用户名: 密码: 验证码:
铁磁性金属、铁氧体及其复合物的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米粒子引起各领域的研究人员的极大兴趣,包括磁流体,催化,生物技术/生物医学,磁共振成像,数据存储,和环境治理等广泛领域。大量文献已报道磁性纳米颗粒的合成、保护、功能化和应用,以及纳米系统的磁特性。然而,这些纳米材料由于其体积小,容易聚集在一起;因为表面活性使它们变得不稳定,并具有粒度分布较宽等缺点。因此有必要研究获得窄的粒度分布、小尺寸和稳定分散的磁性纳米粒子。磁性纳米粒子的另一个潜在的应用是利用它们作为有机染料和无机材料去除剂,由于它们具有磁性,在外磁场作用下可以快速回收,并且可以重复利用。本论文研究了铁磁性金属、铁氧体材料的合成及其应用。主要内容如下七部分:
     一、采用水热法合成了MFe_2O_4(M=Mn, Fe, Co, Ni)铁氧体纳米晶体,并比较了它们对刚果红(CR)的吸附能力。首次全面的比较和分析尖晶石铁氧体纳米晶体对CR的吸附能力。研究表明,MFe_2O_4铁氧体的阳离子分布是决定其吸附能力最重要的因素。静电吸附是主要的吸附机制。MFe_2O_4纳米粒子表现出明显的铁磁行为,在磁场作用下能从废水中进行高效磁分离。此外,可以用丙酮作为负载了CR的MFe_2O_4纳米粒子的脱附剂。所有的尖晶石铁氧体纳米晶具有良好的软磁性能,特别是CoFe_2O_4纳米晶具有最高的饱和磁化强度(86.1emu·g~(-1))和最高的CR吸附能力。由Langmuir等温模型计算出,CoFe_2O_4对CR的最大吸附能力为244.5mg·g~(-1)。
     二、为了提高磁铁矿对CR的吸附能力,进行了掺入镧离子的研究。研究了纳米晶Fe_(3-x)La_xO_4(x=0,0.01,0.05,0.10)铁氧体对溶液中CR的移除能力。与未掺杂磁铁矿相比,掺杂La~(3+)离子后吸附能力从37.4mg·g~(-1)提高到79.1mg·g~(-1)。实验结果表明,掺杂La~(3+)离子对提高磁铁矿的吸附能力是有效的。在La~(3+)掺杂的磁铁矿中Fe_(2.95)La_(0.05)O_4具有最高的饱和磁化强度和吸附能力。Fe_(3-x)La_xO_4负载CR后,可以利用丙酮进行脱附,脱附率可达92%。此外,Fe_(3-x)La_xO_4具有铁磁性,在外磁场作用下可以从污水中进行高效磁分离。研究发现高的磁性能有利于同类产物吸附能力的提高。
     三、利用低温水热法合成了α-Fe/Fe_3O_4纳米复合物。通过透射电镜(TEM)和高分辨透射电镜(HRTEM)分析发现α-Fe/Fe_3O_4纳米复合物是由链状的α-Fe和薄片状的Fe_3O_4构成的。α-Fe在α-Fe/Fe_3O_4纳米复合物中的重量比为35.6%。α-Fe/Fe_3O_4纳米复合物对于污水中的CR具有非常高的移除能力,在三分钟内几乎能全部去除溶液中CR。对于初始浓度为100mg·L~(-1)的CR溶液,最大移除能力可达1297.06mg·g~(-1)。α-Fe/Fe_3O_4纳米粒子具有高的饱和磁化强度(80.5emu·g~(-1)),使得在负载了CR后能够快速的从悬浮液中进行磁分离。由于在CR的去除过程中同时包括吸附和还原反应作用,纳米复合物的协同作用有利于增强对CR的移除能力。通过可见紫外吸收光谱(UV–Vis),X射线衍射(XRD)和红外吸收光谱(FTIR)对降解产物的分析,提出了α-Fe/Fe_3O_4复合物对CR移除的可能降解机制。利用α-Fe/Fe_3O_4纳米复合物可以减少处理时间、高效的移除污水中的染料,同时其合成方法简单、低成本和无污染。
     四、通过改变联氨的剂量采用溶剂热法合成了hcp/fcc混合结构钴和hcp结构的钴,同时研究了晶体结构对它们的磁性能和对CR移除能力的影响。这是首次报道利用微米和亚微米级钴晶体移除CR,混合结构的钴对CR的移除能力可达694.4mg·g~(-1)。通过高分辨透射电子显微镜可以清晰的观察到hcp/fcc混合结构钴的混合程度。此外,Co晶体的饱和磁化强度(Ms)随着hcp相的增加而增加,它的矫顽力(Hc)随着hcp相的增加而减少。混合程度最大的Co晶体具有最高的移除CR的能力。微米和亚微米级Co晶体在吸附CR后能够很容易进行磁分离。
     五、利用水热法合成了水溶性的Fe_3O_4纳米粒子,它在水溶液中具有高的溶解度(28mg·mL~1)和稳定性(至少存在一个月)。水溶性Fe_3O_4对Pb~(2+)和Cr~(6+)的移除能力高于非水溶性的Fe_3O_4。水溶性Fe_3O_4NPs具有高的饱和磁化强度(83.4emu·g~(-1)),有利于污水处理过程中的高效分离。水溶性的磁铁矿作为吸附剂,在无机械搅拌或任何外部力量的帮助下可直接溶解于水,这解决了在污水净化领域的磁性粉末的实际应用中的一个关键问题。水溶性Fe_3O_4NPs在两分钟内可以移除90%的浓度为10ppm的Pb~(2+)。
     六、利用简单的一壶水热反应法合成钴/石墨烯纳米复合物的方法。利用NaBH_4作为还原剂。制备的Co/G纳米复合物具有窄的尺寸分布和好的分散性,在能量存储和环境应用方面有应用前景。将Co/G纳米复合物分别应用于锂离子电池和去除CR的吸附剂。Co/G纳米复合物电极经过50次循环后,库伦效率超过97%,说明它具有高的充放电可逆性。Co/G纳米复合物作为CR的吸附剂,移除能力达934.9mg·g~(-1)。
     七、研究一步法合成水溶性的Fe_3O_4/石墨烯纳米复合物,此方法是利用氧化石墨烯还原生成石墨烯,Fe_3O_4纳米粒子均匀的嵌在石墨烯片上。Fe_3O_4/石墨烯纳米复合物用作磁共振T2造影剂,显示出高效的增强效果。
Magnetic nanoparticles are of great interest for researchers from a widerange of disciplines, including magnetic fluids, catalysis,biotechnology/biomedicine, magnetic resonance imaging, data storage, andenvironmental remediation. A number of literatures have been reported on thethe synthesis, protection, functionalization, and application of magneticnanoparticles, as well as the magnetic properties of nanostructured systems.However, these nano-sized materials are easy to gather together due to theirsmall size, and they are unstable because of the active surface, and they havewide size distributions. Hence it is necessary to obtain magnetic nanoparticleswith smaller and narrower size distribution than the ones manipulated withexternal magnetic fields and with dispersion stability. Another potential application of these nanoparticles is their use as tertiary treatment of residualwaters acting as powerful reducer agents of organic and inorganic material,with the advantage that it could be possible to recycle and separate themagnetite particles by an external magnetic field. In this paper, synthesis andapplication of ferromagnetic metal, ferrite and their composites the conditionsof synthesis of magneitc nanomaterials are studied.The main results obtainedin the thesis are divided into seven parts as following:
     Firstly, we compare the adsorption capacity of different MFe_2O_4(M=Mn,Fe, Co, Ni) ferrite nanocrystals synthesized a by hydrothermal method forCongo red (CR). It is the first time to give a comprehensive comparison andanalysis of the adsorption capacity of ferrite nanocrystals with spinel structurefor CR. Research indicates that the cations distribution of MFe_2O_4ferrites isthe most important factor to decide their adsorption capacity. Electrostaticabsorption was conceived as the main adsorption mechanism. Meanwhile, the MFe_2O_4nanoparticles exhibited a clearly ferromagnetic behavior under appliedmagnetic field, which allowed their high-efficient magnetic separation fromwastewater. Furthermore, acetone is an effective desorption agent fordesorption of MFe_2O_4nanoparticles loaded by CR. All of the spinel ferritenanocrystals possess good soft-magnetism, especially, CoFe_2O_4nanocrystalsexhibit a higher saturation magnetization of86.1emu·g~(-1)as well as theoutstanding adsorption capacity for CR. By the calculation of Langmuirisotherm model, the maximum adsorption capacity of CoFe_2O_4for CR is244.5mg·g~(-1).
