用户名: 密码: 验证码:
Ku70在慢性粒细胞白血病细胞中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的及意义
     DNA双链断裂(double-strand break, DSB)是DNA在受到各种损伤因素作用后最严重的损伤方式之一,可导致基因变异或细胞死亡。DSB发生时,机体可通过同源重组(homologous recombination, HR)和非同源末端连接(non-homologous DNA end joining, NHEJ)两条途径对其进行修复,而后者是高级哺乳动物修复DSB的主要途径,Ku70是其核心因子之一。
     本研究拟从基因转录水平和蛋白水平检测慢性粒细胞性白血病(Chronic myeloid leukaemia,CML)Ku70在初诊CML患者细胞中的表达,并对Ku70和BCR/ABL融合基因表达水平进行相关性分析,以探讨Ku70表达及NHEJ在CML发病中的作用,为阐明CML的确切发病机制提供新的线索。
     方法
     1. Ficoll分离初诊CML各期患者及正常供体骨髓单个核细胞,取2×107个单个核细胞用于后续实验。
     2. RT-PCR和实时定量RT-PCR(RQ-RT-PCR)检测初诊CML细胞和正常供体骨髓细胞中Ku70基因在转录水平的表达。
     3. RQ-RT-PCR检测初诊CML细胞中BCR/ABL融合基因在转录水平的表达。
     4. Western Blot印迹法检测初诊CML和正常供体骨髓细胞Ku70蛋白的表达。以Ku70与内参TBP(TATA Box Binding Protein)的灰度比对Ku70蛋白的表达水平进行半定量分析。
     5.采用SPSS13.0分别分析以下因素之间的相关性:(1)初诊CML中BCR/ABL与Ku70在转录水平的表达量;(2)初诊CML中BCR/ABL mRNA与Ku70蛋白的表达量;(3) Ku70在转录与蛋白水平的表达量。
     结果
     1. RT-PCR检测Ku70基因转录的表达:24例正常供体骨髓细胞中几乎看不到Ku70基因mRNA的表达;CML各期细胞中的Ku70基因表达均明显高于正常对照组,同时12例CML急变加速期细胞中Ku70基因的表达也明显高于CML慢性期。
     2. RQ-RT-PCR检测Ku70基因转录的表达:CML各期细胞中Ku70基因的表达量(544.63±185.71 Ku70拷贝/10000β-Actin拷贝)显著高于正常对照组(31.08±8.41,P=0.039),同时CML急变加速期细胞中Ku70基因的表达量(1103.31±645.62)远高于正常对照组和CML慢性期细胞(97.69±40.73,P<0.01),而慢性期细胞中Ku70基因的表达与正常细胞之间的差异无统计学意义(P>0.05)。
     3. Western Blot印迹法检测Ku70蛋白的表达:24例正常供体骨髓细胞中Ku70蛋白与TBP灰度比为(0.10±0.09),27例CML细胞中为(0.40±0.21),明显高于前者(P<0.001)。其中,12例急变加速期CML细胞为(0.57±0.22),15例慢性期CML细胞为(0.27±0.04),二者之间差异有统计学意义(P<0.001)。
     4.相关性分析结果:(1)初诊CML各期细胞中BCR/ABL融合基因与Ku70基因在mRNA水平的表达呈正相关关系(r=0.573,P=0.002);(2)初诊CML各期细胞中BCR/ABL融合基因表达与Ku70蛋白表达呈正相关关系(r=0.705, P<0.001);(3) Ku70基因在mRNA和蛋白水平的表达亦呈显著的正相关性(r=0. 808, P<0.001)。
     结论
     1. CML各期细胞中Ku70基因的表达高于正常对照组,提示以Ku70为核心因子的NHEJ修复途径在CML中被过度激活。
     2. CML急变加速期细胞中Ku70基因在mRNA和蛋白水平的表达量均远高于正常对照组和CML慢性期细胞,而慢性期细胞中Ku70在mRNA和蛋白水平的表达与正常细胞间无显著差异。提示NHEJ途径的过度激活在CML自慢性期向急变加速期的演变过程中发挥了重要的作用。
     3. CML细胞中Ku70基因和蛋白的表达与BCR/ABL融合基因的水平呈正相关性。说明CML细胞中BCR/ABL融合基因的高表达与NHEJ途径过度激活呈相同趋势,提示在CML细胞中BCR/ABL的表达与NHEJ途径修复DSB密切相关。
     4.在CML细胞中Ku70基因与Ku70蛋白的表达量呈正相关性,说明在CML细胞中Ku70在mRNA和蛋白水平表达量的变化是同步的,提示CML细胞通过NHEJ修复DSB可能同时发生在基因水平和蛋白水平。
Objective
     The DNA double strand breaks (DSB) in mammalian cells, caused either by ionizing radiation, radiomimetic drugs, or occurring during gene rearrangements, are predominantly repaired by a process called non-homologous DNA end joining (NHEJ). The NHEJ pathway contains several key proteins to undertake its function, among which Ku70 played a pivotal role. As a common malignant disease of hematological system, chronic myeloid leukemia (CML) can be considered as a paradigm for neoplasias that evolve through a multi-step process. As reported, there were some correlations between the expression of CML special fusion gene BCR/ABL and the high efficiency of the DSB repairs. The present study investigated the expression of the gene Ku70 and the protein Ku70 in leukemia cells of CML patients at different clinical stage. To reveal the correlation among the expression of the gene Ku70, the protein Ku70 and BCR/ABL in cells of CML patients.
