用户名: 密码: 验证码:
丙烷脒对番茄灰霉病菌的抑菌机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烷脒为烷基脒类化合物,其医药活性临床应用始于20世纪40年代,由于其良好的治疗作用至今临床仍有应用。20世纪90年代发现了丙烷脒对灰霉病菌(Botrytis Cirerea)的农用抑菌活性,研究表明丙烷脒为内吸性杀菌剂,可被植物体吸收、输导和代谢,具有保护和治疗双重功效,主要用于防治田间和大棚内蔬菜、果树和经济作物上由灰霉病菌引起的多种植物病害。毒性试验和环境生态试验表明,丙烷脒是一种低毒的化合物,其急性经口、经皮毒性均属于低毒,对皮肤、眼睛无刺激作用,对皮肤无致敏作用,无致畸、致突变作用。
     虽然丙烷脒对灰霉病菌等相关的病原菌具有良好的抑菌效果,但对其抑菌机理却是知之甚少。因此,本论文以番茄灰霉病菌为供试病原菌,主要从细胞生物学、生物化学和分子生物学等方面入手,对丙烷脒的抑菌机理进行较为系统的研究。取得如下结果:
     1、丙烷脒对番茄灰霉病菌菌丝形态和超微结构的影响
     (1)采用扫描电镜观察发现,随着丙烷脒处理时间的延长对番茄灰霉病菌菌丝的生长形态产生如下影响:A、菌丝塌陷现象逐渐严重;B、生长点出现分枝增多和缢缩;C、内含物外渗现象逐渐明显。
     (2)透射电镜观察发现,丙烷脒处理后番茄灰霉病菌超微结构发生明显的变异,其主要表现为:A、线粒体异常增多,表现出基质型肿胀现象;B、线粒体液泡化,最终形成大的液泡;C、病菌细胞内含物外渗,细胞出现质壁分离和空腔细胞;D、线粒体囊泡化解体和细胞组织崩解,细胞趋于死亡等现象。
     2、丙烷脒对番茄灰霉病菌能量代谢的影响
     (1)用电导率法测定了不同浓度丙烷脒对番茄灰霉病菌电导率的影响,试验结果表明:番茄灰霉病菌细胞膜通透性增加,与电镜观察到的番茄灰霉病菌细胞内含物外溢和细胞质壁分离等试验现象相吻合。表明番茄灰霉病菌细胞膜的结构完整性受到破坏。
     (2)用不同浓度的丙烷脒处理番茄灰霉病菌菌丝和孢子,进而测定其呼吸速率、线粒体呼吸功能和氧化磷酸化效率。试验结果表明,随着丙烷脒处理浓度的增加,菌丝、孢子的呼吸速率逐步下降;番茄灰霉病菌Ⅲ态呼吸速率、Ⅳ态呼吸速率和呼吸控制率也呈下降趋势;磷氧比和氧化磷酸化效率均呈下降趋势。表明丙烷脒处理抑制了番茄灰霉病菌的呼吸作用及能量代谢。
     3、丙烷脒对番茄灰霉病菌物质代谢的影响
     用不同浓度的丙烷脒处理番茄灰霉病菌,然后检测番茄灰霉病菌体内的总糖、还原糖、蛋白质及脂肪的含量变化。试验结果表明:A、随着丙烷脒处理浓度的升高,番茄灰霉病菌体内的总糖、还原糖和蛋白质的含量呈先升高后下降的趋势;而脂肪的含量则一直上升;B、番茄灰霉病菌体内的总糖、还原糖、蛋白质和脂肪的含量与未受丙烷脒处理的番茄灰霉病菌体内的总糖、还原糖、蛋白质和脂肪的含量相比均显著升高。表明番茄灰霉病菌体内的分解代谢受到抑制。
     4、丙烷脒对番茄灰霉病菌线粒体复合酶及ATP酶活性的影响
     (1)丙烷脒对离体番茄灰霉病菌线粒体复合酶及ATP酶活性的影响。用不同浓度的丙烷脒处理提取后的番茄灰霉病菌线粒体复合酶及ATP酶后,立即测定酶的活性,发现与未受丙烷脒处理的番茄灰霉病菌线粒体复合酶及ATP酶活性基本相同,表明丙烷脒抑制能量代谢并不是通过与番茄灰霉病菌线粒体复合酶及ATP酶相互结合而发生作用的。
     (2)丙烷脒对活体番茄灰霉病菌线粒体复合酶及ATP酶活性的影响。先用不同浓度的丙烷脒处理番茄灰霉病菌,再提取其线粒体复合酶及ATP酶进行活性测定。试验结果表明:当用不同浓度的丙烷脒处理番茄灰霉病菌1 d后,线粒体复合酶Ⅰ、Ⅱ、Ⅳ及ATP酶的活性受丙烷脒作用后逐步升高,而线粒体复合酶Ⅲ的活性却明显下降。而用不同浓度的丙烷脒处理番茄灰霉病菌3 d后,线粒体复合酶Ⅰ、Ⅱ、Ⅲ、Ⅳ及ATP酶的活性都明显下降。
     综上所述,结合芳香族脒类化合物在医学中的作用机理,初步推断丙烷脒对番茄灰霉病菌的抑菌机理是:通过与编码线粒体复合酶Ⅲ中的某个亚基的基因结合,从而导致该基因的表达受到抑制,进而致使整个线粒体复合酶Ⅲ的活性下降,呼吸过程中的电子传递受阻,机体的能量合成受到抑制,导致机体的能量供应不足,最终表现出番茄灰霉病菌的线粒体增多,细胞膜破裂、生长发育受到抑制,菌丝和细胞形态严重变形,直到死亡。
Aromatic diamidines, and in particular bis(amidinophenoxy)-alkanes, have 70 years history in the treatment of human diseases and show diverse pharmacological activity. Propamidine is an antimicrobial agent used clinically for the treatment of Acanthamoeba keratitis and other corneal infections. But limited oral bioavailability and both acute and chronic toxicity have slowed down the studies on development of this class of compounds. The antifungal activity of pentamidine against Botrytis cinerea was found incidentally by NZYM Inc. in 1990s, a large number of analogues have been synthesized and propamidine have been used in the field for treating crop’s disease. Propamidine is a new type, low toxicity, high efficiency and without side effects of pollution antiseptic which has the particular protective and therapeutic action to many plants pathogeny. It is used to prevention and cure many field, vegetable of shed, fruit tree and economical crop’s disease which caused by Botrytis cinerea Pers. Propamidine has the diplex protective and therapeutic action which can absorb, distribute and metabolize in the plant.
