24(4):447-450.
    57 王海东.(2008)近红外光谱技术评价饲料加工质量的研究.中国农业科学院,硕士论文.
    58 王含彦.(2007)硬粒小麦种质资源遗传评价及育种利用研究.四川农业大学,博士论文.
    59 王俊杰.(2008)中国黄花苜蓿野生种质资源研究.内蒙古农业大学,博士学位论文.
    60 王乐凯.(1999)近红外定量分析技术在粮食中的应用.粮食与饲料工业,4:45-46
    61 王晓通,朱攀高,霍金龙等.(2004)7种梅花鹿产品中水解氨基酸含量的聚类分析.中国畜牧杂志.40:51-52.
    62 王晓云,毕玉芬,赵志强.(2004)国内外苜蓿育种中的分子标记技术.生物技术,14(4):71-73.
    63 王彦荣.(1986)红豆草种子产量构成因素的分析及育种指标的讨论.中国草原与牧草,3:34-37.
    64 王一峰,杨文玺,王春霞,武高林.(2006)甘肃豆科饲用植物资源.草业科学,123(3):12-16.
    65 王照兰.(2003)苜蓿种质资源评价及优良育种材料的遗传分析.内蒙古农业大学,博士学位论文.
    66 魏良明.(2003)普通玉米籽粒品质性状的遗传及其近红外测定方法的研究.中国农业大学,博士学位论文.
    67 魏瑞兰.(1986)近红外光谱分析技术在花生(饼)可利用氨基酸评定中的应用.中国畜牧杂志,2:10-14.
    68 魏臻武,符昕,耿小丽,赵艳,曹致中,胡自治.(2007)苜蓿遗传多样性和亲缘关系的SSR和ISSR分析.草地学报,15(2):118-123.
    69 邢更生,周功克,李志孝,崔凯.(2001)渗透胁迫对山黧豆幼苗H_2O_2及毒素积累的影响.植物生理学报,27(1):5-8.
    70 邢更生,周功克,李志孝,崔凯.(2000)水分胁迫下山黧豆多胺代谢与β-N-草酰-L-α,β-二氨基丙酸积累相关性的研究.植物学报,42(10):1039-1044.
    71 徐柱,王照兰.(2001)中国牧草种质资源评价与利用.21世纪草业科学展望-国际草业(草地)学术大会论文集.
    72 徐柱,王照兰,肖海俊.(2000)中国牧草种质资源研究利用及牧草种子生产 中国草地,1:73-76.
    73 薛崧,张林尘,曹让,王明华,汪沛洪.(2001)水分胁迫对山黧豆萌发中蛋白质和游离氨基酸的影响.西北农林科技大学学报(自然科学版) 29(5):79-83.
    74 严衍禄.(1995)现代仪器分析.北京:北京农业大学出版社.
    75 杨惠敏,张晓艳,王根轩,王亚馥,乔立新.(2004)干旱条件下两种山黧豆气孔特性及种子ODAP,粗蛋白和淀粉积累的研究.兰州大学学报(自然科学版),40(1):64-67.
    76 杨莉,陶雁,吴建国.(2001)近红外反射光谱新方法测定乳清蛋白浓缩物品质的研究.乳业科学与技术,24,(2):4-6.
    77 于精忠,王惠琴,俞泽潮,陈耀祖,马昭礼,蔡文涛.(1994)低毒栽培山黧豆的筛选与其生物学规律研究.西北农业学报,3(3):94-98.
    78 于精忠.(1993)山黧豆的利用与栽培.陕西农业科学,6:35-36.
    79 于丽珺,赵国华,刘勤晋.(2005)山黧豆毒素ODAP研究进展,粮食与油脂,4:6-8.
    80 云锦凤,米富贵.(2004)牧草育种技术.北京:化学工业出版社,37-38.
    81 云锦凤.(2001)牧草及饲料作物育种学.北京:中国农业出版社,15.