     Methods
     1. Bone marrow cells were collected from GM-CSF mobilized normal adults and preliminary diagnosed chronic myeloid leukemia (CML) patients, Separated their mononuclear cell by Ficoll, took 2×107 for the experiment. Detect the living cell rate of bone marrow prepare using trypan blue, make sure WBC above 95% by Wright staining.
     2. Extract RNA of each group by trizol one step, purify and reverse transcripted to cDNA. Detected the expression of gene Ku70 in CML cells and mononuclear cells of normal BM by RT-PCR and RQ-RT-PCR.
     3. Extract nuclear protein of each group, quantified by Bradford, Investigated the expression of protein Ku70 in nuclear protein extracted from CML cells and mononuclear cells of normal BM by Western Blot, using TBP(TATA Box Binding Protein) as the internal control.Get the result as the ratio of gray scale of Ku70 over TBP.
     4. Took tales doses cDNA from each group, detected the expression of the fusion gene BCR/ABL by TaqMan probe Real Time PCR, using ABL as the internal control.
     5. Investigated the correlation in cells of preliminary diagnosed CML patients using software SPSS version 13.0: (1) between the expression of the gene Ku70 and BCR/ABL;(2) between the expression of the protein Ku70 and BCR/ABL; (3) between the expression of the gene Ku70 and the protein Ku70.
     Results
     1. Qualitative analysis by RT-PCR and quantitative analysis by RQ-RT-PCR of gene Ku70 showed: the expression of Ku70 in total CML cells (544.63±185.71Ku70 copies/10000β-Actin copies) was manifestly higher than in normal BM cells (31.08±8.41Ku70 copies/10000β-Actin copies,P=0.039). Meanwhile, its expression in CML cell of acute phase (1103.31±645.62Ku70copies/10000β-Actin copies) was obviously higher than that of chronic phase (97.69±40.73Ku70 copies/10000β-Actin copies, P<0.01). However, there was no significant difference between the expression of gene Ku70 in CML chronic phase and in normal BM cells. The sequencing of Part of the PCR product was completely matched with gene Ku70 in gene bank of NCBI.
     2. The gray scale of protein Ku70 over TBP of 24 normal BM cells were (0.10±0.09), while which of 27 CML cases were (0.40±0.21,P<0.001). Among these 27 CML cases, 12 were in acute phase, 15 were in chronic phase, the gray scales of Ku70 were significantly different from each other (mean 0.57±0.22 vs. 0.27±0.04, P<0.001).
     3. The analysis of dependability showed: there were positive correlations of BCR/ABL when compared with the expression of the gene Ku70 (r=0.573 P=0.002) while with it of the protein Ku70 (r=0.705 P<0.001) in cells of CML, meanwhile, the correlations between the expression of the gene Ku70 and the protein Ku70 (r=0. 808, P<0.001).
     Conclusions
     1. The gene and protein of Ku70 were expressed significantly higher in CML than in normal BM cells. Meanwhile, its expression level in CML (acute phase) was markedly higher than that in CML (chronic phase). Suggested that Ku70 was higher expressed in CML cells, means DNA in CML cells was mainly damaged by DSB, and this kind of DNA damage was repaired by NHEJ pathway predominantly. This conclusion made us to presume that pathogenesy of CML may be DNA damage and its unfaithful repair. A new strategy of the study on nosogenesis and its gene therapy of CML was in front of us.