     Although propamidine has strong antifungal activity and has been used to treat crop’s disease, few or no literatures reported the inhibiting mechanism of propamidine against botrytis cinerea now. At present, the inhibiting mechanism of propamidine against Botrytis cinerea Pers. will be studied using electron microscopy and biochemistry techniques. The main results and conclusions were given as follows:
     1. Effects of propamidine treatment on mycelial shape and ultrastructure of Botrytis cinerea Persoon
     The studies revealed that propamidine not only inhibited the hyphal growth, but also caused a series of marked hyphae morphological and cell structural alterations. These changes are generally irregular swelling, excessive branching and many tumors on the surface of hyphale, considerable thickening of the hyphal cell walls, particularly at the hyphal tip region, increasing vacuoles and electrondense bodies, excessive mitochondrion irregular swelling, and so on. Above cytological change resulted in the necrosis of hyphal cell.
     Scanning electron micrographs displayed that the quantity of conidium decline and conidia collapsed practice of propamidine at the beginning of disease; don’t influence the quantity of conidium but conidia collapsed practice of propamidine after of disease. Transmission electron micrographs revealed that Botrytis cinerea Pers. Can’t invade tomato of epidermal organise practice of propamidine at the beginning of disease; but Botrytis cinerea Pers. Can invade tomato of epidermal organise collapsed practice of propamidine after of disease. propamidine can inhibited the hyphal growth, the tip of the hyphae were shrunken, considerable thickening of the hyphal cell walls, particularly at the hyphal tip region, cytoplasm inhomogeneity and inclusion in cell exosmosis, mitochondrion manifold, vesiculated hypha cell, cell empty and so on spray propamidine at various periods. Above cytological change resulted in the necrosis of hyphal cell. The studied showed that propamidine had distinct protective and therapeutic action influence.
     2. Effects of propamidine treatment on energy metabolize of Botrytis cinerea Persoon
     The electric conductivity in Botrytis cinerea solution which was treated with different concentrations propamidine was measured using digital conductivity meter. We discovered that the electric conductivity gradually increased as the concentration of propamidine increased. The result compares with the observed outcomings usingelectron micrographs are very similar. These indicated that the structure of cell membrane was destroyed when Botrytis cinerea was treated with propamidine.
     Mitochondria, whose primary function is to produce energy, play a central role in cellular metabolism and in the control of bital functions. Mycelium respiration was first examined. It may be noted that the respiratory activity of treatment mycelia with different concentrations propamidine were less that of the control, but they have sameness of order of activity change. For the propamidine treatment, the State 3 respiration, state 4 respiration, respiratory control ratio and ADP/O ratio were significantly lower when compared to the corresponding controls at various contentration points.
     3. Effects of propamidine treatment on substance metabolize of Botrytis cinerea Persoon
     Decrease of respiratory activity or energy synthesize will changes the substance catabolism. To improve this, we measured the content of total sugar, reducing sugar, protein and fat of Botrytis cinerea treat with different concentrations propamidine. The results were shown as follows: 1) the content of total sugar, reducing sugar and protein initially increased and then decreased as the concentration of propamidine increased. 2)the content of fat always was increased when the propamidine concentrations was increased. 3) the content of total sugar, reducing sugar, protein and fat in Botrytis cinerea treat with different concentrations propamidine were more than the content of control’s. These results show that substance catabolism was inhibited when the Botrytis cinerea was treated with different concentrations propamidine.
     4. Effects of propamidine treatment on mitochondrial complexes activity of Botrytis cinerea Persoon
     To examine how propamidine influences mitochondrial individual respiratory chain enzymes activities, mitochondria were isolated. The mitochondria of various concentration propamidine treatment were assayed indicidually to determine activity related to respiratory chain enzymes and oxidative phosphorylation. Activities from the excised control were used as the basis for comparison and set at 100%. Comparisons were first carried out to determine if there were significant changes in controls following treatment and, second, to determine if there were significant differentces between th control and the treatment at various contentration points. The results shows that the activity of mitochondrial respiratory chain enzymes have not been changed whether the Botrytis cinerea was treat with propamidine or not. This result indicated the propamidine did not combined with mitochondrial respiratory chain enzymes for changing their activity.
     When we first treated Botrytis cinerea with different concentrations of propamidine, and then extracted all of mitochondrial respiratory chain enzymes for detecting their activity. The results were shown as follows: 1)when Botrytis cinerea was treated with increasing concentrations of propamidine for one day, the activitys of complexⅠ,Ⅱ,Ⅳand ATP enzyme were increased. But the activity of complexⅢwas decreased . 2)when Botrytis cinerea was treated with increasing concentrations of propamidine for three days, the activitys of complexⅠ,Ⅱ,Ⅲ,Ⅳand ATP enzyme were decreased. These results indicated that the propamidine may be inhibited the activity of complexⅢ.