    82 张萍,闫继红,朱志华,刘庆生,范志影,李为喜.(2006)近红外光谱技术在食品品质鉴别中的应用研究.现代科学仪器,1:60-62.
    83 张丽英.(2003)饲料分析及饲料质量检测技术.北京:中国农业大学出版社,pp.49-73.
    84 张宋文,周明德.(1993)国际植物遗传资源研究动态.作物品种资源,3:36-40.
    85 张尧庭等.(1993)多元统计分析引论.北京,科学出版社.
    86 赵环环,严衍禄.(1999)利用付里叶近红外漫反射技术快速测定玉米子粒中蛋白质含量.玉米科学,3:77-79.
    87 赵雅欣,王红英.(2005)近红外光谱分析技术在饲料工业中的应用进展.26(21):37-41.
    88 占达东,林隆慧,林应耀.(2000)海南引种串叶草中粗灰分、钙、总磷的测定.琼州大学学报,(2):18-21.
    89 郑凯,顾洪如,沈益新,丁成龙.(2006)牧草品质评价体系及品质育种的研究进展.草业科学,23(5):57-61.
    90 周刊社,刘依兰,王彦荣.(2009)苜蓿种子产量及其构成因素的多样性研究.分子植物育种,7(1):95-104.
    91 朱相云,杜玉芬.(2002)中国豆科植物外来种之研究.植物研究,22(2):139-150.
    92 Abrams SM, Shenk JS, Westerhaus MO, Barton FE. (1987)Determination of forage quality by near infrared reflectance spectroscopy: efficacy of broadbased calibration equations. Journal of Dairy Science, 70: 806-813.
    93 Albanell E, Plaixats J & Ferret A. (1995)Evaluation of near-infrared reflectance spectroscopy for predicting stover quality trait in semi-exotic populations of maize. Journal of the Science of Food and Agriculture, 69: 269-273.
    94 Aletor VA, Abd El, Moneim AM & Goodchild AV. (1994)Evaluation of the seeds of selected lines of three Lathyrus species for b-N-Oxalylyamino -L-Al-anine (BOAA), tannins, trypsin inhibitor activity and certain in-vitro characteristics. Journal of the Science of Food and Agriculture, 65: 143-151.
    95 Allchin FR. (1969)Early cultivated plants in India and Pakistan. In 'The domestication and exploitation of plants and animals',(Ucko PJ & Dimbleby GW, Eds.). Duckworth, London.
    96 Batten GD. (1998) Plant analysis using near infrared reflectance spectroscopy: the potential and the imitations. Australian Journal of Experimental Agriculture, 38: 697-706.
    97 Brown WF & Moore JE. (1987)Analysis of forage research samples utilizing a combination of wet chemistry and near infrared reflectance spectroscopy. Journal of Animal Science, 64:271-282.
    98 Campbell, CG. (1997) Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
    99 Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd El Moneim AM, Khawaja HIT, Yadov CR, Tay JU & Araya WA. (1994) Current status and future strategy in breeding grasspea (Lathyrus sativus).Euphytica, 73: 167-175.
    100 Campbell MR, Mannis SR & Port HA. (1999) Prediction of starch amylose content versus total grain amylose in corn by near infrared transmittance spectroscopy. Cereal Chemistry, 7(4):552 -557.
    101 Champagne ET, Bert-Gather KL, Grimm CC, et al. (2001) Near infrared reflectance analysis for prediction of cooked rice texture. Cereal Chemistry, 78 (3):358-362.
    102 Chtourou-Ghorbel N, Lauga B, Ben Brahim N, Combes D & Marrakchil M. (2002) Genetic variation analysis in the genus Lathyrus using RAPD markers. Genetic Resoures Crop Evolution, 49: 363-370.
    103 Chtourou-Ghorbel N, Lauga B, Combes D & Marrakchi M. (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsletter, 2: 62-68.
    104 Cocks P, Siddique K & Hanbury C. (2000) Lathyrus - a New Grain Legume. Australia, Rural Industries Research and Development Corporation. pp. 1-27.
