用户名: 密码: 验证码:
超声化学法制备纳米金属材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用超声化学法,以可溶性银盐为银源,在一定浓度的还原剂和稳定剂存在下,在水介质中制备出了盘状和棒状纳米银;而使用相同的银源、还原剂和稳定剂,在水/乙醇介质(1:1)中,则得到银微纳米管。通过扫描电子显微镜和透射电子显微镜观察其形貌及生长过程,并通过选区电子衍射、X-射线衍射、红外光谱及能谱对纳米银进行了表征。利用超声化学法制备盘状和棒状纳米银尚属首次,大尺寸银微米管的制备国内外未见报道。
     银纳米棒:将含有硝酸银(0.01 mol/L)、还原剂六次甲基四胺(HMTA 0.80 g/L)和稳定剂聚乙烯吡咯烷酮(PVP 0.40 g/L)的水溶液,在恒温条件下进行超声辐照,制备得到形貌均一的银纳米棒,平均长度6μm,直径50 nm。并利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对其进行表征。同时讨论了反应时间、稳定剂及反应温度等对纳米银形貌的影响。结果表明,银纳米棒的长度随着时间的延长而增加,随稳定剂浓度的增大而变短。论文通过红外分析提出了反应机理。
     银纳米盘:在上述反应体系中,保持硝酸银为浓度0.01 mol/L,增加稳定剂浓度(PVP 0.60 g/L),同时降低还原剂的含量(HMTA 0.20 g/L),30℃条件下,超声反应30 min,制备出直径200- 280 nm盘状纳米银。这是由于在低浓度还原剂条件下,银晶核受高浓度的稳定剂的抑制,生长缓慢,最终生长为表面光滑的盘状纳米银。随着稳定剂PVP浓度的增加,纳米盘直径规律性地变小,这可以作为控制银纳米盘直径大小的重要条件。论文还考察了还原剂和介质酸度对银纳米盘形貌的影响,并研究了盘状纳米银粒子的抗菌性能,结果表明此种盘状纳米银粒子具有良好的抗菌效果,其最小抑菌浓度为8μg /mL。
     银微纳米管:以硝酸银为银源、HMTA为还原剂、PVP为稳定剂,在水/乙醇介质(1:1)中,恒温30℃超声反应30 min,然后在4℃下陈化6天,得到银微米管。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X-射线衍射(XRD)对其进行表征,考察了陈化时间、稳定剂种类、还原剂浓度、介质pH值以及超声处理等因素对银微米管形貌的影响。结果表明,通过自组装过程形成的银微纳米管,其长度和形貌受还原剂浓度、稳定剂种类、体系pH值和陈化时间的影响,当用电磁搅拌代替超声后,银管形貌不均一。
In this paper, silver nanorods and nanoplates have been synthesized by means of ultrasonic irradiation, with fusibility silver salt and a certain concentration of reducing agent and stabilizer in aqueous solution; And when we use the same silver source, reducing agent and stabilizer, but change the system to water / ethanol solution (1:1), a special morphology micro/nanotubes of silver was prepared. The process of growing can be monitored by transmission electron microscopy (TEM) and scanning electron microscope (SEM). The products were characterized by selected area electron diffraction (SAED), X-ray diffraction (XRD), IR spectrophotometer and energy dispersive spectra (EDS). This is the first time to synthesis silver nanorods and nanoplates using sonochemical method, and the preparation of large-size silver microtubes have not been reported whether at home or abroad.
     Silver nanorod: The reaction solution contains stabilizer PVP 0.40 g /L、reducing agent HMTA 0.80 g /L and silver source AgNO3 0.01 mol /L, under the conditions of constant temperature and ultrasonic irradiation, silver nanorods with uniform morphology was prepared, with average length of 6μm and diameter of 50 nm. We use transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray to characterize the morphology of silver nanorods. At the same time, the impact of the reaction time, stabilizer and reaction temperature on the silver nanorods morphology had been discussed. The experiment shows that the length of silver nanorods is increasing as the reaction time increased, and becoming shorter when the stabilizer concentration increased. The reaction mechanism is proposed by IR analysis.
