用户名: 密码: 验证码:
六盘山自然保护区主要森林群落天然更新与生态恢复评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对六盘山自然保护区4种不同类型森林群落:华北落叶松林(Form.Larixprincipis-rupprechtii)、油松林(Form.Pinus tabulaeformis)、华北落叶松+辽东栎林(Form.Larix principis-rupprechtii+Quercus liaotungensis)、辽东栎+少脉椴+山杨林(Form.Quercus liaotungensis+Tilia paucicostata+Populus davidiana)的更新特征进行了研究,并根据国际恢复生态学会(SER)提出的部分评价生态恢复成功的标准,对退化土地上三种人工恢复措施进行了生态恢复评价。同时研究了华北落叶松人工林林与天然次生林交错带对更新的影响;人为干扰对华北落叶松人工林更新的影响。最后对华北落叶松天然更新的影响因素进行了探讨。主要研究结果如下:
     1.不同类型森林群落中,阔叶林和针阔混交林中幼苗丰富度、多样性指数和幼苗密度较高;其出现的树种总数也高于华北落叶松和油松人工林。华北落叶松林中,除辽东栎以外,幼苗密度较高的树种主要是耐荫树种,如桦叶四蕊槭、茶条槭、五尖槭。而针阔混交林和阔叶林中以动物为传播途径的物种增多。
     五个主要优势种中,辽东栎和油松可以在任何森林群落中定居生长,并且更新个体较充足。华北落叶松在任何群落中都没有更新幼苗,随着演替的进行,这个物种会逐渐被其他种群替代。对于针阔混交林,随着华北落叶松比例的增加,林下幼苗丰富度和幼苗密度减小。当针阔树种的比例接近1时林下幼苗丰富度和多样性较大。建议在人工造林时,针叶树种比例不能过大。
     2.通过对灌木地种植华北落叶松(LS)、灌木地种植油松(PS)和稀疏林地种植华北落叶松(LO)的三种不同恢复措施评价结果显示:这三种恢复措施在一定程度上促进了本地物种的入侵,增加了物种多样性和土壤养分含量。表明人为有目的的种植后期演替物种能够绕过退化土地上的早期演替阶段,加速了演替过程,因此其恢复措施是可行的。然而,LS和PS中由于林分密度过大,导致入侵的本地物种数量少于LO中;同时LS和PS的物种多样性、幼苗密度、幼苗多样性和土壤养分含量明显小于LO。和参照相比,L0的物种组成、物种多样性和土壤养分含量具有极高的相似性。结果表明,该恢复措施比较成功,并且加快了群落的演替近30年。
     由于LS和PS林分密度过大,在自疏阶段或出现较大程度自然干扰之前,物种多样性将不会有明显的增加。为了保护生物多样性,必须提前进行人工间伐,减小林地密度,改善环境条件,促进物种丰富度和多样性的增加。华北落叶松由于在当地不能天然更新,因此该物种终将会被本地物种替代。而油松因为能够进行天然更新,所以该群落具有较高的恢复潜力;随着演替的进行,本地物种的入侵,该群落最终会形成针阔混交林的较稳定群落。在L0中,虽然有少数树种缺失,但随着林内环境条件的改善,这些树种将很快入侵该群落。而从森林生态系统对人类服务的角度出发,有必要在华北落叶松死亡或收获木材后进行补植以弥补华北落叶松不能天然更新的不足。
     3.华北落叶松林和阔叶林形成的交错带内幼苗密度和幼苗丰富度略低于阔叶林,却明显高于华北落叶松林。而交错带内幼苗多样性指数和均匀度指数在三个群落中表现最高,不同幼苗种类表现出比较均匀分布的特征。交错带内较大径级的更新幼苗比例相对于相邻群落有所增加,说明幼苗在交错带内能够快速的生长,建议造林措施以不同群落交错的方式代替大面积的纯林种植。
     4.重度间伐林地(<650 stems/ha)和中等面积(mean:114.62 m~2)的林窗内幼苗丰富度、多样性指数以及幼苗密度最大;幼树的丰富度、多样性指数和幼苗密度的最大值出现在重度间伐林地和大面积林窗内。重度间伐林地和中等面积、大面积林窗内幼苗在各个径级都有分布。幼树的平均树高和胸径随着干扰强度的增加而增加。幼苗与生境条件的相关分析表明,光照、枯枝落叶层厚度是影响间伐林地幼苗生长的主要因素。而大面积林窗内草本盖度明显影响着幼苗的丰富度和密度。
     林分密度管理和创建林窗能够增加林分结构异质性,从而提供适宜的环境条件,促进幼苗存活和生长。然而,轻度间伐林地和小面积林窗由于周围树木林冠的扩展,林冠空隙很容易再次郁闭,从而不能形成长期的资源和环境的异质性。因此,对华北落叶松人工林进行间伐时,强度不能过于太小。同时,对间伐过的林地进行多次间伐,有利于形成林分年龄结构的差异,从而构成较复杂的林分结构。
     5.通过播种华北落叶松种子和种植2年生华北落叶松幼苗并观测种子萌发率和幼苗成活率表明:华北落叶松不能在六盘山自然保护区天然更新的主要原因是刚萌发的幼苗不能成功越冬。同时光照条件、土壤水分、枯枝落叶层等环境条件也共同作用限制种子的萌发和幼苗存活。不同时期种植的幼苗存活率不存在显著差异,表明2年生华北落叶松幼苗能够顺利越冬。
Regeneration and assessment of restoration in four different forest communitieswas studied in this research.These communities include:Form.Larixprincipis-rupprechtii,Form.Pinus tabulaeformis,Form.L.principis-rupprechtii+Quercus liaotungensis,and Form.Q.liaotungensis+Tiliapaucicostata+Populus davidiana.Furthermore,the effects of ecotone and harvest onforest regeneration were studied.Finally,this research also studied the effect factor onregeneration ofL.principis-rupprechtii.The main results are as follows:
     1.Seedling richness,diversity index and seedling density were higher inbroadleaved forest and conifer-broadleaved mixed forest than coniferous forests.Species number was higher in broadleaved forest and conifer-broadleaved mixedforest than in coniferous forests.The major species was shade-tolerant species in L.principis-rupprechtii forest,such as Acer tetramerum Pax var.betulifolium,Acermaximowiczii,and Acer ginnala.The number of animal-dispersed species increased inconifer-broadleaved mixed forest and broadleaved forest.