    105 Dahm DJ & Dahm KD. (2001) The physics of near-infrared scattering. In: Near-Infrared Technology in the Agricultural and Food Industries, Second Edition (Williams P & Norris K, Eds.) American Association of Cereal Chemists, Inc. Minneapolis, MINN, pp. 1-18.
    106 Davies CL, Siddique KHM & Perry MW. (1993) Preliminary evaluation of Lathyrus and Vicia species in Western Australia.Technical report 58. W.A. Department of Agriculture.Division of Plant Industries.
    107 Delwiche SR & Hruschka WR. (2000) Protein content of bulk wheat from near-infrared reflectance of individual kernels. Cereal Chemistry, 77(1):86-89.
    108 Delwiche SR. (1998) Protein content of single kernels of wheat by near infrared reflectance spectroscopy. Journal of Cereal Science, 27(3):241-254.
    109 Dijkhuizen A, Dudley JW, Rocheford TR, et al. (1998) Near-infrared reflectance correlated to 100g wet-milling analysis in maize. Cereal Chemistry, 75: 266-270.
    110 Dewey DR & Lu KH. (1959) A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal, 51: 515-518.
    111 Duke JA, Reed CF & Weder JKP. (1981) Lathyrus sativus L. In 'Handbook of legumes of world economic importance', (Duke JA, Ed.). Plenum Press, New York and London, pp.107-110.
    112 Duke JA. (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp: 199-265.
    113 FAO. (1996) Global plan of action for conservation and utilization of plant genetic resources for food and agriculture. The fourth international technical conference on plant genetic resources. June. Leizig, Germany. 17-23
    114 Fontain J, Horr J & Schirmer B. (2001) Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fish meal, meat meal products, and poultry meal. Journal of Agriculture and Food Chemistry, 49: 57-66.
    115 Fontain J, Schirmer B & Horr J. (2002) Near-infrino acid contents. 2. Results for wheat, barley, corn, triticale, wheat ared reflectance spectroscopy (LAIRS) enables the fast and accurate prediction of the essential ambran/middlings, rice bran, and sorghum. Journal of Agriculture and Food Chemistry, 50: 3902-3911.
    116 Garcia-Ciudad A, Ruano A, Becerro F, Zabalgogeazcoa I, Vazquez de Aldana BR & Garcia - Criado B. (1999) Assessment of the potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Animal Feed Science and Technology, 77: 91-98.
    117 Girma A. (1998) Effect of processing on the 8-N-oxalyl-L-a, β-diaminopropionic acid in grass pea (Lathyrus sativus) seeds and flour as determined by flow injection analysis. Journal of Food Chemistry, 62(2):233-237.
    118 Givens DI, De Boever JL & Deaville ER. (1997) The principles, practises and some future applications of near infrared spectroscopy for predicting the nutritive value of food for animals and humans. Nutritrion Research Review, 10: 83-114.
    119 Granati E, Bisignano V, Chiaretti D, Crino P & Polignano GB. (2003) Characterization of Italian and exotic Lathyrus germplasm for quality traits. Genetic Resoures and Crop Evolution, 50 : 273-280.
    120 Grela ER & Matras J. (1995) Aspergillus oryzae and rhizopus oli-gosporus sp T-3 to eliminate the neurotoxin β-ODAP with-out loss nutritional value. Journal of the Science of Food and Agriculture, 69: 80-89.
    121 Hanbury CD, Sarker A, Siddique KHM & Perry MW. (1995) Genetic evaluation of Lathyrus species in a Mediterranean-type environment of Western Australia. CLIMA Occasional Publication, 8: 23.
    122 Hanbury CD, Siddique KHM, Galwey NW & Cocks PS. (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica, 110: 45-60.
    123 Harrison FL, Nunn PB & Hill RR. (1977) Synthesis of a- and 8-N-oxalyl-L-a, β-diaminopropionic acid and their isolation from seeds of Lathyrus sativus. Phytochemistry, 16 (8):1211-1215.