     Silver nanoplates: In the above reaction system, we maintain the concentration of silver nitrate of 0.01 mol / L, reducing the concentration of reductant(HMTA 0.20 g/L), while increasing the concentration of stabilizer(PVP 0.60 g/L), then ultrasonic irradiation for 30 minutes at the temperature of 30℃, the silver nanoplates of 200- 280 nm in diameter were prepared. It shows that under the conditions of low concentration of reducing agent, the growth of silver nuclei was inhibited by high concentrations of stabilizing agent, and eventually grows into a plate with smooth surface. With the concentration of PVP stabilizer increasing, nanoplates regularly to become smaller in diameter, which can control the diameter and the size of silver nanoparticles; The paper also examines the effect of reducing agent and medium acidity on the morphology of silver nanoplates. In addition, silver nanoparticles have good antibacterial properties, the results showed that the minimum inhibitory of silver nanoparticles concentration is 8μg /mL.
     Silver micro/nano-tubes: In this study, we use silver nitrate as silver source, HMTA as the reducing agent, PVP as stabilizer to prepare silver colloid in the organic system of water/ethanol (1:1) under the conditions of constant temperature 30℃and ultrasonic irradiation for 30 min. After 6 days aging at 4℃, the silver microtubes were formed. The silver microtubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). By changing the aging time, stabilizer type, concentration of reducing agent, medium pH and ultrasound treatment, we investigated the morphology differences of silver microtubes. The results showed that it is a self-assembly process to form silver micro/nano-tubes, its length and shape are affected by the reducing agent concentration, stabilizer type, pH value and aging time. When we use stirring instead of ultrasound, the morphology of the silver tubes were heterogeneity.
引文
[1] Aharon Gedanken. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11 (2): 47-55.
    [2] O. Taro, S. Akira. Supercritical Water Reactor for Decomposition of Organic Material in Water by Using Sub-or Supercritical Water. Jpn Kokai: Tokkyo Koho JP, 1998.
    [3] Y. Noriyuki, S. Akira, T. Osamu, et al. Apparatus and Method for Supercritical Water Oxidation. Jpn. Kokai: Tokkyo Koho JP, 1998.
    [4] S. Feng, M. Tsai, M. Greenblat. Preparation, Ionic Conductivity and Humidity Sensing Property of Novel Microporous Crystalline Germanates. Chem.Mater, 1992, 4(2): 38-40.
    [5] Niklasson G A. Optical properties of square lattices of gold nanoparticles. Nanostructured Materials, 1999, 11(12): 7251-7255.
    [6] Arnim Henglein, Michael Giersig. Formation of colloidal silver nanoparticles: capping action of citrate. Journal of Physical Chemistry B, 1999, 103(44): 9533-9539.
    [7]何胜,羊亿,刘敏,等.超声喷雾热解法制备TiO2薄膜(英文).电子器件,2008,31(01):236-238.
    [8]李启厚,吴希桃,何峰,等.超声雾化热分解法制备超细SnO2粉体及其形貌和粒度控制.功能材料,2008,9(39):0541-7541.
    [9]杨骏,朱利伟,唐渝,等.超声微乳法合成TiO2-SiO2催化剂可见光光催化降解亚甲基蓝.化学研究与应用,2008,20(6):714-718.
    [10]王纪俊,沈中华,许伯强等.金属和非金属材料中激光超声前驱小波分析.中国激光,2006,33(8):1127-1132.
    [11]肖代红,陈康华,黄伯云.超声电化学法制备纳米金属及硫族半导体研究进展.粉末冶金材料科学与工程,2008,13(1):1-7.
    [12]罗重霄,王燕,刘金库.导电ZAO纳米晶的超声-模板法合成、表征及应用.物理化学学报,2008,24(6):1007- 1011.
    [13]武娟,张昭.化学沉淀-热分解法制备超细氧化镍粉的研究.化工装备技术,2008,29(01):32-36.