     Secondly, this investigation was to increase the adsorption capacity ofmagnetite for CR by adulterating a small quantity of La~(3+)ions into it. Theadsorption capability of nanocrystalline Fe_(3-x)La_xO_4(x=0,0.01,0.05,0.10)ferrite to remove CR from aqueous solution was evaluated carefully.Compared with undoped magnetite, the adsorption values were increased from 37.4to79.1mg·g~(-1). The experimental results prove that it is effectual toincrease the adsorption capacity of magnetite by doped La~(3+)ions. Among theLa~(3+)-doped magnetite, Fe2.95La0.05O4nanoparticles exhibit the highestsaturation magnetization and the maximum adsorption capability. Thedesorption ability of La~(3+)-doped magnetite nanoparticles loaded by CR canreach92%after the treatment of acetone. Furthermore, the Fe_(3-x)La_xO_4nanoparticles exhibited a clearly ferromagnetic behavior under appliedmagnetic field, which allowed their high-efficient magnetic separation fromwastewater. It is found that high magnetism facilitates to improve theiradsorption capacity for the similar products.
     Thirdly, a facile low-temperature hydrothermal process to synthesizeα-Fe/Fe_3O_4nanocomposite is reported. TEM and HRTEM revealed that theα-Fe/Fe_3O_4nanocomposite was composed of catenulate α-Fe and lamellarstructured Fe_3O_4. The weight ratio of α-Fe in the α-Fe/Fe_3O_4nanocomposite is 35.6%. The α-Fe/Fe_3O_4nanocomposite demonstrates an extremely high Congored (CR) removal efficiency from the wastewater almost complete removalwithin3minutes. For100mg·L1of CR aqueous solution, the maximum of CRremoval can reach1297.06mg·g~(-1). The large saturation magnetization (80.5emu·g~(-1)) of the nanocomposite allows fast separation of α-Fe/Fe_3O_4nanopartilces loaded with CR from the liquid suspension. The synergisticeffect of the nanocomposite may contribute to the enhanced CR removal ability,because the CR can be removed by reduction reaction and adsorption at thesame time. Based on the degradation products identified by UV–Vis spectra,XRD and FTIR spectra, a possible degradation mechanism of CR on theα-Fe/Fe_3O_4composite was proposed. The significantly reduced treatment timerequired to remove the CR and the simple, low-cost and pollution-freepreparation method make α-Fe/Fe_3O_4nanocomposite promising for the highly
     Fourthly,cobalt crystals with hcp and fcc mixture structure and hcpstructure were prepared by a solvothermal process based on the dosages ofN2H4·H2O, in the meantime effect of crystal structure on their magneticproperties and Congo red (CR) removal abilities were evaluated. To our bestknowledge, it is the first time to report the CR removal by micron andsub-micron sizes of Co crystals, and the best CR removal ability can reach694.4mg·g~(-1). For the hcp and fcc mixture structure of Co crystal, the degree ofmixing can be clearly observed from the HRTEM images. Furthermore, thesaturation magnetization (Ms) of Co crystal is increased with the increase ofhcp phase, while its coercivity (Hc) is decreased with the increase of hcp phase.The Co crystal with the most mixture structure has the highest CR removalability. And the micron and sub-micron sizes of Co crystals will be good formagnetic separation after CR removal.
     Fifth, we synthesized water-soluble Fe_3O_4nanoparticles (NPs) with sufficiently high solubility (28mg·mL1) and stability (at least one month)through hydrothermal approach, also found that they exhibited excellentremoval ability for heavy-metal ions from waste water. It is noteworthy thatthe adsorption ability of the water-soluble Fe_3O_4NPs to Pb2+and Cr6+isstronger than water-insoluble Fe_3O_4NPs. Furthermore, the water-soluble Fe_3O_4NPs exhibited relatively high saturation magnetization (83.4emu·g~(-1)), whichallowed their high-efficient magnetic separation from wastewater. The mostimportant thing is that the water-soluble magnetite as an adsorbent can directlydissolve in water without the help of mechanical stir or any extraneous forces,which may solve a key problem for practical application of magnetic powdersin the field of sewage purification. Moreover, the water-soluble Fe_3O_4NPsshow high-efficient adsorption capacity for10ppm of Pb2+ions solution whichcan reach90%within2minutes.
     Sixth, we report a facile approach to prepare cobalt hybrid/graphene(Co/G) nanocomposite via a general one-pot hydrothermal synthesis. NaBH4isused as the reducing agent. Co/G nanocomposite possesses narrowsize-distribution and good dispersion, enabling their tremendous potential forenergy and environment applications. As a proof of concept, we demonstratethe use of Co/G nanocomposite in a lithium-ion battery and an adsorbent forCongo red (CR), respectively. More importantly, more than97%of capacityretention (605mAh·g~(-1)) is retained after50cycles, indicative of highcharge/discharge reversibility of the Co/G nanocomposite electrode. And theCR removal ability of Co/G nanocomposite can reach934.9mg·g~(-1).