    124 Hawkes JG, Maxted N & Ford-Lloyd BV. (2000) The Ex Situ Conservation of Plant Genetic Resources. Kluwer Academic Publishers, Dordrecht, the Netherlands.
    125 Iannucci A, Di Fonzo N & Martiniello P. (2002) Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a Mediterranean environment. Field Crops Research, 78: 65-74.
    126 Ikegami F, Yamamoto A, Kuo YH, et al. (1999) Enzymatic formation of 2 ,3-diaminopropionic acid, the direct precursor of the neurotoxin 6-ODAP in Lathyrus sativus . Biological and Pharmaceutical Bulletin, 22(7): 770-771.
    127 Jackson MT & Yunus AG. .(1984) Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica, 33:549-559.
    128 Jerry S, Abdi J & Doug T. (2003) Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Research, 84(122):45-56.
    129 Julier B, Henri D, Ecalle C, et al. (2001) Tetraploid alfalfa mapping using AFLP markers and research of markers of pollen fertility PP14 Reunion Eucarpia du Groupe Medicago spp.[C]. Spain: CIHEAM-IAMZ, pp.112-151.
    130 Kar K & Sen S. (1991) A comparative karyological study of root and embryo tissue of a few genera of leguminosae. Cytologia (Tokyo) 56: 403-408.
    131 Karada Y, Selahattinpta & Yavuz M. (2004) Agronomic potential of grasspea (Lathyrus sativus L.) under rainfed condition in semi-arid regions of Turkey. Asian Journal of Plant Science, 3(2):151-155.
    132 Karadag Y & Buyukburc U. (2000) Karyotype analysis of some legume species (Vicia noeana Boiss, and Lathyrus sativus L.) collected from native vegetation. Pakistan Journal of Biological Sciences, 6(4): 377-381.
    133 Kaul AK, Islam MQ & Hamid A. (1986) Screening of Lathyrus germplasm of Bangladesh for BOAA content and some agronomic characters. In 'Lathyrus and Lathyrism', (Kaul AK & Combes D, Eds.). Third World Medical Research Foundation, New York, USA, pp. 130-141.
    134 Kay D. (1979) Food legumes. Tropical Development and Research Institute (TPI). London, UK, pp. 26-47.
    135 Kim HO & Williams P. (1990) Determination of starch and energy in feed grains by near-infrared transmittance spectroscopy. Journal of Agricuture and Food Chemistry, 38: 682-688.
    136 Kmiecik W, Lisiewska Z & Jaworska G. (2000) Content of ash components in the fresh and preserved broad bean (Vicia faba v. major). Journal of Food Composition and Analysis, 13: 905-914.
    137 Kmiecik W, Korus A & Lisiewska Z. (2004) Evaluation of physico-chemical and sensory quality of frozen green grass pea (Lathyrus sativus L.). International Journal of Food Science and Technology, 39(2): 149-155.
    138 Kuo YH & Bau HM. (2000) Reduction efficiency of the neurotoxinB-ODAP in low-toxin varieties of Lathyrus sativus seeds by solid state fermentation with aspergillus oryzae and rhizopus microsporus varchinensis. Journal of the Science of Food and Agriculture, 80: 2209-2215.
    139 Kuo YH, Bau HM, Quemener B, Khan JK & Lambein F. (1995) Solid-state fermentation of Lathyrus sativus seeds using Aspergillus oryzae and Rhizopus oligosporus sp T-3 to eliminate the neurotoxin beta-ODAP without loss of nutritional value. Journal of the Science of Food and Agriculture, 69: 81-89.
    140 Kuo YH & Lambein F. (1991) Biosynthesis of the neurotoxin B-N-oxalyl-L-a, B-diaminopropionic acid in callus tissue of Lathyrus sativus. Phytochemistry, 30 (10): 3241-3244.