     2. The analysis of dependability showed there were positive correlations among the expression of fusion gene BCR/ABL, the gene Ku70 and the protein Ku70 in cells of CML. Suggest that through the NHEJ pathway repairing DSB played a very important role in the genesis and progression of CML. Meanwhile, it suggested that the DNA damage and its unfaithful repair in CML cells have happened in both gene and protein level. So it provided more accurated localization of the study on the DNA repair in CML cells.
     3. But there is still no direct and exact evidence of the mechanism about how DSB induced the generation of CML and its fusion gene BCR/ABL, it’s meaningful and necessary to study this subject furtherly.
引文
1. J. Cadet, T. Douki, D. Gasparutto, et al. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res, 2003 (531):5-23.
    2. Brady N, Gaymes TJ, Cheung M, et al. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res, 2003, 63(8):1798-1805.
    3. Lieber MR. Pathological and Physiological DNA double-strand breaks. Am J Pathol, 1998, 153:1323-1332.
    4. S.P. Jackson. Detection, repair and signalling of DNA double-strand breaks. Biochem. Soc. Trans, 1999(27):1-13.
    5. J. Thacker. The nature of mutants induced by ionizing radiation in cultured hamster cells & Molecular characterization of HPRT-deficient mutants induced by gamma-rays or alpha-particles showing that the majority have deletions of all or part of the hprt gene, Mutat. Res, 1986(160):267-275.
    6. Griffin C S, Thacker J. The role of homologous recombination repair in the formation of chromosome aberrations. Cytogenetic and Genome Res, 2004(104): 1-4.
    7. J.E. Haber. DNA recombination: the replication connection. Trends Biochem. Sci, 1999 (24):271-275.
    8. P.A. Jeggo. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res, 1998(150):S80-S91.
    9. R. Kanaar, J.H. Hoeijmakers, D.C. van Gent. Molecular mechanisms of DNA double-strand break repair. Trends Cell. Biol, 1998(8):483-489.
    10. A. Pastink, P.H.M. Lohman. Repair and consequences of double-strand breaks in DNA. Mutat. Res. Fundam. Mol. Mech. Mut, 1999(428):141-156.
    11. A. Pastink, J.C.J. Eeken, P.H.M. Lohman.Genomic integrity and the repair of double-strand DNA breaks. Mutat. Res. Fundam. Mol. Mech. Mut, 2001 (480):37-50.
    12. M. van den Bosch, P.H.M. Lohman, A. Pastink. DNA double-strand break repair by homologous recombination.Biol. Chem, 2002(383):873-892.
    13. L.S. Symington. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev, 2002(66):630-670.
    14. P.A. Jeggo. DNA breakage and repair.Advances in Genetics, 1998(38):185-218.
    15. S.E. Critchlow, S.P. Jackson. DNA end-joining: from yeast to man. Trends Biochem. Sci, 1998(23):394-398.
    16. T. Mimori, J.A. Hardin. Mechanism of action between ku protein and DNA. J. Biol. Chem, 1986(261):10375-10379.
    17. M. Falzon, J.W. Fewell, E.L. Kuff. EBP-80, a transcription factor closely resembling the human autoantigen ku, recognizes single-to double-strand transitions in DNA. J. Biol. Chem, 1993(268):10546-10552.
    18. T. Gottlieb, S. Jackson. The DNA-dependent protein kinase: requirement for DNA ends and association with ku antigen. Cell, 1993(72):131-142.
    19. Jones JM, Gellert M, Yang W.A Ku bridge over broken DNA. Structure, 2001, 9(10):881-884.
    20. Thacker J, Zdzienicka MZ. The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair, 2004,3(8-9):1081-1090.
    21. J.D. Rowley. The critical role of chromosomal translocations in human leukemias. Annu. Rev. Genet, 1998(32): 495-519.
    22. C.J. Betti, M.J. Villalobos, M.O. Diaz, et al. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res, 2001 (61): 4550-4555.
    23. H. Yoshida, T. Naoe, H. Fukutani, et al. Analysis of the joining sequences of the t(15;17) translocation in human acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short stretches. Genes Chromosomes Cancer, 1995(1):37-44.
    24. J.L. Wiemels, F.E. Alexander, G. Cazzaniga, et al. Microclustering of TEL-AML1 translocation breakpoints in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2000(9):219-228.
    25. Gaymes TJ, Mufti GL, Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res, 2002, 62(10):2791-2797.
    26. Brady N, Gaymes TJ, Cheung M, et al. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res, 2003, 63(8):1798-1805.
    27. Junia V. Melo, David J. Barnes. Chronic myeloid leukaemia as a modelof disease evolution in human cancer.Nature, 2007(7):441-452.