     Lastly, we report a facile approach to synthesize water-dispersiblenanocomposite with Fe_3O_4nanoparticles attached to graphene, which combinesthe growth of Fe_3O_4nanoparticles and the reduction of graphene oxide (GO) in one single step. The Fe_3O_4/G nanocomposite showed high T2relaxivityindicating its potential as an ultrasensitive T2contrast agent.
引文
[1] COLE A J, YANG V C, DAVID A E. Cancer theranostics: the rise oftargeted magnetic nanoparticles [J]. Trends in Biotechnology,2011,29:323–332.
    [2] KUBO R, KAWABATA A, KOBAYASHI A. Electronic properties of smallparticles [J]. Annual Review of Materials Science,1984,14:49–66.
    [3] CHEONG S, FERGUSON P, TILLEY R D, et al. Simple synthesis andfunctionalization of iron nanoparticles for magnetic resonance imaging [J].Angewandte Chemie International Edition,2011,50:4206–4209.
    [4] DUMESTRE F, CHAUDRET B, AMIENS C, RENAUD P, FEJES, P.Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2][J]. Science,2004,303:821–823.
    [5] CAO Y B, ZHANG X, FAN J M, et al. Synthesis of hierarchical Comicro/nanocomposites with hexagonal plate and polyhedron shapes and theircatalytic activities in glycerol hydrogenolysis [J]. Crystal Growth&Design,2011,11:472–479.
    [6] DUAN L F, JIA SH SH, ZHAO L J. Study on morphologies of Comicrocrystals produced by solvothermal method with different solvents [J].Materials Research Bulletin,2010,45:373–376.
    [7] DUAN L F, JIA SH SH, CHENG R M, ZHAO L J. Synthesis andcharacterization of Co sub-micro chains by solvothermal route: Process design,magnetism and excellent thermal stability [J]. Chemical Engineering Journal,2011,173:233–240.
    [8] ZHANG G X, SUN SH H, LI R Y, ZHANG Y, CAI M, SUN X L.Large-scale aqueous synthesis and growth mechanism of single-crystallinemetal nanoscrolls at room temperature: the case of nickel [J]. Chemistry ofMaterials,2010,22:4721–4727.
    [9] LAGROW A P, INGHAM B, TILLEY R D, et al. Synthesis, alignment, andmagnetic properties of monodisperse nickel nanocubes [J]. Journal of theAmerican Chemical Society,2012,134:855–858.
    [10] ZHOU W, LIN L J, ZHAO D Y, GUO L. Synthesis of nickel bowl-likenanoparticles and their doping for inducing planar alignment of a nematicliquid crystal [J]. Journal of the American Chemical Society,2011,133:8389–8391.
    [11] WANG C M, BAER D R, THOMAS L E, AMONETTE J E, ANTONY J,QIANG Y, DUSCHER G. Void formation during early stages of passivation:Initial oxidation of iron nanoparticles at room temperature [J]. Journal ofApplied Physics,2005,98:094308–094314.
    [12] CHEN M, LIU J P, SUN S. One-step synthesis of FePt nanoparticles withtunable size [J]. Journal of the American Chemical Society,2004,126:8394–8395.
    [13] RASHID M H, RAULA M, MANDAL T K. Polymer assisted synthesis ofchain-like cobalt-nickel alloy nanostructures: Magnetically recoverable andreusable catalysts with high activities [J]. Journal of Materials Chemistry,2011,21,4904–4917.
    [14] LI Y D, LI L Q, LIAOB H W, WANG H R. Preparation of pure nickel,cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction [J].Journal of Materials Chemistry,1999,9:2675–2677.
    [15] ENNAS G, FALQUI A, PASCHINA G, MARONGIU G. Iron cobaltalloy nanoparticles embedded in an alumina xerogel matrix [J]. Chemistry ofMaterials,2005,17:6486–6491.
    [16] SHEVCHENKO E V, TALAPIN D V, ROGACH A L, et al. Colloidalsynthesis and self-assembly of CoPt3nanocrystals [J]. Journal of the AmericanChemical Society,2002,124:11480–11485.
    [17] CARROLL K J, CALVIN S, EKIERT T F, UNRUH K M, CARPENTERE E. Selective nucleation and growth of Cu and Ni core/shell nanoparticles [J].Chemistry of Materials,2010,22,2175–2177.
    [18] HUANG Z B, ZHU Y, WANG SH T, YIN G F. Controlled growth ofaligned arrays of Cu-ferrite nanorods [J]. Crystal Growth&Design,2006,6:1931–1935.
    [19] JIA X, CHEN D, JIAO X L, HE T, WANG H Y, JIANG W.Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes: controlledsynthesis, magnetic properties, and surface modification [J]. The Journal ofPhysical Chemistry C,2008,112:911–917.
    [20] CANDIA R A, SOUZA M A F, BERNARDI M I B, MAESTRELLI S C,SANTOS I M G, SORZA A G, LONGO E. Monoferrite BaFe2O4applied asceramic pigment[J]. Ceramics International,2007,33:521–525.
    [21] ZHANG D E, ZHANG X J, NI X M, ZHENG H G, YANG D D.Synthesis and characterization of NiFe2O4magnetic nanorods via aPEG-assisted route [J]. Journal of Magnetism and Magnetic Materials,2005,292:79–82.
    [22] ZHANG D E, ZHANG X J, NI X M, SONG J M, ZHENG H G.Low-temperature fabrication of MnFe2O4octahedrons: Magnetic andelectrochemical properties[J]. Chemical Physics Letters,2006,426:120–123.
    [23] ZHAO L J, CUI Y M, YANG H, YU L X, JIN W Q, FENG SH H. Themagnetic properties of Ni0.7Mn0.3GdxFe2-xO4ferrite [J]. Materials Letters,2006,60:104–108.
    [24] ZHAO L J, YANG H, YU L X, CUI Y M, ZHAO X P, FENG SH H.Study on magnetic properties of nanocrystalline La-, Nd-, or Gd-substitutedNi–Mn ferrite at low temperatures [J]. Journal of Magnetism and MagneticMaterials,2006,305:91–94.
    [25] Bao Ningzhong, Shen Liming, Wang Yuhsiang, Padhan Prahallad, GuptaArunava. A facile thermolysis route to monodisperse ferrite nanocrystals [J].Journal of the American Chemical Society,2007,129:12374–12375.
    [26] JIA CH J, SUN L D, LUO F. Large-scale synthesis of single-crystallineiron oxide magnetic nanorings [J]. Journal of the American Chemical Society,2008,130:16968–16977.
    [27] LIU F, CAO P J, ZHANG H R, et al. Novel nanopyramid arrays ofmagnetite [J]. Advanced materials,2005,17:1893–1897.
    [28] WAN J, YAO Y, TANG G. Controlled-synthesis, characterization, andmagnetic properties of Fe3O4nanostructures [J]. Applied Physics A,2007,89:529–532.