     In summarize, we can draw the conclusion about the inhibiting mechanism of propamidine against Botrytis cinerea. The propamidine will enter into the organism cell when the Botrytis cinerea was treated with propamidine. Then the propamidine will be combining with a gene region which encoded a subunit of complexⅢ, and inhibiting the expression of this gene. At last, the decreased activity of complexⅢwill be acrousing respiration weaken, energy synthesis lower, mitochondria increased and cell membrane broken. These changes will deform the mycelium shapes, control the growth.
引文
[1] Lourie E.M., Yorke W., The trypanocidal action of certain aromatic diamidines[J]. Ann. Trop. Med. Para., 1939, 33:289-304.
    [2] Fuller A.T. Antibacterial action and chemical constitution in long-chain aliphatic bases[J]. Biochem. J., 1942, 36:548-558.
    [3] Elson W.O. The antibacterial and fungistatic properties of propamidine[J]. J. Infect. Dis., 1945, 76:193-197.
    [4] Kopac M.J. Cellular mechanisms in chemotherapy[J]. Transactions of the New York Academy of Sciences II,1945, 8:5-10.
    [5] Vonderfecht S.L., Miskuff R.L., Wee S.B., et al. Protease inhibitors suppress the in vitro and in vivo replication of rotavirus[J]. J. Clin. Invest, 1988, 82:2011-2016.
    [6] Sands M., Kron M.A., Brown R.B. Pentamidine: a review[J]. Rev. Infect. Dis., 1985,7: 625-634.
    [7] Gutteridge W.E. Existing chemotherapy and its limitations[J]. Brit. Med. Bull., 1985, 41:162-168.
    [8] Kapusnik J.E., Mill J. Pentamidine: Antimicrobial Agents Annual[J]. Elsevier Science, 1987:271-281.
    [9] Neal R. A. Experimental chemotherapy: The leishmaniases in biology and medicine[J]. Clinical aspects and control, 1987, 2:793-845.
    [10] Ivady V. G., Paldy L. Ein neves Behandlungsverfahren der interstitiellen plasmazelligen Pneumonie Fruhgeborener mit funfwertigen Stibium und aromatischen Diamidinen[J]. Monatschr. Kinderheilkd, 1958, 106:10-14.
    [11] Montgomery A.B., Luce J.M., Turner J., et al. Aerosolized pentamidine as sole therapy for pneumocystic carinii pneumonia in patients with acquired immunodeficiency syndrome[J]. Lancet., 1987, 2:480-483.
    [12] Allen J.W., Burgess F., Cameron G.R. Toxic effects of propamidine, with special reference to the treatment of burns[J]. J. Path. Bact., 1945, 46:217-223.
    [13] Tidwell R.R., Jones S.K., Geratz J.D., et al. Development of pentamidine analogues asnew agents for the treatment of Pneumocystis carinii pneumonia[J]. Ann. NY Acad. Sci., 1990, 616:421-441.
    [14] Jones S.K., Hall J.E., Allen M.A., et al. Novel pentamidine analogs in the treatment of experimental Pneumocystis carinii pneumonia[J]. Antimicrobial Agents and Chemotherapy, 1990,34:1026-1030.
    [15] Donkor I.O., Tidwell R.R., Jones S.K.J. Pentamidine congeners 2.2-butene-bridged aromatic diamidines and diimidazolines as potential anti Pneumocystis carinii pneumonia agents[J]. Journal of Medicinal Chemistry,1994, 37:4554-4557.
    [16] Donkor I.O., Queener S.F., Dalton J.T. Pentamidine congeners 4 DNA binding affinity and anti-Pneumocystis carinii activity of butamidine analogues[J]. Bioorganic and Medicinal Chemistry, 1996, 6:1967-1970.
    [17] Constance A.B., James E.H., Dennis E.K., et al. Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmana mexicana amazonensis[J]. Antimicrobial Agents and Chemotherapy, 1990,34:1381-1386.
    [18] Krzysztof B., Anna G., Anna B., et al. Inhibitory effects of pentamidine analogues on protein biosynthesis in bitro[J]. Acta Biochimica Plonica, 2000, 47:113-120.
    [19] 陈安良, 何军, 廉应江, 等. 4 种戊烷脒同系物对灰霉病的防治效果[J]. 植物保护学报, 2006, 33:68-72.
    [20] 陈安良.丙烷脒杀菌剂开发研究[D].西北农林科技大学,2004,9.
    [21] 陈安良, 冯美杰, 冯俊涛, 等. 丙烷脒对灰霉病菌菌丝形态和超微结构的影响[J]. 中国农业科学, 2007, 40:633-637.
    [22] 廉应江, 陈安良, 朱海运, 等. 丙烷脒类似物抑菌活性研究[J]. 农药, 2005, 44:8-10.
    [23] 廉应江, 陈安良, 朱海运, 等. 丙烷脒类似物抑菌活性研究初报[J]. 西北农业学报 2005,14:112-114.
    [24] 张 兴, 陈安良, 冯俊涛. 新型杀菌剂丙烷脒开发研究[J]. 中国农资, 2005, 9:56-58.
    [25] 陈安良,何军, 廉应江,等. 丙烷脒防治番茄灰霉病菌效果初报[J]. 中国农学通报, 2005, 21:301-303.
    [26] Michail S.L., Russell E.L., George S., et al. Pentamidine is active in vitro againstFusarium Species[J]. Antimicrobial Agents and Chemotherapy, 2003, 47:3252-3259.
    [27] 张智, 李君明, 宋燕, 等. 番茄灰霉病及其防治研究进展[J]. 内蒙古农业大学学报, 2005, 26: 125-128.
    [28] 常法平, 张雪江, 石振飞. 日光温室番茄几种主要病害的综合防治[J]. 农业工程技术温室园艺, 2006, 12: 42.
    [29] 王玉堂. 棚室番茄灰霉病的发生与防治[J]. 农业工程技术温室园艺, 2006, 12: 44.