    1. Brady N, Gaymes TJ, Cheung M, et al. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res. 2003, 63(8):1798-1805.
    2. Gaymes TJ, Mufti GL, Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res. 2002, 62(10): 2791-2797.
    3. El?bieta Pastwa, Janusz B?asiak. Non-homologous DNA end joining.Acta Biochimica Polonica. 2003, 50(4): 891-908.
    4. Junia V. Melo, David J. Barnes. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Reviews | Cancer, 2007(7):441-452.
    5. Jackson JP. Sensing and repairing DNA double strand break. Cancinogenesis. 2002, 23(5):687-696.
    6. Lieber MR. Pathological and physiological double-strand breaks. roles in cancer, aging, and the immune system. Am J Pathol. 1998, 153(5):1323-1332.
    7. Betti CJ, Villalobos MJ, Diaz MO. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res, 2001, 61(11):4550-4555.
    8. Peter Karran. DNA double strand break repair in mammalian cells. Current Opinion in Genetics & Development. 2000, 10:144-150.
    9. Jones JM, Gellert M, Yang W.A Ku bridge over broken DNA. Structure, 2001, 9(10):881-884.
    10. Thacker J, Zdzienicka MZ. The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair, 2004, 3(8-9):1081-1090.
    11. Slupianek A, Nowicki MO, Koptyra M ,et al. BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. DNA Repair. 2006, 5:243-250.
    12. 张之南,沈悌. 血液病诊断及疗效标准[M] . 第2版,北京:科学出版社,1998 :219-228.
    13. Ferguson DO., Sekiguchi J.M, Chang S, et al. The nonhomologous end-joiningpathway of DNA repair is required for genomic stability and the suppression oftranslocations.Proc. Natl. Acad.Sci. U S A, 2000 (97):6630-6633.
    14. J.D. Rowley. The critical role of chromosomal translocations in human leukemias. Annu. Rev. Genet, 1998 (32): 495-519.
    15. B. Elliott, M. Jasin. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci, 2002 (59): 373-375.
    16. R. Strick, P.L. Strissel, S. Borgers, et al. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc. Natl. Acad. Sci. USA, 2000 (97): 4790-4795.
    17. M. Stanulla, P. Chhalliyil, J. Wang, et al. Mechanisms of MLL gene rearrangement: site-specific DNA cleavage within the breakpoint cluster region is independent of chromosomal context. Hum. Mol. Genet, 2001(10):2481-491.
    18. Y. Zhang, P. Strissel, R. Strick, et al. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc. Natl. Acad. Sci. U S A, 2002(99):3070-3075.
    19. C.J. Betti, M.J. Villalobos, M.O. Diaz, et al. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res, 2001 (61):4550-4555.
    20. H. Yoshida, T. Naoe, H. Fukutani, et al. Analysis of the joining sequences of the t(15;17) translocation in human acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short stretches. Genes Chromosomes Cancer, 1995(1):37-44.
    21. J.L. Wiemels, F.E. Alexander, G. Cazzaniga, et al. Microclustering of TEL-AML1 translocation breakpoints in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2000(9):219-228.
    22. A.J. Pierce, M. Jasin. NHEJ deficiency and disease. Mol. Cell, 2001 (6):1160-1161.
    23. C. Richardson, M. Jasin. Frequent chromosomal translocations induced by DNA double strand breaks. Nature, 2000(405):697-700.
    24. K. Rothkamm, M. Kuhne, P.A. Jeggo, et al. Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res, 2001(61):3886-3993.
    25. K. Rothkamm, M. Lobrich. Misrepair of radiation-induced DNA double-strand breaksand its relevance for tumorigenesis and cancer treatment. Int. J. Oncol, 2002(2): 433-440.
    26. M. Kuhne, K. Rothkamm, M. Lobrich. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells. Radiat. Prot. Dosim, 2002 (99):129-132.
    27. T.J. Gaymes, G.J. Mufti, F.V. Rassool. Myeloid leukemias have increased activity of the non homologous end-joiningpathway and concomitant DNA misrepair that is dependant on the Ku70/86 heterodimer. Cancer Res, 2002(62): 2791-2797.
    28. M. Escarceller, S. Rousset, E. Moustacchi et al. The fidelity of double strand breaks processing is impaired incomplementation groups B and D of Fanconi anemia, a genetic instability syndrome, Somat. Cell Mol. Genet, 1997(6): 401-411.