     Q.liaotungensis and P.tabulaeformis can re-establish in evey communities,andthere was large number of their seedlings.There was not L.principis-rupprechtiiseedling in four communities.This result suggests that the population of L.principis-rupprechtii will be replaced by other populations.With the increase ofproportion of L.principis-rupprechtii,seedling richness and seedling densitydecreased.Seedling richness and density was highest when proportion of conifer andbroadleaved species was equal.
     2.After assessing the success of three restoration projects:planting Larixprincipis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland,and planting L.principis-rupprechtii on open forest land (LO),the results show that all threerestoration plantings facilitated the re-establishment of native species,increased thespecies diversity and soil nutrient contents.The results Suggests that plantinglate-successional species bypassed the early successional stages of restoration andaccelerated the succession process.Thus,it shows the ecological feasibility ofrestoration efforts.
     However,the reestablishment of native species in LS and PS was poorer than LObecause of the excessive stand density.Species diversity,seedling number,and seedling diversity were significantly higher in LO than in LS and PS.Soil nutrientwas also significantly higher in the LO treatment.The vegetation composition,speciesdiversity,and soil nutrient in LO,however,were more similar to these in the reference.This result indicated that planting L.principis-ruppreehtii on open forest standappears to be successful,and has accelerated the succession process for approximately30 years.
     For long-term restoration,in LS and PS,species richness and diversity will notincrease significantly until the self-thinning stage or the occurrence of naturaldisturbance,because excessive stand density greatly impedes the regeneration ofnative species.Thus,selective thinning is necessary for future forest management,andL.principis-rupprechtii forest will be replaced by native species in the future.In LO,although few native species still disappear,they will reestablish with improve ofenvironmental condition.Furthermore,post-planting activities are required aftertimber harvesting or the natural mortality of the species to make up the failureregeneration ofL.principis-rupprechtii.
     3.Although seedling richness and seedling density were lower in ecotone thanbroadleaved forest,seedling diversity index and evenness index was higest amongthree communities.Seedling richness,diversity index,evenness index and seedlingdensity were lowest in coniferous forest.The proportion of seedling in larger size washigher in ecotone than in broadleaved forest and coniferous forest.This result showsthat ecotone improved the growth of seedling and suggests that it is required toreplace the large area pure forest by small patches.
     4.Seedling richness,seedling diversity index and seedling density were highest inheavy thinned stands (<650 stems/ha) and medium gaps (mean:114.62 m2).Saplingrichness,diversity index,and density were highest in heavy thinned stands and largergaps.In heavy thinned stands,medium gaps and large gaps,tree seedling distributedat all size classes.With the enhancement of disturb intensity,the average height andDBH of sapling increased.There was the significant positive relationship betweenlight and seedling richness,diversity and density in thinned stands.However,litterdepth impeded the increase of seedling richness,diversity and density.Moreover,herbaceous cover was the important factor,which impeded the increase of seedlingrichness and seedling density in large gaps.
     Increasing vertical and horizontal structural heterogeneity within stands,density management and creating gaps support the suitable environmental condition forseedling survival and growth.However,canopy openness will be filled quickly byexpansion of neighboring trees in light thinned stands and small gaps.As a result,those stands can not support long-term structural and environmental heterogeneity.Thus,the better development of understory vegetation and regeneration require moreintensive density management and variable density thinning.Activities on severaldisturbances are favorable for age and structural heterogeneity of forest.Moreover,the high competition from herbaceous has impeded the survival and growth ofseedling in large gaps.It is necessary to cut herbaceous regularly.
     5.The results of experiment about sowing seed and planting seedling of L.principis-rupprechtii by different treatments shows seedling can't survival duringwinter,which is the major reason of L.principis-rupprechtii can't regenerate inLiupan Mountain Natural Reserve.At the same time,light level,soil water content,and depth of litter also impede the seed germination and seedling survival.Furthermore,there was significant difference in seedling survival rate of 2 years oldbetween different planting times.This result suggests that 2-year seedling can survivalsuccessfully during winter.
引文
[I] Agyeman, V.K., Swaine, M.D., 1999. Thompson J. Response of tropical forest tree seedlings to irradiance and the derivation of a light response index. Journal of Ecology 87, 815- 827.
    [2] Amezaga, I., Onaindia, M., 1997. The effect of evergreen and deciduous coniferous plantations on the field layer and seed bank of native woodlands. Ecography 20, 308-318.
    [3] Anderson, J.M., Ingram., J.S., 1993. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed. CAB International, Oxon.
    [4] Andrew, N.G, Thomas, A.S., 1997. Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78(8), 2458-2473.