    [29] DONG W J, LI X, SHANG L, ZHENG Y Y, WANG G,LI CHR.Controlled synthesis and self-assembly of dendrite patterns of Fe3O4nanoparticles [J]. Nanotechnology,2009,20:035601–035606.
    [30] YAN H, ZHANG J CH, YOU CH X, et al. Influences of differentsynthesis conditions on properties of Fe3O4nanoparticles [J]. MaterialsChemistry and Physics,2009,113:46–52.
    [31] AI ZH H, DENG K J, WAN Q F, et al. Facile microwave-assistedsynthesis and magnetic and gas sensing properties of Fe3O4nanoroses [J]. TheJournal of Physical Chemistry C,2010,114(14):6237–6242.
    [32] ZHANG Y X, XU S CH, LI G G, et al. Synthesis of mesoporous carboncapsules encapsulated with magnetite nanoparticles and their application inwastewater treatment [J]. Journal of Materials Chemistry,2011,21,3664–3671.
    [33] LUO X G, LIU SH L, ZHOU J P, ZHANG L N. In situ synthesis ofFe3O4/cellulose microspheres with magnetic-induced protein delivery [J].Journal of Materials Chemistry,2009,19:3538–3545.
    [34] YU X G, WAN J Q, SHAN Y, et al. A facile approach to fabrication ofbifunctional magnetic-optical Fe3O4@ZnS microspheres [J]. Chemistry ofMaterials,2009,21:4892–4898.
    [35] YU Q ZH, SHI M M, CHENG Y N, et al. Fe3O4@Au/polyanilinemultifunctional nanocomposites: their preparation and optical, electrical andmagnetic properties [J]. Nanotechnology,2008,19:265702–265707.
    [36] FANG H, MA C Y, WAN T L, et al. Fabrication of monodispersemagnetic Fe3O4SiO2nanocomposites with core shell structures [J]. TheJournal of Physical Chemistry C,2007,111:1065–1069.
    [37] STJERNDAHL M, ANDERSSON M, HALL H E, et al.Superparamagnetic Fe3O4/SiO2nanocomposites: enabling the tuning of boththe iron oxide load and the size of the nanoparticles [J]. Langmuir,2008,24:3532–3536.
    [38] DENG Y H, QI D W, DENG C H, et al. Superparamagnetichigh-magnetization microspheres with an Fe3O4@SiO2core andperpendicularly aligned mesoporous SiO2shell for removal of microcystins [J].Journal of the American Chemical Society,2008,130:28–31.
    [39] LI Y, LENG T H, LIN H Q, et al. Preparation of Fe3O4@ZrO2core shellmicrospheres as affinity probes for selective enrichment and directdetermination of phosphopeptides using matrix-assisted laser desorptionionization mass spectrometry [J]. Journal of Proteome Research,2007,6:4498–4451.
    [40] LI J, ZENG H, Sun S H, et al. Analyzing the structure of CoFe Fe3O4core shell Nanoparticles by Electron Imaging and Diffraction [J]. The Journalof Physical Chemistry B,2004,108:14005–14008.
    [41] WANG W W, YAO J L. Hydrothermal Synthesis of SnO2/Fe3O4Nanocomposites and their magnetic property [J]. The Journal of PhysicalChemistry C,2009,113:3070–3075.
    [42] CHEN ZH ZH, SHAO J G, et al. Reducing sugar: new functionalmolecules for the green synthesis of graphene nanosheets [J]. ACSnano,2010,4(4):2429–2437.
    [43] ZHANG J L, ZHANG J Y, GUO SH W, et al. Reduction of grapheneoxide via L-ascorbic acidw [J]. Chemical Communications,2010,46:1112–1114.
    [44] GAO J, LIU F, ZHANG X, et al. Environment-friendly method to producegraphene that employs vitamin C and amino acid [J]. Chemistry of Materials,2010,22:2213–2218.
    [45] SHI W H, ZHU J X, SIM D H, et al. Achieving high specific chargecapacitances in Fe3O4/reduced graphene oxide nanocomposites [J]. Journal ofMaterials Chemistry,2011,21:3422–3427.
    [46] ZHANG M, CHEN L B, WANG T H, et al. Magnetite/graphenecomposites: microwave irradiation synthesis and enhanced cycling and rateperformances for lithium ion batteries [J]. Journal of Materials Chemistry,2010,20:5538–5543.
    [47] HUANG X D, ZHOU X F, LIU ZH P, et al. A magnetitenanocrystal/graphene composite as high performance anode for lithium-ionbatteries [J]. Journal of Alloys and Compounds,2012,514:76–80.
    [48] LI X Y, LIU D P, ZHANG H J, et al. Synthesis of3D hierarchicalFe3O4/graphene composites with high lithium storage capacity and forcontrolled drug delivery [J]. The Journal of Physical Chemistry C,2011,115:21567–21573.
    [49] HUI CH, SHEN CH G, YANG T ZH, et al. Large-scale Fe3O4nanoparticles soluble in water synthesized by a facile method [J]. The Journalof Physical Chemistry C,2008,112:11336–11339.
    [50]张立徳,牟季美.纳米材料和纳米结构[M].科学出版社,2002:74–78.
    [51] BONETTI E, BIANCO L D, SIGNORETTI S. Synthesis by ball millingand characterization of nanocrystalline Fe3O4and Fe/Fe3O4composite system[J]. Journal of Applied Physics,2001,89,(3):1806–1815.
    [52] BYRAPPA K, ADSCHIRI T. Hydrothermal technology fornanotechnology [J]. Progress in Crystal Growth and Characterization ofMaterials,2007,53:117–166.
    [53] LAI CH W, HSIAO J K, CHEN CH Y, CHOU P T, et al. One-potsolvothermal synthesis of FePt/Fe3O4core–shell nanoparticles [J].ChemicalCommunications,2008,5342–5344.
    [54] ZHU Y, ZHENG H, LI Y, GAO L, YANG Z, QIAN Y T, Synthesis of Agdendritic nanostructures by using anisotropic nickel nanotubes [J]. MaterialsResearch Bulletin,2003,38:1829–1834.
    [55] XIE Q, DAI Z, HUANG W, LIANG J, JIANG C, QIAN Y T. Synthesis offerromagnetic single-crystalline cobalt nanobelts via a surfactant-assistedhydrothermal reduction process [J]. Nanotechnology,2005,16:2958–2962.
    [56] LIU W, ZHONG W, WU X, TANG N, DU Y. Hydrothermalmicroemulsion synthesis of cobalt nanorods and self-assembly intosquare-shaped nanostructures [J]. Journal of Crystal Growth,2005,284:446–452.
    [57] WAN J, CHEN X, WANG Z, YANG X, QIAN Y T. Asoft-template-assisted hydrothermal approach to single-crystal Fe3O4nanorods[J]. Journal of Crystal Growth2005,276:571–576.