    141 Lambein F & Kuo-Genth YH. (1997) Lathyrus sativus, a neolithic crop with modern future? An overview of the presnt situation. Presented at the int. conference "Lathyrus sativus -cultivation and nutritional value in animals and human" - Poland, Lublin - Radom, 9-10.06,1997, Materials of the conf. 6-12
    142 Lambein F, Ongena G & Kuo YH. (1990) B-isoxazoline-alanine is involved in the biosynthesis of the neurotoxin B-N-oxalyl-L-2, 3-diamino-propionic acid. Phytochemistry, 29 (12): 3793-3796.
    143 Lambein F, Ongena G, Kuo YH. (2001) Vapniarca revisited: lessons from an inhuman humam experience. Lathyrus Lathyrism Newsletter, 2(1): 527.
    144 Leilah AA & Al-Khateeb SA. (2005) Statistical analysis of wheat yield under drought conditions. Journal of Arid Environment, 61: 483-496.
    145 Lesins KA & Lesins L. (1979) Genus Medicago (Leguminosae): A Taxogenetic Study.Hague: W.J unk Publishers.
    146 Lisiewska Z, Kmiecik W & Gebczynski P. (1999) Effect of maturity stages on the content of ash components in raw, frozen and canned broad beans. Food Chemistry, 67: 155-162.
    147 Lisiewska Z, Kmiecik W & Korus A. (2001) Content of nitrogen compounds in raw and preserved seeds of grass pea (Lathyrus sativus L.). Euroupean Journal of Food Research and Technology, 213: 343-348.
    148 Malathi K, Padmanaban G & Sarma PS. (1970) Biosynthesis of -N-oxalyl-1-,-diaminopropionic acid, theLathyrus sativus neurotoxin. Phytochemistry, 9:1603-1610.
    149 Mehra RB, Raju DB & Himabindu K. (1995) Evaluation and utilization of Lathyrus sativus collection in India. In: Lathyrus Genetic Resources in Asia, (Arora RK, Mathur PN, Riley KW & Adham Y, Eds.). IPGRI Office for South Asia, New Delhi, India, pp. 37-43.
    150 Miller CE. (2001) Chemical principles of near-infrared technology. In: Near-infrared technology in the agricultural and food industries, Second Edition, (Williams P & Norris K Eds.) American Association of Cereal Chemists, Inc. Minneapolis, MINN, pp.19-38.
    151 Miller RL, Dudley LW & Alexander DE. (1981) High intensity selection for percent oil in corn. Crop Science, 21(3):433-437.
    152 Negere A & Mariam SW. (1989) An overview of grass pea (Lathyrus sativus) production in Ethiopia. In: 'The Grasspea - Threat and Promise' (Spencer PS, Ed.). Third World Medical Research Foundation: New York and London, pp. 67-71.
    153 Norris KH, Barnes RF, Moore JE, et al. (1976) Prediction forage quality by NIRS. Animal Science, 43 (4):899-897.
    154 Orman BA & Schumann RA. (1991) Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil and starch in maize grain. Journal of Agriculture and Food Chemistry, 39: 883-886.
    155 Osborne BG. (1988) Near Infrared Spectroscopy in food analysis. Published in USA.
    156 Palmer VS, Kaul AK & Spencer PS. (1989) International Network for the Improvement of Lathyrus sativus and the Eradication of Lathyrism (INILSEL): A TWMRF initiative. In: The grasspea: Threat and Promise, (Spencer P, Ed). Third World Medical Research Foundation, New York. pp. 219-223.
    157 Park RS, Agnew RE, Gordon FJ & Steen RWJ. (1998) The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Animal Feed Science Technology, 72:155-167.
    158 Peng HH & Brooker JD. (2000) Isolation of ODAP-degrading bacteria from the sheep rumen. Lathyrus Lathyrism Newsletter, 1:33.
    159 Polignano GB, Uggenti P, Alba V, Bisignano V & Delia C. (2005) Gatta Morpho-agronomic diversity in grasspea (Lathyrus sativus L.). Plant Genetic Resources, 3:29-34.
    160 Polignano GB, Uggenti P, Bisignano V & Alba E. (2003) Patterns of variation in Lathyrus sativus and some related species. Agriculture Mediterrean, 133: 81-88.