    [5] Are(?)valo, J.R., Ferna(?)ndez-Palacios, J.M., 2006. Tree fall gaps and regeneration composition in the laurel forest of Anaga (Tenerife): a matter of size? Plant Ecololgy 10, 1-11.
    [6] Aubin, I., Beaudet, M., Messier, C., 2000. Light extinction coefficients specific to understory vegetation of the southern boreal forest, Quebee. Canadian Journal of Forest Research 30, 168-177.
    [7] Augusto, L., Bonnaud, P., Ranger, J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105, 67-78.
    [8] Augusto, L., Dupouey, J., Ranger, J., 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60, 823-831.
    [9] Augusto, L., Ranger, J., Binkley, D., Rothe, A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59, 233-253.
    [10] Bailey, J.D., Tappeiner, J.C., 1998. Effects of thinning on structural development in 40- to 100- year-old Douglas-fir stands in western Oregon. Forest Ecology and Management 108, 99-113.
    [11] Barbier, S., Balandier, P., Gosselin, F., 2008. Influence of tree species on understory vegetation diversity and mechanisms involved桝 critical review for temperate and boreal forests. Forest Ecology and Management 254, 1-15.
    [12] Battles, J.J., Shlisky, A.J., Barrett, R.H., Heald, R.C., Allen-Diaz, B.H., 2001. The effects of the forest management on plant species diversity in a Sierran conifer forest. Forest Ecology and Management 146, 211-222.
    [13] Bauhus, J., Messier, C, 1999. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research 29, 260-273.
    [14] Bengtsson, J., Nilsson, S.G, France, A., Menozzi, P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132, 39-50.
    [15] Bergelson, J. 1990. Life after death: site preemption by the remains of Poa annua. Ecology 71, 2157-2165.
    [16] Berger, A.L., Puettmann, K.J., 2000. Overstory composition and stand structure influence herbaceous plant diversity in the mixed aspen forest of northern Minnesota. Am. Midi. Nat. 143,111-125.
    [17] Bladon, K.D., Silins, U., Landha u(?)sser, S.M., Lieffers, V.J., 2006. Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agr. For. Meteorol. 138, 104-119.
    [18] Bolstad, P.V., Gower, S.T., Isebrands, J.G, Dickson, R.E., Ceulemans, R., 1990. Estimation of leaf area index in fourteen southern Wisconsin forest stands using a portable radiometer. Tree Physiol. 7, 115-124.
    [19] Border, B.D., Pushnik, J.C., Wood, D.M., 2006. Comparison of leaf litter decomposition rates in restored and mature riparian forests on the sacramento river, California. Restoration Ecology 14(2), 308-315.
    [20] Bradshaw, R.H.W., Holmqvist, B.H., Cowling, S.A., Sykes, M.T., 2000. The effects of climate change on the distribution and management of Picea abies in southern Sweden. Canadian Journal of Forest Research 30, 1992-1998.
    [21] Brandon, T.B., Schooley, R.L., 1999. The ants of southern Sonoran desert: community structure and the role of trees. Biodiversity and Conversation 8, 29-38.
    [22] Bratton, S., 1976. Resource division in an understory herb community: responses to temporal and microtopographic gradients. Am. Nat. 110,679-693.
    [23] Brewer, S.W., Webb, M.A.H., 2001. Ignorant seed predators and factors affecting the seed survival of a tropical palm. Oikos 93, 32-41.
    [24] Brosofske, K.D., Chen, J., Crow, T.R., 2001. Understory vegetation and site factors: implications for a managed Wisconsin landscape. Forest Ecology and Management 146, 75-87.
    [25] Brothers, T.S., 1993. Fragmentation and edge effects in central Indiana old-growth forests. Natural Areas Journal 13, 268-274.
    [26] Burton, C.M., Burton, P.J., Hebda, R., Turner, N.J., 2006. Determining the optimal sowing density for a mixture of native plants used to revegetate degraded ecosystems. Restoration Ecology 14(3), 379-390.
    [27] Canham, C.D., 1989. Different response to gaps among shade-tolerant tree species. Ecology 70(3), 548-550.
    [28] Canham, C.D., Denslow, J.S., Platt, W.J., Runkle, J.R., Spies, T.A., 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian January of Forest Research 20, 620-631.
    [29] Carey, A.B., 1996. Interactions of Northwest forest canopies and arboreal mammals. Northwest Sci. 70, 72-78.
    [30] Carey, A.B., 2000. Effects of new forest management strategies on squirrel populations. Ecol Appl 10, 248-257.
    [31] Carey, A.B., Curtis, R.O., 1996. Conservation of biodiversity: a useful paradigm for forest ecosystem management. Wildlife Soc. Bull. 24, 61-62.
    [32] Carey, A.B., Johnson, M.L., 1995. Small mammals in managed, naturally young, and old-growth forests. Ecol Appl 5, 336-352.
    [33] Chan, S.S., Larson, D.J., Maas-Hebner, K.G, Emmingham, W.H., Johnston, S.R., Mikowski, D.A., 2006. Overstory and understory development in thinned and underplanted Oregon Coast Range Douglas-fir stands. Canadian Journal of Forest Research 36, 2696-2711.
    [34] Chapman, G.R., 1992. Desertified grassland. London: Academic Press, 1992.
    [35] Clements, F.C., 1905. Research methods in ecology. University publishing company, Lincoln, Nebraska, USA.
    [36] Coates, K.D., Burton, P.J., 1997. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management 99, 337-354.
    [37] Coates, K.D., Burton, P.J., 1999. Growth of planted tree seedlings in response to ambient light levels in northwestern interior cedar-hemlock forests of British Columbia. Canadian Journal of Forest Research 29, 1374-1382.