    [30] Rejane L., Guimaraes R.L., Roger T., et al. Resistance to Botrytis cinerea in Solanum lycopersicoides is dominant in hybrids with tomato and involves induced hyphal death European[J]. Journal of Plant Pathology, 2004, 110:13-23.
    [31] 祝明亮, 严金平, 孙启玲, 等. 植物病原振军对二甲酰亚胺类杀菌剂的抗性分子机制[J]. 生物技术,2005, 15: 95-97.
    [32] 张兴, 陈安良, 冯俊涛. 新型杀菌剂丙烷脒开发研究[J]. 中国农资, 2005, 9: 57-58.
    [33] Egashira H., Kuwashima A., et al. Screening of wild accessions resistance to gray mold (Botrytis cinerea Pers. ) in Lycopersicon[J]. Acta Physiologiae Plantarum, 2000, 22:324-326.
    [34] Nicot P.C., Moretti A. Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions[J]. Tomato Genetics Cooperative Report, 2002, 52: 24-26.
    [35] Beresford R,Park H,Brown G,et a1.Strategies to avoid resistance development to strobinlurin and related fungicides in New Zealand[A]. Plant Protection Conference, 1999:179-182.
    [36] Ishii H.,Fraaije B.A., Hollomon D.W. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J]. Phytopathology, 2001,91:1166-1171.
    [37] Jiang Y., Grossmann F. Subcellular alterations in phytophthora infestans infecting tomato leaves treated with fosetyl-Al[J]. Pesticide Biochemistry & Physiology, 1992, 44 : 226-238.
    [38] Godowin J.R., Bartlett D.W., Clough J.M. Picoxystrobin: a new strobilurin fungicide for use on cereals Brighton crop[J]. Protection Conference: Pest and Diseases, 2000,2:533-540.
    [39] Margot p., Huggenberger F. A new broad-spectrum strobilurin fungicide Brighton crop [J]. Protection Conference: Pest and Diseases. 1998, 375-382.
    [40] Anke T., Oberwinkler F., Steglich W., et al. The strobilurins new antifungal antibiotics from the basidiomycete strobilurus tenacellus[J]. J. Antibiot, 1977, 30: 806-810.
    [41] Anke T., Hecht H.J., Schramm G., et al. Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida( Schrader ex Fr. )Hoehnel(Agaricales) [J]. J. Antibiot, 1979, 32:1112-1117.
    [42] Gerth K., Irschik H., Reichenbach H., et al. Myxothiazol, anantibiotic from Myxococcus fulvus (myxobacterales)[J]. J. Antibiot, 1980, 33:1474-1479.
    [43] 柏亚罗. Strobilurins 类杀菌剂研究开发进展. 农药, 2007, 46:289-309.
    [44] Thierbach G., Reiichenbach H. Myxothiazol, a new antibiotic interfering with respiration[J]. Antimicrob Agents Chemothe, 1981,19:504-507.
    [45] Thierbach G., Reichenbach H. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of the respiratory chain[J]. Biochim BiophysActa, 1981,638:282-289.
    [46] Slater E.C. The Mechanism of action of the respiratory inhibitor, antimycin[J]. Biochim Biophys Acta,1973,301:129-154.
    [47] Von J.G., Engel W.D. Complete inhibition of electron transfer from ubiquinol to cytochrome b by the combined action of antimycin and myxothiazol[J]. FEBS Lett,1981, 136: 19-24.
    [48] Thierbach G., Michaelis G. Mitochondrial and nuclear myxothiazol resistance in saccharomyces cerevisiae[J]. Molecular & General Genetics: MGG,1982,186:501-506.
    [49] Howell N., Bantel A., Huang P. Mammalian mitochondrial mutants selected for resistance to the cytochrome b inhibitors HQNO or myxothiazol[J]. Somatic Cell Genetics,1983, 9: 721-743.
    [50] Meinhardt S.W., Crofts A.R. The site and mechanism of action of myxothiazol as an inhibitor of electron transfer in Rhodopseudomonas sphaeroides[J]. FEBS Lett,1982,149: 217-222.
    [51] DeVries S., Albracht S.P.J., Berden J.A., et al. The effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol: cytochrome c oxidoreductase[J]. Biochim Biophys Acta,1983,723:91-103.
    [52] Von J.G., Ljungdahl P.O., Graf P., et al. An inhibitor of mitochondrial respiration which binds to cytochrome b and displace quinone from the iron-sulfurprotein of the cytochrome bc1 complex[J]. J. BiolChem.,1984,259:6318-6326.
    [53] Bowyer J.R., Edwards C.A., Ohnishi T., et al. An analogue of ubiquinone which inhibits respiration by binding to the ironsulfur protein of the cytochrome b-c1 segment of the mitochondrial respiratory chain[J]. J. Biol. Chem.,1982,257:8321-8330.
    [54] Slater E.C. The Q cycle, an ubiquitous mechanism of electron transfer[J]. Trends. Biochem. Sci.,1983,8:239-242.
    [55] Xia D., Yu C.A., Kim H., et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria[J].Science,1997,277:60-66.
    [56] Zhang Z.L., Huang L.S., Shulmeister V.M., et al. Electron transfer by domain movement in cytochrome bc1[J]. Nature,1998,392:677-684.
    [57] Iwata S., Lee J.W., Okada K., et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex[J].Science,1998,281:64-71.
    [58] Hunte C., Koepke J., Lange C., et al. Structure at 2.3 ? resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment[J]. Structure,2000,8:669-684.
    [59] Hunte C. Insights from the structure of the yeast cytochrome bc1 complex: crystallization of membrane proteins with antibody fragments[J]. FEBS Lett,2001,504: 126-132.
    [60] Fisher N., Brown A.C., Sexton G., et al. Modeling the Qo site of crop pathogens in Saccharomyces cerevisiae cytochrome b[J]. Eur. J. Biochem.,2004,271:2264-2271.