    161 D(?)s(?)nceli F. (1993) Prospects for production of Lathyrus sativus and L. cicera in southwest Anatolia in Turkey. In: Lathyrus sativus and human lathyrism: Progress and Prospects (Yusuf HKM & Lambein F, Eds.) University of Dhaka, pp. 131-137.
    162 Przybylska J, Zimniak-Przybylska Z & Krajewski P. (1998) Diversity of seed albumins in the grasspea (Lathyrus sativus L.): an electrophoretic study. Genetic Resoures and Crop Evolution, 45: 423-431.
    163 Przybylska J, Zimniak-Przybylska Z & Krajewski P. (2000) Diversity of seed globulins in Lathyrus sativus L. and some related species. Genetic Resoure and Crop Evolution, 47: 239-246.
    164 Quader M, Ramanujam S & Barat GK. (1986) Genetics of flower colour, BOAA content and their relationship in Lathyrus sativus L. In 'Lathyrus and Lathyrism'. (Kaul AK & Combes D, Eds.). Third World Medical Research Foundation: New York, pp. 93-97.
    165 Quiros CF & Bauchan GR. (1998) The genus Medicago and the origin of the Medicago sativa complex. In: Alfalfa and alfalfa improvement, (Hanson AA, Barnes DK & Hill RR, Eds). ASA-CSSA-SSSA, Madison, WI, pp. 23-24.
    166 Rahman MM, Quader M & Kumar J. (1991) Status of khesari breeding and future strategy. In 'Advances in pulse research in Bangladesh', (Kumar J, Sahni BB & Raman U, Eds).ICRISAT, Patancheru, India, pp. 25-28.
    167 Rahman QN, Akhtar N & Chowdhury AM. (1974) Proximate composition of food-stuffs in Bangladesh. Part 1. Cereals and Pulses. Journal of Scientific and Industrial Research, 9:129-133.
    168 Rao SLN, Adiga PR & Sarma PS. (1964) The isolation and characterization of 6-N-oxalyl-L-a, 6-diaminopropionic acid: A neurotoxin from the seeds of Lathyrus sativus L.. Biochemistry, 3 (3): 432-436.
    169 Robertson LD & Abd El Moneim A M. (1995) Lathyrus germplasm collection, conservation and utilization for crop improvement at ICARDA.In: Lathyrus Genetic Resources in Asia, (Arora RK, Mathur PN, Riley KW & Adham Y, Eds). IPGRI Office for South Asia, New Delhi, India, pp. 97-111.
    170 Robertson LD, Singh KB, Erskine W & Abdl El-Moneim AM. (1996) Useful genetic diversity in germplasm collections of food and forage legumes from West Asia and North Africa. Genetic Resources and Crop Evoloution, 43: 447-460.
    171 Ross SM, Roy DN & Spencer PS. (1989) 6-N-oxalylamino-L-alanine action on glutamate receptors. Neurochemistry, 53: 710-715.
    172 Rotter RG., Marquardt RR & Campbell CG. (1991) The nutritional value of low lathyrogenic Lathyrus {Lathyrus sativus) for growing chicks. British Poultry Science, 32:1055-1067.
    173 Sarawgi AK, Rastogi NK & Soni DK. (1997) Correlaiton and path analysis in rice accessions from Madhya Pradesh. Field Crops Research, 52:161-167.
    174 Serageldin I. (1994) Genetic resources conservation in the CGIAR: Protecting an irreplaceable resource for future generation. Biodiversity, 10(2):9-12.
    175 Shelly P, Joharl PR & Mehta SL. (1994) Cloning and expression of OX-DAPRO degrading genes from soil microbe. Journal of Plant Biochemistry and Biotechnology, 3:25-29.
    176 Shenk JS, Landa I, Hoover MR & Westerhaus MO. (1981) Description and evaluation of a near infrared reflectance spectro-computer for forage and grain analysis. Crop Science, 21: 355-358.