    [14]张灿英,朱海涛,王继鑫,等.超声和微波作用下制备纳米氧化铜.稀有金属材料与工程,2007,26(S2):88-90.
    [15] Wanquan Jiang, Xiuqing Gong, Zuylao Chen,et al. Preparation of barium strontium titanate Ba1-xSrxTiO3 (0≤x≤0.2) single-crysta nanorods by a novel combined method. Ultrasonics Sonochemistry, 2007(14):208-212.
    [16] Cheng Jingquan, Yao Suwei. Preparation of Well-Dispersed Silver Colloids in the Ultrasonic Field.稀有金属材料与工程, 2005, 34(11):1717-1720.
    [17] Martin Kearns. Development and applications of ultrafine aluminium powders. Materials Science and Engineering A, 2004, 375-377: 120-126.
    [18] GB Schaffer, SH Huo, J Drennan, GJ Auchterlonie. The effect of trace elements on the sintering of an Al-Zn-Mg-Cu ALLOY. Acta Mater, 2001, 49(14): 2671-2678.
    [19] D.H. Kim, H.W. Ryu, J.H. Moon. Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. Journal of Power Sources, 2006, 163(1):196-200.
    [20] Kai Du, Wuyou Fu, Ronghui Wei, et al. Ultrasonic-assisted synthesis of highly dispersed MoO3 nanospheres using 3-mercaptopropyltrimethoxysilane.Ultrasonics Sonochemistry, 2008, 15(3):233-238.
    [21] Zhiwei Li, Xiaojun Tao, Zhishen Wu.Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property. Ultrasonics Sonochemistry, 2009, 16 (2): 221-224.
    [22] F. Dang, N. Enomoto, J. Hojo, et al. Sonochemical Synthesis of Monodispersed Magnetite Nanoparticles by Using an Ethanol-water Mixed Solvent. Ultrasonics Sonochemistry, 2009, 16(5): 649-654.
    [23] N. Enomoto, J. Akagi, Z. Nakagawa. Sonochemical powder processing of iron hydroxides. Ultrasonics Sonochemistry, 1996, 3(2): 97-103.
    [24] T. Shuto, Y. Mizukoshi, S. Tanabe, et al. IEICE Transactionsons Fundamentals of Electronics. Communications and Computer Sciences, 2006, 89-A: 729-733.
    [25] F. Dang, K. Kamada, N. Enomoto, et al. Sonochemical Synthesis of the Magnetite Nanoparticles in Aqueous Solution. J. Ceram. Soc. Jpn., 2007,(115):867-872.
    [26] Jiri Pinkas, Vendula Reichlova. Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrasonics Sonochemistry, 2008, 15 (3):257-264.
    [27] Willem J. Erasmus, Eric van Steen. Some insights in the sonochemical preparation of cobalt nano-particles. Ultrasonics Sonochemistry, 2007, 14 (6): 732-738.
    [28] Abderrafik Nemamcha, Jean-Luc Rehspringer, Djameledine Khatmi.Synthesis of Palladium Nanoparticles by Sonochemical Reduction of Palladium(II) Nitrate in Aqueous Solution. J. Phys. Chem. B, 2006, 110(1): 383-387.
    [29]王艳丽,谭德新,徐国财,等.不使用保护气氛和还原剂超声制备纳米钯颗粒.材料研究学报,2007,21(3):329-332.
    [30]谭德新,王艳丽,徐国财,等.纳米钯粒子的超声制备与表征.无机化学学报,2006,22(10):1921-1924.
    [31] A. Murugadoss, Manoranjan Kar, Arun Chattopadhyay. Acetanilide mediated reversible assembly and disassembly of Au nanoparticles. Journal of Colloid and Interface Science, 2008, 324(1-2):230-235.
    [32]王玉棉,于梦娇.超声条件下表面活性剂对水合肼还原制备纳米铜粉的影响.粉末冶金技术. 2008,26(4):791-303.
    [33] S. Ghasemi, M.F. Mousavi. Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrasonics Sonochemistry, 2008, 15 (4): 448-455.