    [58] LU J, JIAO X L, CHEN D R, LI W. Solvothermal synthesis andcharacterization of Fe3O4and γ-Fe2O3nanoplates [J]. The Journal of PhysicalChemistry C,2009,113:4012–4017.
    [59] LU A H, SALABAS E L, SCHUTH F. Magnetic nanoparticles: synthesis,protection, functionalization, and application [J]. Angewandte ChemieInternational Edition,2007,46:1222–1244.
    [60] LEE J, ISOBE T, SENNA M. Magnetic properties of ultrafine magnetiteparticles and their slurries prepared via in-situ precipitation [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,1996,109:121–127.
    [61] ISHIKAWA T, KATAOKA S, KANDORI K. The influence ofcarboxylate ions on the growth of β-FeOOH particles [J]. Journal of MaterialsScience1993,28:2693–2698.
    [62] WILLIS A L, TURRO N J, O'BRIEN S. Spectroscopic characterization ofthe surface of iron oxide nanocrystals [J]. Chemistry of Materials,2005,17:5970–5975.
    [63] CUSHING B L, KOLESNICHENKO V L, O'CONNOR C J. Recentadvances in the liquid-phase syntheses of inorganic nanoparticles [J]. ChemicalReviews,2004,104:3893–3946.
    [64] TEJA A S, KOH P Y. Synthesis, properties, and applications of magneticiron oxide nanoparticles [J]. Progress in Crystal Growth and Characterizationof Materials,2009,55:22–45.
    [65] PANG Y X, BAO X J. Aluminium oxide nanoparticles prepared bywater-in-oil microemulsions [J]. Journal of Materials Chemistry,2002,12(12):3699–3704.
    [66] TARTAJ P, JONGHE L C D. Preparation of nanospherical amorphouszirconpowders by a microemulsion-mediated process [J]. Journal of MaterialsChemistry,2000,10(12):2786–2790.
    [67] CAPEK I. Preparation of metal nanoparticles in water-in-oil (w/o)microemulsions [J]. Advances in Colloid and Interface Science,2004,110(1–2):49–74.
    [68] CHHABRA V, AYYUB P, CHATTOPADHYAY S, MAITRA A N.Preparation of acicular γ-Fe2O3particles from a microemulsion-mediatedreaction [J]. Materials Letters,1996,26(1–2):21–26.
    [69] VIDAL-VIDAL J, RIVAS J, LOPEZ-QUINTELA M A. Synthesis ofmonodisperse maghemite nanoparticles by the microemulsion method [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,288(1–3):44–51.
    [70] PILLAI V, KUMAR P, HOU M J, AYYUB P, SHAH D O. Preparation ofnanoparticles of silver halides, superconductors and magnetic materials usingwater-in-oil microemulsions as nano-reactors [J]. Advances in Colloid andInterface Science,1995,55:241–269.
    [71] DENG Y, WANG L, YANG W, FU S, ELAISSARI A. Preparation ofmagnetic polymeric particles via inverse microemulsion polymerizationprocess [J]. Journal of Magnetism and Magnetic Materials,2003,257(1):69–78.
    [72] DRESCO P A, ZAITSEV V S, GAMBINO R J, CHU B. Preparation andproperties of magnetite and polymer magnetite nanoparticles [J]. Langmuir,1999,15(6):1945–1951.
    [73] TARTAJ P, SERNA C J. Microemulsion-assisted synthesis of tunablesuperparamagnetic composites [J]. Chemistry of Materials,2002,14(10):4396–4402.
    [74] SANTRA S, TAPEC R, THEODOROPOULOU N, DOBSON J,HEBARD A, TAN W H. Synthesis and characterization of silica-coated ironoxide nanoparticles in microemulsion: The effect of nonionic surfactants [J].Langmuir,2001,17(10):2900–2906.
    [75] PARK J, AN K, HWANG Y, HYEON T, et al. Ultra-large-scale synthesesof monodisperse nanocrystals [J]. Nature Materials,2004,3,891–895.
    [76] LI Z, SUN Q, GAO M. Preparation of water-soluble magnetitenanocrystals from hydrated ferric salts in2-pyrrolidone: Mechanism leading toFe3O4[J]. Angewandte Chemie International Edition,2005,44:123–126.
    [77] HU F Q, WEI L, ZHOU Z, LI Z, et al. Preparation of biocompatiblemagnetite nanocrystals for in vivo magnetic resonance detection of cancer [J].Advanced materials,2006,18:2553–2556.
    [78] BUTTER K, PHILIPSE A P, VROEGE G J. Synthesis and properties ofiron ferrofluids [J]. Journal of Magnetism and Magnetic Materials,2002,252:1–3.
    [79] LI Y H, ZHANG P, DU Q J, et al. Adsorption of fluoride, phosphate, andarsenate ions on a new type of ion exchange fiber [J]. Journal of Colloid andInterface Science,2002,248:268–274.
    [80] XING Y, CHEN X, WANG D. Electrically regenerated ion exchange forremoval and recovery of Cr(VI) from wastewater [J]. Environmental ScienceTechnology,2007,41:1439–1443.
    [81]TANG B, YUAN L J, SHI T H, YU L F, ZHU Y C. Preparation ofnano-sized magnetic particles from spent pickling liquors byultrasonic-assisted chemical co-precipitation [J]. Journal of HazardousMaterials,2009,163:1173–1178.
    [82] NING R Y. Arsenic removal by reverse osmosis [J]. Desalination,2002,143:237–241.
    [83] ZHAO X L, SHI Y L, CAI Y Q, MOU S F. Cetyltrimethylammoniumbromide-Coated magnetic nanoparticles for the preconcentration of phenoliccompounds from environmental water samples [J]. Environmental ScienceTechnology,2008,42:1201–1206.
    [84] SHEHA R R, ZAHHAR A A. Synthesis of some ferromagnetic compositeresins and their metal removal characteristics in aqueous solutions [J]. Journalof Hazardous Materials,2008,150:795–803.
    [85] STENSEL H D, LEWIS H K. Principles of biological phosphorusremoval [M]. London,1991:141–159.
    [86] LI D P, QU J H. The progress of catalytic technologies in waterpurification: a review [J]. Journal Environmental Sciences,2009,21:713–719.
    [87] PURKAIT M K, MAITI A, DASGUPTA S, DE S. Removal of congo redusing activated carbon and its regeneration [J]. Journal of Hazardous Materials,2007,145:287–295.
    [88] HAMEED B H, AHMAD A A, AZIZ N. Isotherms, kinetics andthermodynamics of acid dye adsorption on activated palm ash [J]. ChemicalEngineering Journal,2007,133:195–203.
    [89] ACEMI GLU B. Adsorption of Congo red from aqueous solution ontocalcium-rich fly ash [J]. Journal of Colloid and Interface Science,2004,274:371–379.
    [90] NAMASIVAYAM C, MUNIASAMY N, GAYATRI K. Removal of dyesfrom aqueous solutions by cellulosticwaste orange peel [J]. BioresourceTechnology1996,57:37–43.