    [61] Gisi U., Sierotzki H., Cook A., et al. Mechanisms influencing the evolution of resistance to QoI inhibitor fungicides[J]. Pest. Manag. Sci.,2002,58:859-867.
    [62] Fisher N., Meunier B. Re-exam ination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeastas a model system[J]. Pest. Manag. Sci.,2005,61: 973-978.
    [63] Grasso V., Sierotzki H., Garibaldi A., et al. Characterization ofthe cytochrome b gene fragment of Puccinia species responsible for the binding site of QoI[J]. Pestic.Biochem. Physiol.,2006,84:72-82.
    [64] Kim Y.S., Dixon E.W., Vincelli P., et al. Field resistance to strobilruin(QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene [J]. Phytopathology,2003,93:891-900.
    [65] Godwin J.R., Anthony V.M., Clough J.M., et al. ICIA5504: a novel, broad spectrum, systemicβ-methoxyacrylate fungicide[A]. Brighton Crop Protect Conference-Pests and Diseases,BCPC[C]. Farnham, Surrey, UK,1992,1:435-442.
    [66] Godwin J.R., Bartlett D.W., Clough J.M., et al. Picoxystrobin:a new strobilurin fungicide for use on cereals[A]. Brighton Crop Protect Conference-Pests and Diseases, BCPC [C].Farnham, Surrey, UK,2000,2:533-540.
    [67] Ammermann E., Lorenz G., Schelberger K., et al. BAS 500F-the new broad-spectrum strobilurin fungicide[A]. Brighton Crop Protect Conference-Pests and Diseases, BCPC [C].Farnham, Surrey, UK,2000,2:541-548.
    [68] Ammermann E., Lorenz G., Schelberger K., et al. BAS 490 F2the new broad2spectrum fungicide with a new mode of action[A ]. Brighton Crop Protect Conference-Pests and Diseases,BCPC[C]. Farnham Surrey UK,1992,1:403-410.
    [69] Margot P., Huggenberger F., Amrein J., et al. CGA279202: a new broad-spectrum strobilurin fungicide[A]. Brighton Crop Protect Conference-Pests and Diseases,BCPC [C].Farnham, Surrey, UK,1998,2:375-382.
    [70] Masuko N., Niikawa M., Kataoka T., et al. Novel antifungal alkoxyim inoaceramide derivatives[A]. Sixth Internat Cong Plant Pathol[C]. Montreal Canada, ICPP, 1993,3:16-91.
    [71] Joshi M.M., Sternberg J.A. DPX-JE874: a broad-spectrum fungicide with a new mode of action[A]. Brighton Crop Protect Conference-Pests and Diseases,BCPC[C].Farnham Surrey UK, 1996:21-26.
    [72] Dutzmann S., Mauler M.A., Ker M.F., et al.HEC5752: A novel leaf-systemic fungicide [A]. Brighton Crop Protect Conference-Pests and Diseases, BCPC[C].Farnham Surrey UK, 2002: 365.
    [73] Mercer R.T., Lacroix G., Gouot J.M., et al. RPA 407213: a novel fungicide for the control of downy mildews, late blight and other diseases on a range of crops[A].Brighton Crop Protect Conference-Pests and Diseases,BCPC[C].Farnham Surrey UK, 1998,2:319-326.
    [74] 陈杰 , 袁军 , 刘继东 , 等 . 新型除草剂丙酯草醚的作用机理 [J]. 植物保护学报,2005,32:48-52.
    [75] 刘德立,张山,赵莉,等.细胞色素 P450 与农药相互作用及其机理研究[J].华中师范大学学报,2005,39:518-524.
    [76] 陈茹梅,李金玉,康振生,等. 戊唑醇对小麦纹枯菌超微结构的影响[J]. 菌物系统,2000, 19:389-395.
    [77] 韩青梅,康振生,黄丽丽. 戊唑醇对赤霉病生长发育影响的细胞学和免疫细胞化学研究[J],菌物学报,2004,23:580-589.
    [78] 张新春,康振生,韩青梅,等. 杀菌剂羟菌唑对油菜菌核病菌生长发育的影响[J],西北农林科技大学学报(自然科学版),2004,32:25-30.
    [79] 黄丽丽,康振生,韩青梅,等. 三唑酮对玉米弯孢病菌超微结构和细胞化学的影响[J]. 菌物学报, 2007,26:226-233.
    [80] 韩青梅,康振生,黄丽丽,等. 戊唑醇对小麦赤霉菌侵染影响的细胞学研究[J]. 植物保护学报, 2005,32:57-62.
    [81] Bischoff G., Hoffmann S. DNA-binding of drugs used in medical therapies[J]. Curr. Med. Chem.,2002,9:312-348.
    [82] Remo R., Itai B., Heinz S., et al. Molecular flexibility in ab initio drug docking to DNA: binding-side and binding-mode transitions in all-atom Monte Carlo simulations [J].Nucleic Acid Research,2005,33:7048-7057.
    [83] Dervan P.B. Molecular recognition of DNA by small molecules[J]. Bioorgamic & Medicinal Chemistry,2001,9:2215-2235.
    [84] Rucker V.C., Foister S., Melander C., et al. Sequence spe-cific fluorescence detection of double strand[J]. J. Am. Chem. Soc.,2003,125:1195-1202.
    [85] Zimmer C., Wahnert U. Nonintercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigation of the genetic material[J]. Prog. Biophys. Mol. Biol.,1986,47:31-112.
    [86] Reddy B.S., Sharma S.K., Lown J.W. Recent development in sequence selective minor groove DNA effector[J]. Curr. Med. Chem.,2001,8:476-505.
    [87] Keith R.F., Clare E.S., Malcolm F.S. Footprinting studies on the sequence-selective binding of pentamidine to DNA[J]. FEBS,1990,6:150-154.