    [34] Mahyar Mazloumi, Saeid Zanganeh, Amir Kajbafvala. Ultrasonic induced photoluminescence decay in sonochemically obtained cauliflower-like ZnO nanostructures with surface 1D nanoarrays. Ultrasonics Sonochemistry, 2009, 16 (1): 11-14.
    [35]沈国柱,徐政,朱英杰.不同形貌ZnO纳米粒子的超声化学法制备与表征.无机化学学报,2005,21(6):893-896.
    [36]贺拥军.超声诱导乳液介质中花状CdS纳米结构的制备.化学工程,2007,35(9):93-95.
    [37] Guoan Tai, Wanlin Guo. Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrasonics Sonochemistry, 2008, 15(4): 350-356.
    [38] Rajagopalan Thiruvengadathan, Yael Levi-Kalisman. Synergetic effect of ultrasound and sodium dodecyl sulphate in the formation of CdS nanostructures in aqueous solution. Ultrasonics Sonochemistry, 2007, 14 (3): 398-404.
    [39]申秋芳,周晓锋,王声乐.大尺度NiS2纳米线的超声喷雾热解制备.南京师范大学学报(工程技术版),2008,8(2):59-61.
    [40] Wensheng Lu, Wei Shi. One-step synthesis of gold nanowire network capped by diacetylene molecules under ultrasonic irradiation. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317 (13):239-246.
    [41] V. Ganesh Kumar, Kwang Bum Kim. Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn(3)acetate. Ultrasonics Sonochemistry, 2006, 13(6): 549-556.
    [42]胡南,刘雪宁,杨治中.液晶分子超声模板法制备平行束状纳米ZnO晶须.精细化工,2004,21(11):804-807.
    [43]张晓霞,孔文君,刘蕾.超声法制备不同形貌氧化亚铜.吉林地质,2008,27(2):100-104.
    [44]胡鹏,余海湖,邓金阳,等.超声化学法制备PbS纳米立方体.武汉工程大学学报,2008,30(4):73-75.
    [45] Azadeh Askarinejad, Ali Morsali. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrasonics Sonochemistry, 2009, 16(1):124-131.
    [46] Feng Dang, Naoya Enomoto, Junichi Hojo, et al. Sonochemical Synthesis of Monodispersed Magnetite Nanoparticles by Using an Ethanol-water Mixed Solvent. Ultrasonics Sonochemistry, 2009, 16(5): 649-654.
    [47] Binjie Li, Yanbao Zhao, Xiangmin Xu, et al. A simple method for the preparation of containing Sb nano- and microcrystallines via an ultrasound agitation. Ultrasonics Sonochemistry, 2007, 14 (5): 557-562.
    [48] J.J. Miao, H. Wang, Y.R. Li, et al. Ultrasonic-induced synthesis of CeO2 nanotubes. J Cryst Growth, 2005, 281 (24):525-529.
    [49]夏晓红,罗永松,梁英,贾志杰.超声法制备TiO2纳米棒及其光催化性质的研究.电子元件与材料,2007,26(1):20-22.
    [50] R.V. Kumar, Y. Koltypin, X.N. Xu, et al. Fabrication of magnetite nanorods by ultrasound irradiation. J Appl Phys, 2001, 89 (11): 6324-6328.
    [51] Tao Gao, Qiuhong Li, Taihong Wang. Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites. Chemistry of materials, 2005, 17 (4):887-892.
    [52] Wang H, Zhu J J , Zhu J M, et al. Sonochemicalmethod for the preparation of bismuth sulfide nanorods. J Phys Chem B, 2002, 106(15):3848 - 3854.
    [53]许可.PbF2条状材料的制备与表征.南京工业大学学报(自然科学版).2008,30(3):43-73.
    [54] Jianping Xiao, Yi Xie, Rui Tang, et al. Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures. Advanced Materials, 2001, 13(24):1887-1891.
    [55] J. Rothe, J. Hormes, C. Schild, B. Pennemann. X-Ray Absorption Spectroscopy Investigation of the Activation Process of Raney Nickel Catalysts. J. Catal., 2000, 191(2):294-300.