    [91] NAMASIVAYAM C, ARASI D J S E. Removal of Congo Red fromwastewater by adsorption onto waste red mud [J]. Chemosphere,1997,34:401–417.
    [92] GǘRSES A, KARACA S, DOGAR C, et al. Determination of adsorptiveproperties of clay/water system: methylene blue sorption [J]. Journal ofColloid and Interface Science,2004,269:310–314.
    [93] ALKAN M, D GAN M. Adsorption kinetics and thermodynamics of ananionic dye onto sepiolite [J]. Microporous and Mesoporous Materials,2007,101:388–396.
    [94] KAMEL M M, YOUSSEF B M, KAMEL M M. Adsorption of anionicdyes by kaolinites [J]. Dyes Pigments,1991,15:175–182.
    [95] WANG C C, JUANG L C, HSU T C, et al. Adsorption of basic dyes ontomontmorillonite [J]. Journal of Colloid and Interface Science,2004,273:80–86.
    [96] TONLEI K, NGAMENI E, TCHEUMI H L, et al. Sorption of methyleneblue on an organoclay bearing thiol groups and application to electrochemicalsensing of the dye [J]. Talanta,2008,74:489–497.
    [97] OZCAN A S, ERDEM B, OZCAN A. Adsorption of Acid Blue193fromaqueous solutions onto Na-bentonite and DTMA-bentonite [J]. Journal ofColloid and Interface Science,2004,280:44–54.
    [98] OZDEMIR O, ARMAGAN B, TURAN M, CELIK M. Comparison of theadsorption characteristics of azo-reactive dyes on mezoporous minerals [J].Dyes Pigments,2004,62:49–60.
    [99] OZCAN A S, ERDEM B, OZCAN A. Adsorption of Acid Blue193fromaqueous solutions onto BTMA-bentonite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,266:73–81.
    [100] JHA M K, KUMAR V, MAHARAJ L, SINGH R. Studies on leachingand recycling of zinc from rayon waste sludge [J]. Industrial&EngineeringChemistry Research,2004,43:1284–1295.
    [101] KENTISH S E, STEVENS G W. Innovations in separations technologyfor the recycling and re-use of liquid waste streams [J]. Journal of ChemicalEngineering data,2001,84:149–159.
    [102] JHA M K, UPADHYAY R R, LEE J C, KUMAR V. Treatment of rayonwaste effluent for the removal of Zn and Ca using Indion BSR resin [J].Desalination,2008,228:97–107.
    [103] HU J, LO I M C, CHEN G H. Fast removal and recovery of Cr(VI) usingsurface-modified jacobsite (MnFe2O4) nanoparticles [J]. Langmuir,2005,21:11173–11179.
    [104] AI Z H, CHENG Y, ZHANG L Z,QIU J R. Efficient removal of Cr(VI)from aqueous solution with Fe@Fe2O3core-shell nanowires [J]. EnvironmentalScience Technology,2008,42:6955–6960.
    [105] XIONG J B, HE Z L, MAHMOOD Q, et al. Phosphate removal fromsolution using steel slag through magnetic separation [J]. Journal of HazardousMaterials,2008,152:211–215.
    [106] AFKHAMI A, MOOSAVI R. Adsorptive removal of Congo red, acarcinogenic textile dye, from aqueous solutions by maghemite nanoparticles[J]. Journal of Hazardous Materials,2010,174:398–403.
    [107] IRAM M, GUO C, GUAN Y P, ISHFAQ A, LIU H Z. Adsorption andmagnetic removal of neutral red dye from aqueous solution using Fe3O4hollownanospheres [J]. Journal of Hazardous Materials,2010,181:1039–1050.
    [108] ZHAI Y M, ZHAI J F, ZHOU M, DONG S J. Ordered magneticcore–manganese oxide shell nanostructures and their application in watertreatment [J]. Journal of Materials Chemistry,2009,19:7030–7035.
    [109] ZHAO X L, WANG J M, WU F C, et al. Removal of fluoride fromaqueous media by Fe3O4@Al(OH)3magnetic nanoparticles [J]. Journal ofHazardous Materials,2010,173:102–109.
    [110] SUN L, CHEN L G, SUN X, et al. Analysis of sulfonamides inenvironmental water samples based on magnetic mixed [J]. Chemosphere,2009,77:1306–1312.
    [111] CHANDRA V, PARK J, CHUN Y, et al. Water-dispersiblemagnetite-reduced graphene oxide composites for arsenic removal [J]. ACSnano,2010,4:3979–3986.
    [112] ZHONG L S, HU J S, LIANG H P, et al. Self-assembled3D flowerlikeiron oxide nanostructures and their application in water treatment [J].Advanced materials,2006,18:2426–2431.
    [113] SHEN Y F, TANG J, NIE Z H, et al. Preparation and application ofmagnetic Fe3O4nanoparticles for wastewater purification [J]. Separation andPurification Technology,2009,68:312–319.
    [114] ZHANG S G, NIU H Y, CAI Y Q, et al. Arsenite and arsenate adsorptionon coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4andCoFe2O4[J]. Chemical Engineering Journal,2010,158:599–607.
    [115] HOU X Y, FENG J, LIU X H, et al. Magnetic and high rate adsorptionproperties of porous Mn1-xZnxFe2O4(0≤x≤0.8) adsorbents [J]. Journal ofColloid and Interface Science,2011,353:524–529.
    [116]黄素逸,杜一庆,明廷臻.新能源技术[M].中国电力出版社,2011:30–39.
    [117] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sizedtransition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407:496–499.
    [118] LI Y, TAN B, WU Y. Mesoporous Co3O4nanowire arrays for lithium ionbatteries with high capacity and rate capability [J]. Nano Letters,2008,8:265–270.
    [119]NAM K T, KIM D W, YOO P J, et al. Virus-enabled synthesis andassembly of nanowires for lithium ion battery electrodes [J]. Science,2006,312:885–888.
    [120] XIA X H, TU J P, XIANG J Y, et al. Hierarchical porous cobalt oxidearray films prepared by electrodeposition through polystyrene sphere templateand their applications for lithium ion batteries [J]. Journal of Power Sources,2010,195:2014–2022.
    [121] DU N, ZHANG H, CHEN B D, et al. Porous Co3O4nanotubes derivedfrom Co4(CO)12clusters on carbon nanotube templates: A highly efficientmaterial for Li-battery applications [J]. Advanced materials,2007,19:4505–4509.
    [122] LOU X W, DENG D, LEE J Y, et al. Self-supported formation ofneedlelike Co3O4nanotubes and their application as lithium-ion batteryelectrodes [J]. Advanced materials,2008,20:258–262.
    [123] LI B J, CAO H Q, SHAO J, et al. Co3O4@graphene composites as anodematerials for high-performance lithium ion batteries [J].Inorganic Chemistry,2011,50,(5):1628–1632.