    [88] Turner P.R, Denny W.A. The genome as a drug target: sequence specific minor groove binding ligands[J]. Current Drug Targets,2004,1:1-14.
    [89] Remoroh R., Itai B., Heinz S., et al. Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode translation in all-atom Monte Curlo simulations[J]. Nucleic Acids Research,2005,33:7048-7057.
    [90] 曾文亮, 徐文方, 张玲. 抗肿瘤药物 DNA 小沟区结合剂的研究进展[J]. 中国药物化学杂志, 2004,14:307-313.
    [91] Makulu D.R., Waalkes T.P. Interation between aromatic diamines and nucleic acids: possible implications for chemotherapy[J]. J. Natl Cancer Inst.,1975,54:305-309.
    [92] Zimmer C., W?hnert U. Non-intercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material[J]. Prog. Biophys. Mol. Biol., 1986:31-112.
    [93] Luck G., Zimmer C., Schweizer D. DNA binding studies of the nonintercalative ligand pentamidine: dAodT base-pair preference[J]. Stud. Biophys.,1988:107-119.
    [94] Fox K.R., Sansom C.E., Stevens M.F.G. Footprinting studies on the sequence-selective binding of pentamidine to DNA[J]. Febs Lett.,1990:150-154.
    [95] Turner P.R, Denny W.A. The genome as a drug target: sequence specific minor groove binding ligands[J]. Current Drug Targets,2004,1:1-14.
    [96] Lydia T., Jordi B., Carlos A. Hydrogen bond geometry in DNA-minor groove binding drug complexes[J]. Nucleic Acids Research,1996:3458-3466.
    [97] Nunn C.M., Jenkins T.C., Neidle S. Crystal structure of d(CGCGAATTCGCG) complexed with propamidine, a short-chain homologue of the drug pentamidine[J]. Biochemistry,1993, 32:13838-13843.
    [98] Edwards K.J., Jenkins T.C., Neidle S. Crystal structure of pentamidine- oligonucleotide complex: implications for DNA-binding properties[J]. Biochemistry, 1992, 31:7104-710.
    [99] Jenkins T.C., Lane A.N. AT selectivity and DNA minor groove binding: modlelling, NMR and structural studies of the interactions of propamidine and pentamidine withd(CGCGAATTCGCG)2[J]. Biochim. Biophys. Acta,1997,1350:189-204.
    [100] Bertrand R.O., Connor P.M., Kerrigan D., et al. Sequential administration of camptothecin and etoposide circumvent the antagonistic cytotoxicityof simultaneous drug administrationin slowly growing human colon larcinoma HT229 Cells[J]. Eur. J. Cancer, 1992, 28:743-748.
    [101] Froelich-Ammon S.J., Oshneroffn J. Topoisomerase poisons: harnessing the dark side of enzyme mechanism[J]. J. Biol. Chem,1995,270:21429-21432.
    [102] 穆大力, 贾汝梅. 拓扑异构酶及其抑制剂研究进展[J]. 医学综述,2004,10:649-650.
    [103] Sinha B.K., Zamai L., Falcieri E., et al. Topoisomerase inhibitors[J]. Drugs, 1995, 49:11-19.
    [104] Stewart L., Ireton G.C., Parker L.H., et al. Biochemical and biophysical analyses of recombinant forms of human topoisomeraseⅠ[J]. J. BiolChem,1996,271:7593-7601.
    [105] Hofland K., Petersen B.O., Falck J., et al. Differential cytotoxic pathways of topoisomeraseⅠand Ⅱanticancer agents after over expression of the E2F-1/DP-1 transcription factor complex[J]. Clin. Cancer Res.,2000,6:1488-1497.
    [106] 刘健, 项明, 朱上林, 等.131-Hepama-1 单克隆抗体导向治疗肝癌的初步观察[J]. 中国肿瘤临床,1998,25:389-392.
    [107] Ferguson L.R., Baguley B.C. Mutagenicity of anticancer drugs that inhibit topoisomerase enzyme[J]. Mutat Res,1996,355:91-101.
    [108] Li T.K., Liu L.F. Tumor cell death induced by topoisomerase-targetingdrugs[J]. Annu. Rev. Pharmacol Toxicol,2001,41:53-77.
    [109] Yajima T., Yagihashi A., Kameshima H., et al. Establishment of quantitative reverse transeription-polymerase chain reaction assays for human telomerase-associated genes[J]. Clin. Chin. Acta.,2000,290:117-127.
    [110] Faraoni I., Turriziani M., Masci G., et al. Decline in telomerase activityasa measure of tumor cell killing by antineoplastic agent in vitro[J]. Clin. Cancer Res., 1997, 3:579-585.
    [111] Zunino F., Pratesi G. Camptothecins in clinical development[J]. Expert Opin Investig Drugs,2004,13:269-284.
    [112] Hsiang Y.H., Hertzberg R.W., Liu L.F., et al. Camptothecin induces protein-linkedDNA breaks via mammalian DNA topoisomerase[J]. J Biol Chem,1985,260:14873-14878.
    [113] Whitacre C.M., Zborowska E., Willson J.K., et al. Detection of poly(ADP-ribose) polymerase cleavage inresponse to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness[J]. Clin. Cancer Res.,1999,5: 665-672.
    [114] Cabanillas F. The role of topoisomerase Ⅰ inhibitors in the treatment of non-Hodgkins lymphoma[J]. Semin Hematol,1999:11-15.
    [115] Fletcher T.M., Sun D., Salazar M., et al. Effect of DNA secondary structure on human telomerase activity[J]. Biochemistry,1998,37:5536-5541.
    [116] Dallavalle S., Merlini L., Penco S., et al. Perspectives in camptothecin development [J]. Expert Opin Investig Drugs,2002,12:837-844.
    [117] Ulukan H., Swan P.W. Camptothecin: a review of their chemotherapeutical potential[J]. Drugs,2002,62:2039-2057.