    [56]邵丽,王西奎,国伟林,等.超声化学法制备树枝状纳米银的研究.无机化学学报,2007,23(10):24-28.
    [57] Toshio Sakai, Hiroto Enomoto, Kanjiro Torigoe, et al. Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 347(1-3):18-26.
    [58] Jong-Eun Park, Mahito Atobe, Toshio Fuchigami. Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound. Ultrasonics Sonochemistry, 2006, 13 (3):237-241.
    [59]赵荣祥,徐铸德,黄宛真,等.哑铃状氧化锌的合成与表征.无机化学学报,2007,23(9):1609-1614.
    [60] IIJIMA S. Helical microtubes of graphitic carbon. Nature, 1991, 354: 56-68.
    [61]肖健.导电纳米线管的制备方法及应用.东莞理工学院学报,2009,16(1):96-100.
    [62] Anastasia V. Grigorieva, Eugene A. Goodilin, Lyudmila E. Derlyukova, et al. Titania nanotubes supported platinum catalyst in CO oxidation process. Applied Catalysis A: General, 2009, 362(1-2) :20-25.
    [63] Hongjian Li, Qiong Liu, Suxia Xie, et al. Plasmonic interactions between a metallic nanotube array and a thin metallic film. Optics Communications, 2009, 282(14):2845-2849.
    [64] Xiaodong Wang, Zhensheng Jin, Caixia Feng. Alternative adsorption–desorption of C3H6 on nanotube-like silver titanate. Journal of Solid State Chemistry, 2005, 178(3):638-644.
    [65] Xiaoming Yang, Liang Li, Feng Yan. Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 2010, 145(1):495-500.
    [66] HOFFMAN W P, PHAN H T, WAPNER P G. The far-reaching nature of micortube technology. Mat Res Innovat, 1998, (2):87-90.
    [67] G.Z. Cao. Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London, UK, 2004.
    [68] F.F. Tao, M.Y. Guan, Y. Jiang, et al. An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method. Adv. Mater. 2006, 18: 2161-2164.
    [69] Tamjid Chowdhury, Declan P. Casey, James F. Rohan. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochemistry Communications, 2009, 11 (6): 1203-1206.
    [70] Hiroaki Tsuchiya, Toshifumi Akaki, Junji Nakata, et al. Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54(22): 5155-5162.
    [71] Gregorio F. Ortiz, Ilie Hanzu, Philippe Knauth, et al. TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 2009, 54(17):4262-4268.
    [72] Tao Kong, Yang Chen, Yiping Ye, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes.Sensors and Actuators B, 2009, 138 (1): 344-350.
    [73] Dengsong Zhang, Hongxia Fu, Liyi Shi, et al. Carbon nanotube assisted synthesis of CeO2 nanotubes. Journal of Solid State Chemistry, 2007, 180(2):654-660.
    [74] Chen-sha Li, Bin-song Wang, Ying-jie Qiao, et al. Decoration of activated carbon nanotubes by assembling nano-silver. International Journal of Minerals, Metallurgy and Materials. 2009, 16(5):598-602.
    [75] B.B. Lakshmi, P.K.Dorhout, C.R. Martin. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater.1997, 9(11):2544-2550.
    [76] S. Motojima, T. Suzuki, Y. Noda, et al. Preparation of helical TiO2/CMC microtubes and pure helical TiO2 microtubes. Journal of Materials Science, 2004, 39(8): 2663-2667.
    [77] Reit Artzi-Gerlitz, Kurt D. Benksteina, David L, et al. Lahra. Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes. Sensors and Actuators B, 2009, 136(1):257-264.
    [78]谭永恒,段月琴,袁志好.二氧化硅辅助相分离法制备银纳米管.天津理工大学学报,2007,23(1):60-62.
    [79]赵谦,彭锡江,唐雅静,等.基于PVP模板剂水热法制备TiO2纳米管.中北大学学报(自然科学版),2009,30(1):59-62.