    [38] Comeau, P.G., 2001. Relationships between stand parameters and understory light in boreal aspen stands. B.C.J. Ecosys. Man. 1(2), 1-8.
    [39] Comeau, P.G, Braumandl, T.F., Xie, C, 1993. Effects of overtopping vegetation on light availability and growth of Englemann spruce (Picea engelmannii) seedlings. Canadian Journal of Forest Research 23, 2044-2048.
    [40] Comeau, P.G., Heineman, J.L., 2003. Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. Forest Ecology and Management 180, 303-315.
    [41] Da Jinyongzhi, 1998. Forest selection cutting. Beijing: China Forestry Press, 1998, pp, 53.
    [42] Dai, X., 1996. Influence of light conditions in canopy gaps on forest regeneration: a new gap light index and its application in a boreal forest in east-central Sweden, Forest Ecology and Management 84, 187-197.
    [43] Daily, G.C., 1995. Restoration value to the words degraded lands. Science 269, 350-354.
    [44] Davidson, E.A., de Carvalho, C.J.R., Vieira, I.C.G, Figueiredo, R.D., Moutinho, P., Ishida, F.Y., dos Santos, M.T.P., Guerrero, J.B. Kalif, K. Saba., R.T., 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications 14, S150-S163.
    [45] Diaci, J., Pisek, R. Boncina, A., 2005. Regeneration in experimental gaps of subalpine Picea abies forest in the Slovenian Alps. Eur. J. Forest Res 124, 29-36.
    [46] di Castri, F., Hansen, A.J., Holland, M.M., 1988. A new look at ecotones: emerging international projects on landscape boundaries.Biology International, Special issue 17, 1-163.
    [47] Dodd, N.L., Schweinsburg, R.E., Boe, S., 2006. Landscape-scale forest habitat relationships to tassel-eared squirrel populations: implications for ponderosa pine forest restoration. Restoration Ecology 14, 537-547.
    [48] Elliott, K.J., White, A.S., 1994. Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency. Forest Science 40,47-58.
    [49] Ellsworth, J., Harrington, R., Fownes, J., 2004. Seedling emergence, growth, and allocation of oriental bittersweet: effects of seed input, seed bank, and forest floor litter. Forest Ecology and Management 190, 255-264.
    [50] Emmer, I.M., Fanta, J., Kobus, A.T., Kooijman, A., Sevink, J., Fanta, J., 1998. Reversing borealization as a means to restore biodiversity in Central European mountain forests梐n example from the Krkonos(?)e mountains, Czech Republic. Biodiversity and Conservation 7, 229-247.
    [51] Ewald, J., 2000. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Appl. Veg. Sci. 3,123-134.
    [52] Ewers, B.E., Mackay, D.S., Gower, S.T., Ahl, D.E., Burrows, S.N., Samanta, S.S., 2002. Tree species effects on stand transpiration in northern Wisconsin. Water Resour. Res. 38,1-11.
    [53] Facelli, J.M., Pickett, S.T.A., 1991a. Plant litter: light interception and effects on an old-field plant community. Ecology 72,1024-1031.
    [54] Facelli, J.M., Pickett, S.T.A., 1991b. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57,1-32.
    [55] Fensha, R.J., Fairfax, R.J., Cannell, R.J., 1994. The invasion of Lantana camara L. in forty mile scrub national park, north Queensland. Austr. J. Ecol. 19(3), 297-303.
    [56] Feyera, S., Beck, E., Liittge, U., 2002. Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16, 245-249.
    [57] France, E.A., Binkley, D., Valentine, D., 1989. Soil chemistry changes after 27 years under four tree species in southern Ontario. Canadian Journal of Forest Research 19, 1648-1650.
    [58] Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155, 399-423.
    [59] Gates, J.E., Gysel, L.W., 1978. Avian nest dispersion and fledging sucess in field-forest ecotones. Ecology 59, 871-883.
    [60] Gilliam, F.S., Turill, N.L., Adams, M.B., 1995. Herbaceous layer and overstory species in clearcut and mature central Appalachian hardwood forest. Ecol. Appl. 5(4), 947-955.
    [61] Gilpin, M.E., Diamond, J.M., 1980. Subdivision of nature reserves and the maintenance of soecies diversity. Nature 285, 567-568.
    [62] Glenn-Lewin, D.C., 1997. Species diversity in North American temperate forests. Vegetatio 33, 153-162.
    [63] Gorb, S.N., Gorb, E.V., 1995. Removal rates of seeds of five mymecochorous plants by the ant formica polyctena (hymenoptera Formicidae). Oikos, 73, 367-374.
    [64] Gorb, S.N., Gorb, E.V., 1999. Effects of ant species composition on seed removal in deciduous forest in eastern Europe. Oikos, 84, 110-118.
    [65] Go(?)tmark, F., Fridman, J., Kempe, G, Norden, B., 2005. Broadleaved tree species in conifer-dominated forestry: regeneration and limitation of saplings in southern Sweden. Forest Ecology and Management 214, 142-157.
    [66] Halpern, C.B., Spies, T.A., 1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol Appl 5, 913-934.
    [67] Hardtle, W., von Oheimb, G, Westphal, C, 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecology and Management 182, 327-338.
    [68] Harrington, C.A. 1999. Forests planted for ecosystem restoration or conservation. New Forests 17,: 175-190.
    [69] Hart, S.A., Chen, H.Y.H., 2006. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 25, 381-397.
    [70] Hayes, J.P., Chan, S.S., Emmingham, W.H., Tappeinr, J.C., Kellogg, L.D., Bailey, J.D., 1997. Wildlife response to thinning young forests in the pacific northwest. J. For. 95, 28-33.