    [124] WANG G L, LIU J CH, TANG SH, LI H Y, CAO D X. Cobaltoxide–graphene nanocomposite as anode materials for lithium-ion batteries [J].J Solid State Electrochem,2011,15:2587–2592.
    [125] WU ZH SH, REN W C, WEN L, et al. Graphene anchored with Co3O4nanoparticles as anode of lithium ion batteries with enhanced reversiblecapacity and cyclic performance [J]. ACSnano,2010,4(6):3187–3194.
    [126] HE Y SH, BAI D W, YANG X W, et al. A Co(OH)2–graphenenanosheets composite as a high performance anode material for rechargeablelithium batteries [J]. Electrochemistry Communications,2010,12:570–573.
    [127] LI X Y, HUANG X L, LIU D P, et al. Synthesis of3D hierarchicalFe3O4/graphene composites with high lithium storage capacity and forcontrolled drug delivery [J]. The Journal of Physical Chemistry C,2011,115:21567–21573.
    [128] JI L W, TAN ZH K,KUYKENDALL T R, et al. Fe3O4nanoparticle-integrated graphene sheets for high-performance half and fulllithium ion cells [J]. Physical Chemistry Chemical Physics,2011,13,7170–7177.
    [129]赵喜平.磁共振成像系统的原理及其应用[M].科学出版社,2000.
    [130]熊国欣,李立本.核磁共振成像原理[M].华东示范大学出版社,2007.
    [131] QIN J, LAURENT S, JO Y S, et al. A high-performance magneticresonance imaging T2contrast agent [J]. Advanced materials,2007,19:1874–1878.
    [132] SHIEH D B, CHENG F Y, SU C H, et al. Aqueous dispersions ofmagnetite nanoparticles with NH+3surfaces for magnetic manipulations ofbiomolecules and MRI contrast agents [J]. Biomaterials,2005,26:7183–7191.
    [133] SAHOO Y, GOODARZI A, SWIHART M T, et al. Aqueous ferrofluid ofmagnetite nanoparticles: Fluorescence labeling and magnetophoretic control[J]. The Journal of Physical Chemistry B,2005,109:3879–3885.
    [134] SONG H T, CHOI J S, HUH Y M, et al. Surface modulation of magneticnanocrystals in the development of highly efficient magnetic resonance probesfor intracellular labeling [J]. Journal of the American Chemical Society,2005,127:9992–9994.
    [135]HUH Y M, JUN Y W, SONG H T., et al. In vivo magnetic resonancedetection of cancer by using multifunctional magnetic nanocrystals [J]. Journalof the American Chemical Society,2005,127,12:387–12389.
    [136] EULISS L E, GRANCHAROV S G, O’BRIEN S, et al. Cooperativeassembly of magnetic nanoparticles and block copolypeptides in aqueousmedia [J]. Nano Letters,2003,3:1489–1496.
    [137]JUN Y W, HUH Y M, CHOI J S, et al. Nanoscale size effect of magneticnanocrystals and their utilization for cancer diagnosis via magnetic resonanceimaging [J]. Journal of the American Chemical Society,2005,127:5732–5734.
    [138] KIM S W, KIM S, TRACY J B, et al. Phosphine oxide polymer forwater-soluble nanoparticles [J]. Journal of the American Chemical Society,2005,127:4556–4557.
    [139] PELLEGRINO T, MANNA L, KUDERA S, et al. Hydrophobicnanocrystals coated with an amphiphilic polymer shell: A general route towater soluble nanocrystals [J]. Nano Letters,2004,4:703–707.
    [140] FAN H, LEVE E W, SCULLIN C, et al. Surfactant-assisted synthesis ofwater-soluble and biocompatible semiconductor quantum dot micelles [J].Nano Letters,2005,5:645–652.
    [141] WANG Y, WONG J F, TENG X, et al.“Pulling” nanoparticles intowater: Phase transfer of oleic acid stabilized monodisperse nanoparticles intoaqueous solutions of α-cyclodextrin [J]. Nano Letters,2003,3:1555–1559.
    [142] SAAD S A, ISA K M, BAHARI R. Chemically modified sugarcanebagasse as a potentially low-cost biosorbent for dye removal [J]. Desalination,2010,264:123–128.
    [143] DEMIRBAS A. Agricultural based activated carbon for the removal ofdyes from aqueous solutions: a review [J]. Journal of Hazardous Materials,2009,167:1–9.
    [144] CHATTERJEE S, LEE D S, LEE M W, WOOA S H. Congo redadsorption from aqueous solutions by using chitosan hydrogel beadsimpregnated with nonionic or anionic surfactant [J]. Bioresource Technology,2010,101:1800–1806.
    [145] CHATTERJEE S, LEE M W, WOOA S H. Adsorption of Congo red bychitosan hydrogel beads impregnated with carbon nanotubes [J]. BioresourceTechnology,2009,100:3862–3868.
    [146] MARECHAL M L, SLOKAR Y M, TAUFER T. Decolouration ofchlorotriazine reactive azo dyes with H2O2/UV [J]. Dyes Pigments,1997,33:181–298.
    [147] POLLOCK M. Neutralizing dye-housewastes with flue gases anddecolorizing with fly ash [J]. American Dyestuff Reporter,1973,62:21–23.
    [148] CHAKRABORTY S, PURKAIT M K, DASGUPTA S, et al.Nanofiltration of textile plant effluent for color removal and reduction in COD[J]. Separation and Purification Technology,2003,31:141–151.
    [149] PURKAIT M K, DASGUPTA S, DE S. Removal of dye from wastewaterusing micellar-enhanced ultrafiltration and recovery of surfactant [J].Separation and Purification Technology,2004,37:81–92.
    [150] LIAN L, GUO L, GUO C. Adsorption of Congo red from aqueoussolutions onto Ca-bentonite [J]. Journal of Hazardous Materials,2009,161:126–131.
    [151] LANGMUIR I. The adsorption of gases on plane surfaces of glass, micaand platinum [J]. Journal of the American Chemical Society,1918,40:1361–1403.
    [152] FREUNDLICH H M F. Uber die adsorption in losungen [J]. Zeitschriftfur Physikalische Chemie,1906,57:385–470.
    [153] LAGERGERN S. About the theory of so-called adsorption of solublesubstances [J]. Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24:1–39.
    [154] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34:451–465.
    [155] STUMM W, MORGAN J J. Aquatic chemistry: chemical equilibriumand rates in natural waters [C].3rd ed., Wiley, New York,1995.
    [156] ESTEVES M L, CORTES A, LUGO M T, RINALDI C. Synthesis andcharacterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedicalapplications [J]. Journal of Magnetism and Magnetic Materials,2009,321:3061–3066.
    [157] BARALE M, LEFéVRE G, CARRETTE F, et al. Effect of theadsorption of lithium and borate species on the zeta potential of particles ofcobalt ferrite, nickel ferrite, and magnetite [J]. Journal of Colloid and InterfaceScience,2008,328:34–40.