    [118] Zunino F., Pratesi G. Camptothecins in clinical development[J]. Expert Opin Investig Drugs,2004,13:269-284.
    [119] Rahier N., Eisenhauer B.M., Cao R., et al. Water soluble camptothecin drivatives that are intrinsic topoisomerase I poisons[J]. Org. Lett.,2004,6:321-324.
    [120] Wang C.Y., Pan X.D., Liu H.Y., et al. Synthesis and antitumor activity of 20-0-linked nitrogen-based acmptothecin ester derivatives[J]. Bioorg Med. Chem.,2004,12:3657-3662.
    [121] He X.G., Lu W. Cai J.C., et al. Synthesis and biological evaluation of bis and mono camptothecins[J]. Bioorg Med. Chem.,2004,12:4003-4008.
    [122] Guptan M., Fujimori A., Pommier Y., et al. Eukaryotic DNA topoisomeraseⅠ[J]. Biochem Biophys Acta.,1995,1262:1-14.
    [123] Zhang J.S., Ding J., Tang Q.M., et al. Synthesis and antitumour activity of novel diterpenequinone salvicine and the analogs[J]. Bioorg Med. Chem. Lett., 1999, 9: 2731-2618.
    [124] Khelifa T., Beck W.T. Merbarone, a catalytic inhibitor of DNA topoisomeraseⅡ, induces apoptosis in CEM cells through activation of ICE/CED-3-like protease[J].Mol. Pharmcol, 1999,55:548-556.
    [125] Pomesil M. Camptothecins:from bench research to hospital wards[J]. Cancer Res., 1994, 54:1431-1439.
    [126] Pantazis P. Preclinical studies of water-insoluble camptothecin congeners: cytotoxicity, development of resistance, and combinatin treatments[J]. Clin Cancer Res., 1995,1:1235-1244.
    [127] Herzig M.C., Trevino A.V., Arnett B., et al. Tallimustine lesions in cellular DNA are AT sequence-specific but not region-specific[J]. Biochemistry,1999:14045-14055.
    [128] Sunavala-Dossabhoy G., Van D.M.W. Combinatorial identification of a novel consensus sequence for the covalent DNA-binding polyamide tallimustine[J]. Biochemistry, 2005,44:2510-2522.
    [129] Bellorini M., Moncollin V., Incalci M, et al. Distamycin A and tallimustine inhibit TBP binding and basal in vitro transcription[J]. Nucleic Acid Res,1995,23:1657-1663.
    [130] Chasman, D.I., Flaherty, K.M., Sharp, P.A., et al. Crystal strucuure of yeast TATA-binding protein and model for interaction with DNA.Proc. Natl. Acad. Sci. USA, 1993,90:8174-8178.
    [131] Kim, Y., Geiger, J.H., Hahn S. et al. Crystal structure of a yeast TBP/TATA-box complex[J]. Nature,1993,365:512-520.
    [132] Broggini M., Coley H.M., Mongelli N., et al. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin[J]. Nucleic Acids Res.,1995,23:81-87.
    [133] Ciucci A., Moncollin V., Lombardi P., et al. Backbone and benzoyl mustard carrying moiety modifies DNA interactions of distamycin analogues[J]. Nucleic Acid. Res., 1996, 24:311-315。
    [134] Soderlind K.J.,Gorodestsky B.,Singh A.K.,et al. Bisbenzimidazole anticancer agents: targeting human tumour helicases[J]. Anticancer Drug Des.,1999,14:19-36.
    [135] Attar K.H., Azaoui B.E., Benchidmi E.M., et al. 2- [(5-Méthylisoxazol -3-yl) méthyl] benzimidazole[J]. Acta Cryst.,2001,57:809-810.
    [136] Howard M.T., Neece S.H., Matson S.W., et al. Disruption of a topoisomerase-DNA cleavage complex by a DNA helicase[J]. Proc Natl. Acad. Sci. USA,1994,91:12031-12035.
    [137] Bachur N.R., Yu F., Johnson R., et al. Helicase inhibition by anthracycline anticancer agents[J]. Mol. Pharmacol.,1992,41:993-998.
    [138] Dassonneville L., Hamy F., Colson P., et al. Binding of Hoechst 33258 to the TAR RNA of HIV-1. Recognition of a pyrimidine bulge dependent structure[J]. Nucleic Acid Res., 1997, 25:4487-4492。
    [139] Stockert J.C., Castillo P.D., Bella J.L. DNA-induced distamycin A fluorescence[J]. Histochemistry,1990,94:45-47.
    [140] Kopka M.L., Yoon C., Goodsell D. et al.. The molecular origin of DNA-drug specificity in netropsin and distamycin[J]. Proc. Natl. Acad. Sci. USA,1985,82:1376-1380.
    [141] Baliga R., Crothers D.M. On the kinetics of distamycin binding to its target sites on duplex DNA[J]. PNAS,2000,97:7815-7818.
    [142] Baliga R., Crothers D.M. The kinetic basis for sequence discrimi-nation by distamycin A[J]. J. Am. Chem. Soc.,2000,122:11751-11752.
    [143] Baliga R., Baird E.E., Crothers D.M., et al. Kinetic consequences of covalent linkage of DNA binding polyamides[J]. Biochemistry,2001,40:3-8.
    [144] Michail S.L., Russell E.L., George S., et al. Pentamidine is active in vitro against Fusarium species[J]. Antimicrobial Agents and Chemotherapy,2003,45:3252-3259.
    [145] Liu Y., Leibowitz M.J. Variation and in vitro splicing of group I introns in rRNA genes of Pneumocystis carinii[J]. Nucleic Acids Res., 1993, 21:2415-2421.
    [146] Liu Y., Tidwell R.R., Leibowitz M.J. Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii[J]. J. Eukaryot. Microbiol., 1994, 41:31-38.