    [71] Hill, M.O., 1992. Mixtures as habitats for plants. In: Cannell, M.G.R., Malcolm, D.C., Robertson, P.A. (Eds.), The Ecology of Mixed-species Stands of Trees. Blackwell Scientific Publications, Oxford, p 301-302.
    [72] Hobbs, R.J. 2007. Setting effective and realistic restoration goals: key directions for research. Restoration Ecology 15, 354-357.
    [73] Holderegger, R., 1996. Effects of litter removal on the germination of Anemone nemorosa L. Flora 191, 175-178.
    [74] Holladay, C.A., Kwit, C, Collins, B., 2006. Woody regeneration in and around aging southern bottomland hardwood forest gaps: Effects of herbivory and gap size. Forest Ecology and Management 223, 218-225.
    [75] Holland M M , 1988. SCOPE/ MAB technical consultations on landscape boundaries: report of a SCOPE/ MAB workshop on ecotones. Biology Internat ional 17, 47-106
    [76] Holmes, T.H., 1995. Woodland canopy structure and the light response of juvenile Quercus lobata ( Fagaceae). American Journal of Botany 82, 1432-1442.
    [77] Hooper, E., Legendre, P., Condit, R., 2005. Barriers to forest regeneration of deforested and abandoned land in Panama. Journal of Applied Ecology 42, 1165-1174.
    [78] Huth, F., Wagner, S., 2006. Gap structure and establishment of Sliver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.). Forest Ecology and Management 229, 314-324.
    [79] Inman, F.M., Wentworth, T.R., Groom, M., Brownie, C., Lea, R., 2007. Using artificial canopy gaps to restore Puerto Rican Parrot (Amazona vittata) habitat in tropical timber plantations. Forest Ecology and Management 243, 169-177.
    [80] Jackson, M.L., 1968. Ana(?)lisis Qui(?)mico de Suelos, 1st ed. Editorial Omega, Barcelona.
    [81] Jordan, W.R., 1995. "Sunflower Forest": ecological restoration as the basis for a new environmental paradigm. In: Baldwin, A.D.J., Beyound preservation: restoring and inventing landscape. Minneapolis: university of Minnesota Press, 17-34.
    [82] Jane, M., Carol, K.A., 1992. The effects of litter on early seedling establishment in a tropical forest. Ecology 73(1), 68-77.
    [83] Jennings, S.B., Brown, N.D., Sheil, D., 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and othermeasures. Forestry 72, 59-73.
    [84] Jia, G.M., Cao, J., Wang, C.Y., Wang, G, 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management 217, 117-125.
    [85] Jobidon, R., Cyr, G, Thiffault, N., 2004. Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. Forest Ecology and Management 198,209-221.
    [86] Jones, E.R., Wishnie, M.H., Deago, J., Sautu, A., Cerezo, A., 2004. Facilitating natural regeneration in Saccharum spontaneum (L.) grasslands within the Panama Canal Watershed: effects of tree species and tree structure on vegetation recruitment patterns. Forest Ecology and Management 191, 171-183.
    [87] Joret, G, He(?)bert, J., 1955. Contribution a(?) la de(?)termination du besoin des sols en acide phosphorique. Ann. Agron. 2,233-299.
    [88] Jorge, C., Comez, J.M., Daniel, G., 1999. Seed predation and dispersal in relict Scots pine forests in southern Spain. Plant Ecology, 145, 115-123.
    [89] Kirby, K.J., 1988. Changes in the ground flora under plantations on ancient woodland sites. Forestry 61, 317-338.
    [90] Kneeshaw, D.D., 1998. Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology 79,783-794.
    [91] Kobe, R.K., Pacala, S.W., Silander, J.A. Jr., Canham, C.D., 1995. Juvenile tree survivorship as a component of shade tolerance, Ecol. Appl. 5,517-532.
    [92] Laughlin, D.C., Moore, M.M., Bakker, J.D., Casey, C.A., Springer, J.D., Covington, W.W., 2006. Assessing targets for the restoration of herbaceous vegetation in ponderosa pine forests. Restoration Ecology 14(4), 548-560.
    [93] Lebreton, P., Choisy, J.P., 1991. Incidences avifaunistiques des ame(?)nagements forestiers: substitution Quercus/Pinus en milieu subme(?)diterrane(?)en. Bulletin de(?)cologie 1,213-220.
    [94] Lei, X.D., Lu, Y.C., Peng, C.H., Zhang, X.P., Chang, J., Hong, L.X., 2007. Growth and structure development of semi-natural larch-spruce-fir (Larix olgensis-Picea jezoensis-Abies mephrolepis) forests in northeast China: 12-year results after thinning. Forest Ecology and Management 240, 165-177.
    [95] Lertzman, K.P., Krebs, C.J., 1991. Gap-phase structure of a sub-alpine old-growth forest. Canadian Journal of Forest Research 21, 1730-1741.
    [96] Liu, Z.G., Zhu, J.J., Hu, L.L., Wang, H.X., Mao, Z.H., Li, X.F., Zhang, L.J., 2005. Effects of thinning on microsites and natural regeneration in a Larix olgensis plantation in mountainous regions of eastern Liaoning Province, China. Journal of Forestry Research 16(3), 193-199.
    [97] Maestre, F.T., Cortina, J., Vallejo, R., 2006. Are ecosystem composition, structure and functional status related to restoration success? A test from semiarid Mediterranean steppes. Restoartion Ecology 14(2), 258-266.