    [80]彭银,鲍玲.ZnO纳米环的可控合成.高等学校化学学报,2008,29(1):28-32.
    [81]陶菲菲,鲁金萍,郎雷鸣,等.氢氧化镍微米棒的合成和表征.无机化学学报,2009,25(2):296-300.
    [82]李平.一步化学溶液法合成ZnO纳米管.无机化学学报,2009,25(2):354-358.
    [83]刘皑若,王淑敏,李大鹏,等.管状微纳米Ag2S晶体的水热法制备方法研究.化工时刊,2008,22(6):29-31.
    [84]田俐,陈稳纯,陈琳,等.水热法合成氢氧化钇纳米管.无机材料学报,2009,24(02):335-339.
    [85]张青红,高濂,郑珊,等.制备均一形貌的长二氧化钛纳米管.化学学报,2002,8(60):1439-1444.
    [86] Comini E, Baratto C, Faglia G, et al. Quasi-one dimensional metal oxide semiconductors: Preparation, characterizatio-n and application as chemical Sensors. Progress in Materials Science, 2009, 54: 1-67.
    [87] Favier F, Walter E C, Zach M P, et al. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Science, 2001, 293: 2227-2231.
    [88] Damian A, Deirdre M L, Matthew G, et al. Optical Properties and Growth Aspects of Silver Nanoprism Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature. Advanced functional materials, 2008, 18(10):2005-2016.
    [89]徐建,韩霞,周丽绘,等.水热合成法制备高长径比的银纳米线.过程工程学报,2006,6(2):323-326.
    [90] Yingjiu Zhang, Nanlin Wang, Shangpeng Gao, et al. A Simple Method To Synthesize Nanowires.Chem. Mater., 2002, 14(8): 3564-3568.
    [91] Lei Y, Zhang L D. Fabrication, Characterization, and Photoluminescence Properties of Highly Ordered TiO2 Nanowire Arrays. J. Mater. Res., 2001, 16:1138-1144.
    [92]王西奎,邵丽,国伟林,等.超声化学法制备树枝状纳米银的研究.无机化学学报,2007,23(10):1824-1828.
    [93] Junjie Zhu, Suwen Liu, O. Palchik, et al. Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods. Langmuir, 2000, 16(6):6396-6399.
    [94]廖学红,朱俊杰,邱晓峰,等.类球形和树枝状纳米银的超声电化学制备.南京大学学报(自然科学版),2002,38(1) :119-123.
    [95] Xiao J P, Xie Y, Tang R, et al. Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures. Advanced Materials, 2001, 13(24):1887-1891.
    [96] B.P. Barber, S.J. Putterman. Observation of synchronous picosecond sonoluminescence. Nature, 1991, 352:318-320.
    [97] R. Vijayakumar, Yu. Koltypin, X.N. Xu, et al. Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 2001, 89(11): 6324-6328.
    [98] H. Wang, Y.N. Lu, J.J. Zhu,et al. Sonochemical fabrication and characterization of stibnite nanorods. Inorg. Chem. 2003, 42(20): 6404-6411.
    [99] Zongtao Zhang, Bin Zhao, Liming Hu. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121 (1):105-110.
    [100] I. Pastoriza-Santos, L.M. Liz-Marzán. Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir. 2002, 18 (7):2888-2894.
    [101]宋吉明,张胜,史洪伟,等.纳米银的软模板制备方法及形成机理研究.贵金属,2006,27(4):26-31.
    [102] B. Yin, H. Ma, S. Wang, et al. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem B. 2003,107 (34): 8898-8904.
    [103] Aharon G. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11 (2): 47-55.
    [104]田雪林,王卫华,陈锴,等.利用紫外-可见光谱研究水溶液中银纳米盘的生长过程及稳定性(英文).化学物理学报(英文版),2006,19(04):262-366.
    [105] Maillard M, Huang P, Brus L. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+]. Nano Letters, 2003, 3(11):1611-1615.