    29. R. Lundberg, M. Mavinakere, C. Campbell. Deficient DNA end joining activity in extracts from Fanconi anemia fibroblasts. J. Biol. Chem, 2001(276):9543-9549.
    30. T.J. Gaymes, P.S. North, N. Brady et al. Increased error-prone non homologous DNA end-joining - a proposed mechanism of chromosomal instability in Bloom’s syndrome. Oncogene, 2002(21):2525-2533.
    1. Jackson SP.Sensing and repairing DNA double strand breaks.Cancinogenesis. 2002, 23:687-696.
    2. Lieber MR. Pathological and Physiological DNA double-strand breaks. Am J Pathol. 1998, 153:1323-1332.
    3. Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining.Biochimie. 2003, 85:1161-11733.
    4. Jones JM., Gellert M, Yang W.A Ku Bridge over Broken DNA. Structure. 2001, 9: 881-884.
    5. Slupianek A, Nowicki MO, Koptyra M ,et al. BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. DNA Repair. 2006, 5:243-250.
    6. Hopfner KP, Putnam CD, Tainer JA.DNA double-strand break repair from head to tail. Current Opinion in Structural Biology. 2002, 12:115-122.
    7. Burma S, Benjamin PC, Chen DJ.Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair. 2006, 5:1042-1048.
    8. Nowicki MO, Falinski R, Koptyra M, et al.BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species–dependent DNA double-strand breaks. Blood. 2004, 104:3746-3753.
    9. Gaymes TJ, Mufti GJ, Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res. 2002, 62:2791-2797.
    10. Bentley J, Diggle CP, Harnden P, et al. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Research. 2004, 32:5249-5259.
    11. Eric Deutsch, Aymeric Dugray, Bassam AbdulKarim et al. BCR/ABL down-regulates the DNArepair protein DNA-PKcs.Blood, 2001(97):2084-2090.
    1. J. Cadet, T. Douki, D. Gasparutto, et al. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res, 2003(531): 5-23.
    2. M. Gellert. V (D) J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem, 2002(71):101-132.
    3. C. Lengauer, K.W. Kinzler, B. Vogelstein. Genetic instabilities in human cancers. Nature, 1998(396):643-649.
    4. S.P. Jackson. Detection, repair and signalling of DNA double-strand breaks. Biochem. Soc. Trans, 1999(27):1-13.
    5. J. Thacker. The nature of mutants induced by ionizing radiation in cultured hamster cells & Molecular characterization of HPRT-deficient mutants induced by gamma-rays or alpha-particles showing that the majority have deletions of all or part of the hprt gene, Mutat. Res, 1986(160):267-275.
    6. Griffin C S, Thacker J. The role of homologous recombination repair in the formation of chromosome aberrations. Cytogenetic and Genome Res, 2004(104):1-4.
    7. J.E. Haber. DNA recombination: the replication connection. Trends Biochem. Sci, 1999 (24):271-275.
    8. P.A. Jeggo. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res, 1998(150):S80-S91.
    9. R. Kanaar, J.H. Hoeijmakers, D.C. van Gent. Molecular mechanisms of DNA double-strand break repair. Trends Cell. Biol, 1998(8): 483-489.
    10. A. Pastink, P.H.M. Lohman. Repair and consequences of double-strand breaks in DNA. Mutat. Res. Fundam. Mol. Mech. Mut, 1999(428):141-156.
    11. A. Pastink, J.C.J. Eeken, P.H.M. Lohman.Genomic integrity and the repair of double-strand DNA breaks. Mutat. Res. Fundam. Mol. Mech. Mut, 2001(480):37-50.
    12. M. van den Bosch, P.H.M. Lohman, A. Pastink. DNA double-strand break repair by homologous recombination.Biol. Chem, 2002 (383):873-892.
    13. L.S. Symington. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev, 2002 (66): 630-670.
    14. P.A. Jeggo. DNA breakage and repair.Advances in Genetics, 1998(38): 185-218.
    15. S.E. Critchlow, S.P. Jackson. DNA end-joining: from yeast to man. Trends Biochem. Sci, 1998(23):394-398.
    16. H. Feldmann, L. Driller, B. Meier, et al. HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol Chem, 1996(271):27765-27769.
    17. S.J. Boulton, S.P. Jackson. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double-strand break rejoining and in telomeric maintenance. Nucleic Acids Res, 1996(24):4639-4648.