    [98] Magurran A E. Ecological Diversity and Its Measurement. New Jersey: Princeton Press, 1992.
    [99] Maret, M.P., Wilson, M.V., 2005. Fire and litter effects on seedling establishment in western Oregon upland prairies. Restoration Ecology 13, 562-568.
    [100] Marten, S.N., Breshears, D.D., Meyer, C.W., 2000. Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies. Ecological Modelling 126, 79-93.
    [101] McComb, W.C., Spies, T.A., Emmingham, W.H., 1993. Douglas-fir forests: managing for timber and mature-forest habitat. J. For. 91, 31-42.
    [102] McKee, K.L., Faulkner, P.L., 2000. Restoration of biogeochemical function in mangrove forests. Restoration Ecology 8, 247-259.
    [103] Meyer, C.L., Sisk, T.D., Covington, W.W., 2001. Microclimatic changes induced by ecological restoration of ponderosa pine forests in northern Arizona. Restoration Ecology 9, 443-452.
    [104] Murphy, J., Riley, J., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chemica Acta 27, 31-36.
    [105] Muscolo, A., Sidari, M., Mercurio, R., 2007. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. Forest Ecology and Management 242,418-418.
    [106] Nagaike, T., 2002. Differences in plant species diversity between conifer (Larix kaempferi) plantations and broad-leaved (Quercus crispula) secondary forests in central Japan. Forest Ecology and Management 168, 111-123.
    [107] Nakashizuka, T., 1989. Role of uprooting in composition and dynamics of an old-growthforest in Japan. Ecology 70, 1273-1278.
    [108] Narukawa, Y., Yamamoto, S.I., 2001. Gap formation, microsite variation and the conifer seedling occurrence in a subalpine old-growth forest, Central Japan. Ecological Research 16, 617-625.
    [109] Nichols, O., Nichols, F.M., 2003. Long-term trends in faunal recolonization after bauxite mining in the jarrah forest of south-western Australia. Restoration Ecology 11, 261-272.
    [110] Nordborg, F., Olsson, S., 1999. Changes in soil mineralogy and exchangeable cat ion pools in stands of Norway spruce planted on former pasture land. Plant soil 207,21-229.
    [111] North, M., Franklin, J.F., Carey, A.B., Foreman, E., Hamer, T., 1999. Forest structure of the northern spotted owl's foraging habitat. For Sci 45, 520-527.
    [112] Noss, R.F., 1983. A regional landscape approach to maintain diversity. Bioscience 33, 700-706.
    [113] Page, L.M., Cameron, A.D., 2006. Regeneration dynamics of sitka spruce in artificially created forest gaps. Forest Ecology and Management 221,260-266.
    [114] Palik, B., Engstrom, R.T., 1999. Species composition. In: Hunter, M.J. (Ed.), Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge pp: 65-94.
    [115] Passell, H. D., 2000. Recovery of bird species in minimally restored Indonesian thin strips mines. Restoration Ecology 8, 112-118.
    [116] Pataki, D.E., Oren, R., 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv. Water Resour. 26, 1267-1278.
    [117] Peterson, G., Allen, C.R., Holling, C.S., 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1,6-18.
    [118] Planchais, I., Sinoquet, H., 1998. Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.). Agr. Forest Meteorol. 89, 241-253.
    [119] Polyakova, O., Aide, N., 2007. Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management 253,11-18.
    [120] Porte(?), A., Huard, F., Dreyfus, P., 2004. Microclimate beneath pine plantation, semi-mature pine plantation and mixed broadleaved-pine forest. Agr. For. Meteorol. 126, 175-182.
    [121] Powles, S., 1984. Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol 35, 15-44.
    [122] Prescott, C.E., 2002. The influence of the forest canopy on nutrient cycling. Tree Physiol. 22, 1193-1200.
    [123] Pritchard, J.M., Comeau, P.G, 2004. Effects of opening size and stand characteristics on light transmittance and temperature under young trembling aspen stands. Forest Ecology and Management 200, 119-128.
    [124] Puettmann, K.J., Berger, C.A., 2006. Development of tree and understory vegetation in young Douglas-fir plantations in western Oregon. Western J. Appl. Forest. 21, 94-101.
    [125] Purcell, A.H., Friedrich, C, Resh., V.H., 2002. An assessment of a small urban stream restoration project in northern California. Restoration Ecology 10, 685-694.
    [126] Qian, H., Klinka, K., Okland, R.H., Krestov, P., Kayahara, G.J., 2003. Understorey vegetation in boreal Picea mariana and Populus tremuloides stands in British Columbia. J. Veg. Sci. 14, 173-184.
    [127] Reader, R.J., Bricher, B.D., 1992. Value of selectively cut deciduous forest for understory herb conservation: an experimental assessment. Forest Ecology and Management 51, 317-327.
    [128] Reay, S.D., Norton, D.A., 1999. Assessing the success of restoration plantings in a temperate New Zealand forest. Restoration Ecology 7, 298-308.
    [129] Reich, P.B., Bakken, P., Carlson, D., Frelich, L.E., Friedman, S.K., Grigal, D.F., 2001. Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests. Ecology 82, 2731-3748.
    [130] Ruiz-Jae(?)n, M.C., Aide, T.M., 2005. Restoration success: how is it being measured? Restoration Ecology 13, 569-577.
    [131] Runkle, J.R., 1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology 63, 1533-1546.
    [132] Runkle, J.R., 1985. Comparison of methods for determining fraction of land area in treefall gaps. Forest Sci Monogr 31, 15-19.