    177 Shenk JS, Westerhaus MO & Hoover MR. (1979) Analysis of forages by infrared reflectance. Journal of Dairy Science, 62:80-812.
    178 Siddique KHM, Loss SP, Regan KL & Jettner RL. (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research, 50(3):375-387.
    179 Smartt J. (1984) Evolution of grain legumes. I. Mediterranean pulses. Experimental Agricultrue, 20: 275-296.
    180 Smartt J. (1990) Pulses of the classical world. In: Grain legumes evolution and genetic resources, Cambridge University Press, pp. 176-244.
    181 Spencer PS, Ludolph A, Dwivedi MP & Schaumbruq HH. (1986) Lathyrism: evidence for role the neuroexcitatory amino acid BOAA. Lancet, 2: 1066-1067.
    182 Sukanya R, Santha IM & Mehta SL. (1993) Cloning and characterization of a gene responsible for the Lathyrus sativus neurotoxin degradation. Journal of Plant Biochemical Biotechology, 2: 77-82.
    183 Tavoletti S, Iommarini L, Crin(?) P & Granati E. (2005) Collection and evaluation of grasspea {Lathyrus sativus L.) germplasm of central Italy. Plant Breeding, 124, 388-391.
    184 Townsend CC & Guest E. (1974) Flora of Iraq, Volume 3, Leguminales. Ministry of Agriculture and Agrarian Reform. Baghdad, Iraq.
    185 Vavilov NI. (1951) Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. Chronica Botany, 13:13-54.
    186 Velasco L & Christian M.(1999) Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed {Brassica napus L.) by near-infrared reflectance spectroscopy . Euphytica, 106(l):79-85.
    187 Velasco L & Becker HC. (1998) Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassoca napes L.) by near-infrared reflectance spectroscopy. Euphytica, 101:221-250.
    188 Velasco L, Prez-Vich B & Fernandez-Martinez JM. (1999) Nondestructive screening for oleic and lino-leic acid in single sunflower achenes by near-infrared reflectance spectroscopy .Crop Science, 39(l):219-222.
    189 Wehling RL, Jackson DS, Hooper DG, et al. (1993) Prediction of wet-milling starch yield from corn by near-infrared spectroscopy. Cereal Chemistry, 70 (6): 720-723.
    190 Williams PC, Preston KR, Norris KH, Starkey PM. (1984) Determination of amino acids in wheat and barley by near-infrared reflectance spectroscopy. Food Science 49(1):17-20.
    191 Windham WR, Barton II FE & Robertson JA. (1988) Moisture analysis of forage by near infrared reflectance spectroscopy: preliminary collaborative study and comparison between Karl Fischer and oven drying reference methods. Journal of Association Office Analysis Chemistry, 71 (2):256-262.
    192 Wu JG, Shi CH & Zhang XM. (2002) Estimating the amino acid composition in the milled rice powder by near-infrared reflectance spectroscopy. Field Crops Research, 75(l):l-7.
    193 Wu YQ, Taliaferro CM, Martin DL, Goad CL, Anderson JA. (2006) Genetic variability and relationships for seed yield and its components in Chinese Cynodon accessions. Field Crops Research, 98: 245-252.
    194 Yasar K, Selahattin I & Musa Y. (2004) Agronomic potential of grasspea (Lathyrus sativus L.) under rainfed condition in semi-arid regions of Turkey. Asian Journal of Plant Science, 3(2):151-155.
    195 Yassin TE. (1973) Genotypic and phenotypic variances and correlations in field beans (Vicia faba L.). Journal of Agriculture Sciences Cambridge 81:445 - 448.
    196 Yunus AG, Jackson MT & Catty JP. (1991) Phenotypic polymorphism of six enzymes in the grasspea (Lathyrus sativus L.). Euphytica, 55: 33-42
    197 Zhao L & Chen XG. (1999) Analysis of p-N-oxalyl-L-a, B-diaminopropionic acid and homoarginine in Lathyrus sativus by capillary zone electrophoresis. Journal of Chromatography, 857: 295-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700