    18. P. Sch?r, G. Herrmann, G. Daly, T. Lindahl. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 1997(11):1912-1924.
    19. S.H. Teo, S.P. Jackson. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA doublestrand break repair. EMBO J, 1997(16):4788-4795.
    20. G. Herrmann, T. Lindahl, P. Sch?r. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repairrelated to mammalian XRCC4. EMBO J, 1998(17):4188-4198.
    21. W. Ramos, G. Liu, C.N. Giroux, et al. Biochemical and genetic characterization of the DNA ligase encoded by Saccharomyces cerevisiae open reading frame YOR005c, a homolog of mammalian DNA ligase IV. Nucleic Acids Res, 1998(26):5676-5683.
    22. S. Wilson, N. Warr, D.L. Taylor, et al. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in nonhomologous end joining and telomere length maintenance. Nucleic Acids Res, 1999 (27):2655-2661.
    23. K.G. Manolis, E.R. Nimmo, E. Hartsuiker, et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J, 2001 (20):210-221.
    24. G.R. Weller, B. Kysela, R. Roy, et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science, 2002(297):1686-1689.
    25. M.R. Lieber, Y. Ma, U. Pannicke, et al. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst), 2004 (3): 817-826.
    26. Liu N, Lamerdin JE, Tebbs RS, et al. XRCC2 and XRCC3, new human Rad51-familymembers, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell, 1998; 1: 783-793.
    27. P.R. Bianco, R.B. Tracy, S.C. Kowalczykowski. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci, 1998(3):D570-D603.
    28. J.A. Nickoloff, M.F. Hoekstra. Double-strand break and recombinational repair in Saccharomyces cerevisiae. Human Press, Totowa, NJ, 1998(1):335-362.
    29. T. Mimori, J.A. Hardin. Mechanism of action between ku protein and DNA. J. Biol. Chem, 1986(261):10375-10379.
    30. M. Falzon, J.W. Fewell, E.L. Kuff. EBP-80, a transcription factor closely resembling the human autoantigen ku, recognizes single-to double-strand transitions in DNA. J. Biol. Chem, 1993(268):10546-10552.
    31. T. Gottlieb, S. Jackson. The DNA-dependent protein kinase: requirement for DNA ends and association with ku antigen. Cell, 1993(72):131-142.
    32. K.K. Khanna, S.P. Jackson. DNA double strand breaks: signalling, repair and the cancer connection. Nat. Genet, 2001(27):247-254.
    33. U. Grawunder, M. Wilm, X.T. Wu, et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells.Nature, 1997 (388):492-495.
    34. S. Burma, D.J. Chen. Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst), 2004(3):909-918.
    35. G.C. Smith, S.P. Jackson. The DNA-dependent protein kinase. Genes Dev, 1999(13): 916-934.
    36. A.J. Doherty, S.P. Jackson. DNA repair: how Ku makes ends meet. Curr. Biol, 2001 (11):R920-R924.
    37. J.R. Walker, R.A. Corpina, J. Goldberg. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature, 2001(412):607-614.
    38. R.B. Cary, S.R. Peterson, J. Wang, et al. DNA looping by Ku and the DNA-dependentprotein kinase. Proc. Natl. Acad. Sci. USA, 1997(94):4267-4272.
    39. I.V. Martin, S.A. MacNeill. ATP-dependent DNA ligases. Genome Biol, 2002 (3):REVIEWS3005.
    40. P. Calsou, C. Delteil, P. Frit, et al. Coordinated assembly of Ku and p460 subunits ofthe DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligaseIV recruitment. J. Mol. Biol, 2003(326):93-103.
    41. Kundel TA. DNA replication fidelity. J Biol Chem, 1992(267):182512-18254.
    42. Mitelman.F, Mertens.F, Johansson.B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet, 1997(15):417-474.
    43. Lengauer.C, Kinzler. K.W, Vogelstein. B. Genetic instabilities in human cancers. Nature, 1998(396):643-649.
    44. Marx.J. Debate surges over the origins of genomic defects in cancer. Science, 2002, (297):544-546.
    45. C. Richardson, M. Jasin. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature, 2000(405):697-700.
    46. G.J. Vanasse, P. Concannon, D.M. Willerford. Regulated genomic instability and neoplasia in the lymphoid lineage. Blood, 1999(94):3997-4010.
    47. M. O’Driscoll, P.A. Jeggo. The role of double-strand breaks repair-insights from human genetics. Nat. Rev. Genet, 2006(7):45-54.