    [133] Russell. S.K., Schupp, K.W., 1998. Effects of microhabitat patchiness on patterns of seed dispersal and predation of Cercocarpus ledifolius (Rosaceae). Oikos 81(3), 434-443.
    [134] Rutigliano, F.A., Ascoli, R.D., De Santo, A.V., 2004. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol Biochem 36, 1719-1729.
    [135] Saetre, P., Saetre, L.S., Brandtberg, P.O., Lundkvist, H., Bengtsson, J., 1997. Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce-birch stands. Canadian Journal of Forest Research 27, 2034-2042.
    [136] Salinas, M.J., Guirado, J., 2002. Riparian plant restoration in summerdry riverbeds of southeastern Spain. Restoration Ecology 10, 695-702.
    [137] Sariyildiz, T., Anderson, J.M., Kucuk, M., 2005. Effects of tree species and topography on soil chemistry litter quality, and decomposition in northeast Turkey. Soil Biology and Biochemistry 37, 1695-1706.
    [138] Scariot, A., 2000. Seedling mortality by litter fall in Amazonian forest fragments. Biotropica 32, 662-669.
    [139] SER (Society for Ecological Restoration International Science & Policy Working Group)., 2004. The SER international Primer on Ecological Restoration (available from http//www.ser.org) accessed in September 2007. Society for Ecological Restoration International, Tucson, Arizona.
    [140] Sharpe, F., Shaw, D.C., Rose, C.L., Sillett, S.C., Carey, A.B., 1996. The biologically significant attributes of forest canopies to small birds. Northwest Sci. 70, 86-93.
    [141] Schlenker, G., 1968. Experiments in culture with plants of the forest ground flora, subjected to different degrees of acidity and variations in the form of nitrogen supply. Acta Oecol. 3, 7-27.
    [142] Singh, A.N., Raghubanshi, A.S., Singh, J.S., 2004. Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region. India. Ecol. Eng. 22, 123-140.
    [143] Sonohat, G, Balandier, P., Ruchaud, F., 2004. Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann. For. Sci. 61, 629-641.
    [144] Staelens, J., Nachtergale, L., Luyssaert, S., Lust, N., 2003. A model of wind-influenced leaf litterfall in a mixed hardwood forest. Canadian Journal of Forest Research 33, 201-209.
    [145] Sydes, C., Grime, J.P., 1981. Effects of tree leaf litter on herbaceous vegetationin deciduous woodland. Ⅱ. An experimental investigation. J. Ecol. 69,249-262.
    [146] Teuscher, F., 1985. Fichtenforste im Mittelland. Schweiz. Z. Forstwes. 136, 755-761.
    [147] Tsubuki, T., Takizawa, T., 1996. Flight activities of Colias erate (Lepidoptera, Pieridae) in high and low altitudes. Transcontinental Lepidopteran Society of Japan 47, 17-28.
    [148] Tyrrell, L.E., Crow, T.R., 1994. Structural characteristics of old-growth hemlock-hardwood forests in relation to age. Ecology 75(2), 370-386.
    [149] Vacchiano, G., Motta, R., Long, J.N., Shaw, J.D., 2008. A density management diagram for Scots pine (Pinus sylvestris L.): A tool for assessing the forest's protective effect. Forest Ecology and Management 255, 2542-2554.
    [150] Vallauri, D.R., Aronson, J., Barbero, M., 2002. An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restoration Ecology, 10, 16-26.
    [151] Veblen, D., 1989. Tree regeneration response to gaps along a transandean gradient. Ecology 70, 541-543.
    [152] Wang, W., Franklin, S.B., Ren, Y., Ouellette, J.R., 2006. Growth of bamboo Fargesia qinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling mountains, China. Forest Ecology and Management 234, 107-115.
    [153] Webb, C.E., Oliver, I., Pik, A.J., 2000. Does coastal foredune stabilization with Ammophila arenaria restore plant and arthropod communities in southeastern Australia? Restoration Ecology 8(3), 283-288.
    [154] Weiermans, J., van Aarde, R.J., 2003. Roads as ecological edges for rehabilitating coastal dune assemblages in northern KwaZulu-Natal, south Africa, Restoration Ecology 11,43-49.
    [155] Whitmore, T.C., 1989. Canopy gaps and the two major groups of forest trees. Ecology 70(3), 536-538.
    [156] Whittaker, R.H., 1972. Evolution and measurement of species diversity. Taxon, 21, 213-251.
    [157] Wilkins, S., Keith, D.A., Adam, P., 2003. Measuring success: evaluating the restoration of grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restoration Ecology 11,489-503.
    [158] Wilson, D.S., Puettmann, K.J., 2007. Density management and biodiversity in young Douglas-fir forests: Challenges of managing across scales. Forest Ecology and Management 246, 123-134.
    [159] Wolff, A., Debussche, M., 1999. Ants as seed dispersers in a Mediterranean old-field succession. Oikos, 84,443-452.
    [160]York, R., Heald, A., Battles, J.J., York, J.D., 2003.Group selection management in conifer forests: relationships between opening size and tree growth.Canadian Journal of Forest Research 34, 630-641
    [161]Zhang, J.W., Oliver, W.W., Ritchie, M.W., 2007.Effect of stand densities on stand dynamics in white fir (Abies concolor) forests in northeast California, USA.Forest Ecology and Management 244, 50-59.
    [162]Zhu, J.J., Tan, H., Li, F.Q., Chen, M., Zhang, J.X., 2007.Microclimate regimes following gap formation in a montane secondary forest of eastern Liaoning Province, China.Journal of Forestry Research 18(3), 167-173.