    [147] Miletti K.E., L eibowitz M.J. Pentamidine inhibition of group I intrib splicing in Candida albicans correlates with growth inhibition[J]. Antimicrob. Agents Chemother., 2000, 44:958-966.
    [148] Zhang Y., Bell A., Perlman P.S., et al. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerecisiae[J]. RNA, 2000, 6:937-951.
    [149] Bielawski K., Galicka A., Bielawska A., et al. Inhibitory effects of pentamidine analogues on protein biosynthesis in vitro[J]. Acta Biochim., 2000, 47:113-120.
    [150] Chai S., Alono J.C. Distamycin-induced inhibition of formation of a nucleoprotein complex between the terminase small subunit G1P and the non-encapsidated end(pacL site) of Bacillus subtilis bacteriophage SPP1[J]. Nucleic Acid Res., 1996, 24(2):282-288.
    [151] Christian B., Daniel P., Jean-Charles L., et al. Sequence-selective binding to DNA of bis (amidinophenoxy) alkanes related to propamidine and pentamidine[J]. Biochem. J., 1997, 323:23-31.
    [152] Lansiaux A., Tanious F., Mishal Z., et al. Distribution of furamidine analogues in tumor cells: targeting of the nucleus or mitochondria depending on the amidine substitution[J]. Cancer Rasearch. 2002, 62:7219-7229.
    [153] Karl E.M., Michael J.L. Pentamidine inhibition of group I intron splicing in Candida albicans correlates with growth inhibition[J]. Antimicrobial Agents and Chemotherapy, 2000, 208:958-966.
    [154] Yi Zhang, Zhi jie Li, Daniel S.P., et al. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding[J]. Nucleic Acids Research, 2002, 30:2961-2971.
    [155] Krzysztof B., Anna G., Anna B., et al. Inhibitory effects of pentamidine analogues on protein biosynthesis in vitro[J]. Acta Biochimica Polonica, 2000, 47:113-120.
    [156] Karl E.M., Michael J.L. Pentamidine inhibition of group Ⅰintron splicing in Candida albicans correlates with growth inhibition[J]. Antimicrobial Agents and Chemotherapy, 2000, 44:958-966.
    [157] Liu Y., Tidwell R.R, Leibowitz M.J. Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii[J]. J. Eukaryot. Microbiol., 1994, 41:31-38.
    [158] Miletti K.E., Leibowitz M.J. Pentamidine inhibition of group I intron splicing Candida albicans correlates with growth inhibition[J]. Antimicrob. Agents Chemother, 2000, 44: 958-966.
    [159] 吴文君. 植物化学保护试验技术导论[M]. 西安:陕西科学技术出版社,1987.
    [160] 康振生. 植物病原菌超微结构[M]. 北京: 中国科学技术出版社, 1996.
    [161] Laszlo T., Ildiko S., Vera A.V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease[J]. Neurochemical Research, 2004,29:569-577.
    [162] 陈丽芬, 柳君泽, 李兵. 低压缺氧对大鼠脑线粒体腺苷酸转运体特性的影响[J]. 生理学报, 2006,58:29-33.
    [163] Yang S., Tan T.M.C., Wee A., et al. Mitochondrial respiratory function and antioxidant capacity in normal and cirrhotic livers following partial hepatectomy[J]. Cellular and Molecular Life Sciences, 2004, 61:220-229.
    [164] Ando Y. Spore lytic enzyme released from Clostridium perfringens spores during germination[J]. The Journal of Bacteriol, 1979, 140:59-64.
    [165] Per M. Adenosine nucleotides and ATP synthesizing enzymes in conidia of Aspergillus niger[J]. Physiologia Plantarum, 1982, 56:1399-3054.
    [166] Yoneyama K., Misato T. Studies on the fungicidal action of dithiocarbamates[J]. Ann. Phytopath. Soc. Japan., 1971, 37:291-300.
    [167] Britton C., Willium G.R. Respiration enzymes in oxidative phosphorylation. I.Kinetics of oxygen utilization[J]. J. Biol. Chem., 1955, 217:383-393.
    [168] Yang S., Tan T.M.C., Wee A. Mitochondrial respiratory function and antioxidant capacity in normal and cirrhotic livers following partial hepatectomy[J]. Cellular and Molecular Life Science, 2004, 61:220-229.
    [169] Cassner B., Wüthrich A., Scholtysik G. The pyrethroids permethrin and cyhalothrin are potent inhibitors of he mitochondrial comples Ⅰ [J]. Pharmacology, 1997, 281:855-860.
    [170] 陈毓荃. 生物化学试验方法和技术[M]. 科学出版社, 2002.
    [171] Pecci L., Montefoschi G., Fontana M., et al. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level[J]. Biochem. Biophys. Res. Commun. 1994, 199: 755-760.
    [172] Singer T.P. Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases[J]. Methods Biochem. Anal., 1974, 22:123-175.
    [173] Hattefi Y., Stiggall D.L. Preparation and properties of succinate: ubiquinone oxidoreductase (complexII) [J]. Methods Enzymol., 1978, 53:21-27.
    [174] Kr?henbühl S., Chang M., Brass E.P. Decreased activities of ubiquinol: ferricytochrome c oxidoreductase (complex III) and ferrocytochromec: oxygen oxidoreductase (complexIV) in liver mitochondria from rats with hydroxycobalamin (c-lactam)-induced methylmalonic aciduria[J]. J. Biol. Chem., 1991, 266:20998-21003.
    [175] Boffoli D., Scacco S., Vergari R., et al. Decline with age of respiratory chain activity inhuman skeletal muscle[J]. Biochim. Biophys. Acta., 1994, 1226:73-82.
    [176] Penney C., Bolger G. A simple microassay for inor-ganic phosphate[J]. II. Anal. Biochem., 1978, 89:297-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700