    48. Y. Shiloh, M.B. Kastan. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res, 2001(83):209-254.
    49. D.O. Ferguson, J.M. Sekiguchi, S. Chang, et al. The nonhomologous end-joiningpathway of DNA repair is required for genomic stability and the suppression of translocations.Proc. Natl. Acad.Sci. U S A, 2000(97):6630-6633.
    50. Z.E. Karanjawala, U. Grawunder, C.L. Hsieh, et al. The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr. Biol, 1999(9):1501-1504.
    51. M. Martin, A. Genesca, L. Latre, et al. Postreplicative joining of DNA double-strand breaks causes genomic instability in DNA-PKcs-deficient mouse embryonic fibroblasts.Cancer Res, 2005(65):10223-10232.
    52. M. Someya, K. Sakata, Y. Matsumoto, et al. The association of DNA-dependent protein kinase activity with chromosomal instability and risk of cancer. Carcinogenesis , 2006 (27):117-122.
    53. Y.P. Fu, J.C. Yu, T.C. Cheng, et al. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancersusceptibility. Cancer Res, 2003(63):2440-2446.
    54. S.T. Durant, J.A. Nickoloff. Good timing in the cell cycle for precise DNA repair by BRCA1.Cell Cycle, 2005(4):1216-1222.
    55. D.T. Bau, Y.P. Fu, S.T. Chen, et al. Breast cancer risk and the DNA double-strand break end-joining capacity of nonhomologous end-joining genes are affected by BRCA1. Cancer Res, 2004(64):5013-5019.
    56. S.N. Powell, L.A. Kachnic. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene, 2003(22):5784-5791.
    57. M.E. Moynahan, T.Y. Cui, M. Jasin. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation.Cancer Res, 2001(61):4842-4850.
    58. D.T. Bau, Y.C. Mau, C.Y. Shen. The role of BRCA1 in non-homologous end-joining. Cancer Lett,(2005).
    59. Q. Zhong, T.G. Boyer, P.L. Chen, et al .Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res, 2002(62):3966-3970.
    60. H.C. Wang, W.C. Chou, S.Y. Shieh, et al. Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res, 2006(66):1391-1400.
    61. J. Zhuang, H. Willers, H. Wang, et al .Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res, 2006(66):1401-1408.
    62. E. Riballo, M. Kuhne, N. Rief, et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell, 2004(16):715-724.
    63. B.P. Chen, D.W. Chan, J. Kobayashi, et al. Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J. Biol. Chem, 2005(280):14709-14715.
    64. T.T. Paull, D. Cortez, B. Bowers, et al. Direct DNA binding by Brca1. Proc. Natl. Acad. Sci. U S A, 2001(98):6086-6091.
    65. F. d’Adda di Fagagna, M.P. Hande, W.M. Tong, et al.Effects of DNA nonhomologousend-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol, 2001(11):1192-1196.
    66. H.L. Hsu, D. Gilley, S.A. Galande, et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev, 2000(14):2807-2812.
    67. D. Gilley, H. Tanaka, M.P. Hande, et al. DNA-PKcs is critical for telomere capping. Proc. Natl. Acad. Sci. USA, 2001(98):15084-15088.
    68. K. Luger, A.W. Mader, R.K. Richmond, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 1997(389):251-260.
    69. E.P. Rogakou, D.R. Pilch, A.H. Orr, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem, 1998(273):5858-5868.
    70. O. Fernandez-Capetillo, A. Lee, M. Nussenzweig. A. Nussenzweig, H2AX: the histone guardian of the genome. DNA Repair (Amst), 2004(3):959-967.
    71. S. Burma, B.P. Chen, M. Murphy, et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem, 2001(276):42462-42467.
    72. J.A. Downs, N.F. Lowndes, S.P. Jackson. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000 (408):1001-1004.
    73. C. Thiriet, J.J. Hayes. Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell, 2005(18):617-622.
    74. A. Celeste, S. Difilippantonio, M.J. Difilippantonio, et al. A. Nussenzweig, H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell, 2003 (114):371-383.
    75. C.H. Bassing, H. Suh, D.O. Ferguson, et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell, 2003(114):359-370.
    76. J.D. Rowley. The critical role of chromosomal translocations in human leukemias. Annu. Rev. Genet, 1998(32):495-519.
    77. B. Elliott, M. Jasin. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci, 2002(59):373-375.
    78. R. Strick, P.L. Strissel, S. Borgers, et al. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc. Natl. Acad. Sci. USA, 2000 (97):4790-4795.