    [163]班勇,徐化成.原始老龄林内兴安落叶松种子命运的试验研究.生态学报,1996, 16 (5):541-547.
    [164]陈凤娟,谷建才,黄冬梅,刘涛,武会欣,石丽丽,李伟伟.不同间伐强度对华北落叶松人工林林卜植物多样性的影响研究.中国农业通报,2008, 24(11), 169-173.
    [165]陈灵芝.中国退化生态系统研究.北京:中国科学技术出版社,1995.
    [166]杜娟,肖志军,张二亮,王佳,崔立奇,高宝嘉.森林草原交错带植物群落多样性的研究.河北林业科技,2008, 2(1), 1-4.
    [167]范广信,王进坤,王艳慧,李德成.冀东低山华北落叶松引种造林试验研究.河北林业科技,2007, 2(1), 13-15.
    [168]盖力岩,于树峰,崔立志.提高华北落叶松造林成活率的关键技术环节.河北林果研究,2008, 23(4), 370-372.
    [169]高俊峰,郭晋平.关帝山林区森林交错带群落林木年龄结构及其动态的研究.山西农业大学学报,2005, 2, 168-172.
    [170]黄忠良,彭少麟,易俗.2001.季风常绿阔叶林幼苗定居的影响因素的研究.热带亚热带植物学报,9(2), 123-128.
    [171]金永焕,李敦求,姜好相,刘军,李光华.择伐干扰后长白山区天然次生林物种多样性的变化.吉林农业大学学报,2006, 28(1), 35-40.
    [172]雷相东,陆元昌,张会儒,张则路,陈晓光.抚育间伐对落叶松云冷杉混交林的影响.林业科学,2005, 41(4), 78-85
    [173]李迪强,张新时,杨奠安.全球变化与过渡带生物多样性保护.见:绿满东亚.中国环境出版社,1994, 694-703.
    [174]李俊清,李景文.中国东北小兴安岭阔叶红松林更新及其恢复研究.生态学报,2003,23(7), 1268-1277.
    [175]李俊清.森林生态学.北京:高度教育出版社,2006, 186-187.
    [176]李林,周小勇,黄忠良,魏识广,史军辉.鼎湖山植物群落α多样性与环境的关系.生态学报,2006, 26(7), 2301-2307.
    [177]李新荣.俄罗斯平原针-阔林过渡带森林群落组成结构与物种多样性的研究.生物多样性,1999, 7(4), 291-296.
    [178]梁晓冬,叶万辉,蚁伟民.林窗与生物多样性维持.生态学杂志,2001, 20(5), 64-68.
    [179]林平,刘勇,李国雷,于海群,吕瑞恒.间伐强度对华北落叶松人工林植被物种多样性的影响.中国农学通报,2006, 158-161.
    [180]刘庆,吴彦.滇西北亚高山针叶林林窗大小与更新的初步分析.应用与环境生物学报,2002, 8(5), 453-459.
    [181]马世骏.现代生态学透视.北京:科学出版社,1990.
    [182]牛文元.生态环境脆弱带(ecotone)的基础判定.现代生态学透视,生态学研究序列专著Ⅰ,北京:科学出版社,1990.
    [183]彭闪江,黄忠良,彭少麟,欧阳学军,徐国良.植物天然更新过程中种子和幼苗死亡的影响因素.广西植物,2004, 24(2), 113-121.
    [184]任海,彭少麟.恢复生态学导论.北京:科学出版社,2003, 14-20.
    [185]宋会兴,苏智先,高贤明.植被状况对乔木幼苗物种多样性的影响.热带亚热带植物学报,2001,9 (4), 289-294.
    [186]孙儒泳.动物生态学原理.北京师范大学出版社,2001.
    [187]汤景明,翟明普.影响天然林树种更新因素的研究进展.福建林学院学报,2005, 5(4),379-383.
    [188]王贺新,李根柱,于冬梅,陈英敏.枯枝落叶层对森林天然更新的障碍.生态学杂志,2008, 27(1), 83-88.
    [189]王庆锁,冯宗炜,罗菊春.生态交错带和生态流.生态学杂志,1997, 16 (6), 52-58.
    [190]王巍,马克平.东灵山地区动物对辽东栎坚果的捕食和传播Ⅰ.排除啮齿类动物对坚果丢失的影响.生态学报,2001, 21(2), 204-210.
    [191]王月玲,张源润,季波,蔡进军,许浩,董立国,李娜.宁夏南部土石质山区华北落叶松规范化造林技术.宁夏农林科技,2008, 3, 84-85.
    [192]王香亭.六盘山自然保护区科学考察.宁夏:宁夏人民出版社1988.
    [193]王晓飞.子午岭林区华北落叶松球蚜发生数量研究.农业科技与信息,2007, 1, 1-3.
    [194]吴宁.贡嘎山东坡亚高山针叶林的林窗动态研究.植物生态学报,1999, 23(3), 228-237.
    [195]鲜骏仁,胡庭兴,王开运,张远彬.川西亚高山针叶林林窗特征的研究.生态学杂志,2004, 23(3), 6-10.
    [196]于立忠,朱教君,孔祥文.人为干扰(间伐)对红松人工林林下植物多样性的影响.生态学报,2006, 26(11), 3757-3764.
    [197]于顺利,刘灿然,马克平.蒙古栎群落交错带(ecotone)的研究.生物多样性,2000,8(3), 277-283.
    [198]张希彪,王瑞娟,周天林,上官周平.黄土丘陵区油松天然次生林林窗特征与更新动态.应用生态学报,2008, 19(10), 2103-2108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700