    [106] Chen S H, Fan Z Y, Carroll D L. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly. J Phys Chem B, 2002, 106(42): 10777-10781.
    [107] V. Germain, Jing Li, D. Ingert, et al. Stacking Faults in Formation of Silver Nanodisks. J. Phys. Chem. B, 2003, 107(34):8717-8720.
    [108] V. Germain, A. Brioude, D. Ingert, et al. Silver nanodisks: Size selection via centrifugation and optical properties. J. Chem. Phys. 2005,122 (12):124707-15
    [109]武慧芳,马艳芸,谢兆雄.银纳米片的室温合成及其生长机理.化学通报,2007,52(18):2217-2219.
    [110]彭美勋,沈湘黔,危亚辉.球形Ni(OH)2生长过程中的Ostwald熟化作用.电源技术,2008,32(2):106-108.
    [111] Feng Q L, Kim T N, Wu J, et al. Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films, 1998, 335 (1):214-219.
    [112] Lok C N, Ho C M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Proteome Res., 2006, 5 (4): 916-924.
    [113] Kyung-Hwan Cho, Jong-Eun Park, Tetsuya Osaka, et al. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956-960.
    [114]肖健.导电纳米线管的制备方法及应用.东莞理工学院学报,2009,16(1):96-100.
    [115] Hoffman W P, PHAN H T, WAPNER P G. The far-reaching nature of micortube technology. Mat Res Innovat, 1998(2):87?90.
    [116] F.F. Tao, M.Y. Guan, Y. Jiang, et al. An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method. Adv. Mater. 2006, 18(16): 2161-2164.
    [117] Tamjid Chowdhury, Declan P. Casey, James F. Rohan.Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochemistry Communications, 2009, 11 (6): 1203-1206.
    [118] Hiroaki Tsuchiya, Toshifumi Akaki, Junji Nakata, et al. Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54 (22): 5155-5162.
    [119] Dengsong Zhang, Hongxia Fu, Liyi Shi, et al. Carbon nanotube assisted synthesis of CeO2 nanotubes. Journal of Solid State Chemistry, 2007, 180 (2): 654-660.
    [120] Chen-sha Li, Bin-song Wang, Ying-jie Qiao, et al. Decoration of activated carbon nanotubes by assembling nano-silver. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5):598-602.
    [121]谭永恒,段月琴,袁志好.二氧化硅辅助相分离法制备银纳米管.天津理工大学学报,2007,23(1):60-62.
    [122]赵谦,彭锡江,唐雅静,等.基于PVP模板剂水热法制备TiO2纳米管.中北大学学报(自然科学版),2009,30(1):59-62.
    [123]彭银,鲍玲.ZnO纳米环的可控合成.高等学校化学学报,2008,29(1):28-32.
    [124]田俐,陈稳纯,陈琳,等.水热法合成氢氧化钇纳米管.无机材料学报,2009,24(02):335-339.
    [125]徐建,韩霞,周丽绘,等.水热合成法制备高长径比的银纳米线.过程工程学报,2006,6(2):323-326.
    [126]张述林,李敏娇,李志源,等.吐温和十二烷基硫酸钠复配修饰制备纳米铜研究.宁波化工,2009,3:18-20.
    [127]刘劲松,曹洁明,李子全,等.表面活性剂PEG400存在下单质铜的微波固相合成.江苏化工,2007,35(2):31-33.
    [128]张峰,朱宏.聚乙二醇包覆纳米Fe3O4颗粒的制备及表征用.磁性材料及器件,2009,40(4):27-30.
    [129]范士军,唐群委,吴季怀,等.Ag/ PVP/ PVA抗菌水凝胶的制备及性能.高分子材料科学与工程,2009,25(11):149-151.
    [130]张晔,包洪政,曹洪玉.表面活性剂聚乙烯醇(PVA)在纳米粒子制备中的作用.赤峰学院学报(自然科学版),2009,25(1):15-16.
    [131]余可,斩正国,刘晓新.氨水溶液制备ZnO纳米晶阵列的研究.无机化学学报,2006,22(11):2065-2069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700