    79. M. Stanulla, P. Chhalliyil, J. Wang, et al. Mechanisms of MLL gene rearrangement:site-specific DNA cleavage within the breakpoint cluster region is independent of chromosomal context. Hum. Mol. Genet, 2001(10):2481-491.
    80. Y. Zhang, P. Strissel, R. Strick, et al. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc. Natl. Acad. Sci. U S A, 2002(99):3070-3075.
    81. C.J. Betti, M.J. Villalobos, M.O. Diaz, et al. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res, 2001(61):4550-4555.
    82. H. Yoshida, T. Naoe, H. Fukutani, et al. Analysis of the joining sequences of the t(15;17) translocation in human acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short stretches. Genes Chromosomes Cancer, 1995(1):37-44.
    83. J.L. Wiemels, F.E. Alexander, G. Cazzaniga, et al. Microclustering of TEL-AML1 translocation breakpoints in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2000(9):219-228.
    84. A.J. Pierce, M. Jasin. NHEJ deficiency and disease. Mol. Cell, 2001 (6):1160-1161.
    85. C. Richardson, M. Jasin. Frequent chromosomal translocations induced by DNA double strand breaks. Nature, 2000(405):697-700.
    86. K. Rothkamm, M. Kuhne, P.A. Jeggo, et al. Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res, 2001(61):3886-3993.
    87. K. Rothkamm, M. Lobrich. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment. Int. J. Oncol, 2002(2):433-440.
    88. M. Kuhne, K. Rothkamm, M. Lobrich. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells. Radiat. Prot. Dosim, 2002 (99):129-132.
    89. T.J. Gaymes, G.J. Mufti, F.V. Rassool. Myeloid leukemias have increased activity of the non homologous end-joiningpathway and concomitant DNA misrepair that is dependant on the Ku70/86 heterodimer. Cancer Res, 2002(62):2791-2797.
    90. M. Escarceller, S. Rousset, E. Moustacchi et al. The fidelity of double strand breaksprocessing is impaired incomplementation groups B and D of Fanconi anemia, a genetic instability syndrome, Somat. Cell Mol. Genet, 1997(6):401-411.
    91. R. Lundberg, M. Mavinakere, C. Campbell. Deficient DNA end joining activity in extracts from Fanconi anemia fibroblasts. J. Biol. Chem, 2001(276):9543-9549.
    92. T.J. Gaymes, P.S. North, N. Brady et al. Increased error-prone non homologous DNA end-joining - a proposed mechanism of chromosomal instability in Bloom’s syndrome. Oncogene, 2002(21): 2525-2533.
    93. D.H. Auckley, R.E. Crowell, E.R. Heaphy, et al. Reduced DNA-dependent protein kinase activity is associated with lung cancer. Carcinogenesis 2001(22):723-727.
    94. P. Philip, J. Pedersen, B. jergaard. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias. Cancer Genet. Cytogenet, 1988(31):227-236.
    95. H. Cleary, E. Boulton, M. Plumb. Allelic loss on chromosome 4 (Lyr2/TLSR5) is associated with myeloid, B-lymph-myeloid and lymphoid (B & T) mouse radiation-induced leukemias. Blood, 2001(98):1549-1554.
    96. M. Nakanishi, K. Tanaka, T. Shintani, et al. Chromosomal instability in acute myelocytic leukemia and myelodysplastic syndrome patients among atomic bomb survivors. J. Radiat. Res, 1999 (40):159-167.
    97. Ireneusz Majsterek , Janusz Blasiak, Wojciech Mlynarski et al.Does the BCR/ABL-mediated increase in the efficacy of DNA repair play a role in the drug resistance of cancer cells.Cell Biology International, 2002(26):363-370.
    98. Junia V. Melo, David J. Barnes. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Reviews Cancer, 2007(7):441-452.
    99. Eric Deutsch, Aymeric Dugray, Bassam AbdulKarim et al. BCR/ABL down-regulates the DNArepair protein DNA-PKcs.Blood, 2001(97):2084-2090.
    100. Artur Slupianek, Michal O. Nowicki, Mateusz Koptyr. BCR/ABL modifies the kinetics and fidelity of DNAdouble-strand breaks repair in hematopoietic cells. DNA Repair, 2006(5):243-250.
    101. Michal O. Nowicki, Rafal Falinski, Mateusz Koptyra, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species–dependent DNA double-strand breaks. Blood, 2004(104):3746-3753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700