    [158] VICENTE J, DURáN J D G, DELGADO A V. Electrokinetic andviscoelastic properties of magnetorheological suspensions of cobalt ferrite [J].Colloid Surfaces A,2001,195:181–188.
    [159] PLAZA R C, VICENTE J D, OMEZ-LOPERA S, DELGADO A V.Stability of dispersions of colloidal nickel ferrite spheres [J]. Journal of Colloidand Interface Science,2001,242:306–313.
    [160] WANG X S, CHEN J P. Biosorption of Congo Red from aqueoussolution using Wheat Bran and Rice Bran: batch studies [J]. Separation ScienceTechnology,2009,44:1452–1466.
    [161] PANDAL G C, DASL S K, GUHA A K. Jute stick powder as a potentialbiomass for the removal of Congo red and rhodamine B from their aqueoussolution [J]. Journal of Hazardous Materials,2009,164:374–379.
    [162] NAMASIVAYAM C, KAVITHA D. Removal of Congo Red from waterby adsorption onto activated carbon prepared from coir pith, an agriculturalsolid waste [J]. Dyes Pigments2002,54:47–58.
    [163] ZHAO L J, YANG H, YU L X, et al. Structure and magnetic propertiesof Ni0.7Mn0.3Fe2O4nanoparticles doped with La2O3[J]. Physica Status Solidi,2004,201:3121–3128.
    [164] EL-BAHY Z M, ISMAILA A A, MOHAMED R M. Enhancement oftitania by doping rare earth for photodegradation of organic dye (Direct Blue)[J]. Journal of Hazardous Materials,2009,166:138–143.
    [165] SHEN Y N, ZHAO H L, LIU X T, XU N S. Preparation and electricalproperties of Ca-doped La2NiO4+δcathode materials for IT-SOFC [J]. PhysicalChemisty Chemical Physics,2010,12:15124–15131.
    [166] RAYMUNDO A S, ZANAROTTO R, BELISàRIO M, et al. Evaluationof sugar-cane bagasse as bioadsorbent in the textile wastewater treatmentcontaminated with carcinogenic Congo Red dye [J]. Brazilian Archivesof Biology and Technology,2010,53:931–938.
    [167] VIMONSESA V, LEI S, JIN B, et al. Kinetic study and equilibriumisotherm analysis of Congo Red adsorption by clay materials [J]. ChemicalEngineering Journal,2009,148:354–364.
    [168] OLADOJA N A, AKINLABI A K. Congo Red biosoption on PalmKernel Seed Coat [J]. Industrial&Engineering Chemistry Research,2009,48:6188–6196.
    [169] TOR A, CENGELOGLU Y. Removal of Congo red from aqueoussolution by adsorption onto acid activated red mud [J]. Journal of HazardousMaterials,2006,138:409–415.
    [170] CHATTERJEE S, LEE M W, WOO S H. Influence of impregnation ofchitosan beads with cetyl trimethyl ammonium bromide on their structure andadsorption of congo red from aqueous solutions [J]. Chemical EngineeringJournal,2009,155:254–259.
    [171] VIMONSESA V, LEI S, JIN B, et al. Kinetic study and equilibriumisotherm analysis of Congo Red adsorption by clay materials [J]. ChemicalEngineering Journal,2009,148:354–364.
    [172] PENG S, SUN S. H. Synthesis and characterization of monodispersehollow Fe3O4nanoparticles [J]. Angewandte Chemie International Edition,2007,46,4155–4158.
    [173] LAI C W, WANG Y H, LAI C H, et al. Iridium-complex-functionalizedFe3O4/SiO2core/shell nanoparticles: A facile three-in-one system in magneticresonance emaging, luminescence imaging, and photodynamic therapy [J].Small,2008,2:218–224.
    [174] HADJIPANAYIS C G, BONDER M J, BALAKISHNAN S, et al.Metallic iron nanoparticles for MRI contrast enhancement and localhyperthermia [J]. Small,2008,11:1925–1929
    [175] CHEN Y J, XIAO G, WANG T S, et al. Porous Fe3O4/Carbon core/shellnanorods: Synthesis and electromagnetic properties [J]. The Journal of PhysicalChemistry C,2011,115:13603–13608.
    [176] TOKUMITSU K, NASU T. Preparation of lamellar structuredα-Fe/Fe3O4complex particle by thermal decomposition of Wüstite [J]. Scriptamaterialia,2001,44:1421–1424.
    [177] MOURA F C C, ARAUJO M H, COSTA R C C, et al. Efficient use of Femetal as an electron transfer agent in a heterogeneous Fenton system based onFe0/Fe3O4composites [J]. Chemosphere,2005,60:1118–1123.
    [178] LIU X, NAGAI T, ITOH F. Magnetic and magneto-optical properties ofFe/Fe3O4multilayers prepared by pulsed laser deposition [J]. Journal ofMagnetism and Magnetic Materials,2002,240:430–432.
    [179] ZHAO L J, YANG H, LI S M, et al. The effect of aging time andcalcination temperature on the magnetic properties of a-Fe/Fe3O4composite [J].Journal of Magnetism and Magnetic Materials,2006,301:287–291.
    [180] PARK T J, SAMBASIVAN S, FISCHER D A, et al. Electronic structureand chemistry of iron-based metal oxide nanostructured materials: A NEXAFSinvestigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4[J]. TheJournal of Physical Chemistry C,2008,112:10359–10369.
    [181] LEE G H, PARK J G, SUNG Y M, et al. Enhanced cycling performanceof an Fe0/Fe3O4nanocomposite electrode for lithium-ion batteries [J].Nanotechnology,2009,20:295205.
    [182] HUANG J, CHEN W, ZHAO W, et al. One-dimensional chainlike arraysof Fe3O4hollow nanospheres synthesized by aging iron nanoparticles inaqueous solution [J]. The Journal of Physical Chemistry C,2009,113:12067–12071.
    [183] XIE B Q, QIAN Y T, ZHANG S Y, et al. A hydrothermal reduction routeto single-crystalline hexagonal cobalt nanowires [J]. European Journal ofInorganic Chemistry,2006,2454–2459.
    [184] ZHOU H F, YI R, LI J H, et al. Microwave-assisted synthesis andcharacterization of hexagonal Fe3O4nanoplates [J]. Solid State Sciences,2010,12:99–104.
    [185] CHATTERJEE S, LEE D S, LEE M W, WOO S H. Enhanced adsorptionof congo red from aqueous solutions by chitosan hydrogel beads impregnatedwith cetyltrimethyl ammonium bromide [J]. Bioresource Technology,2009,100:2803–2809.
    [186] CHATTERJEE S, LEE M W, WOO S H. Adsorption of congo red bychitosan hydrogel beads impregnated with carbon nanotubes [J]. BioresourceTechnology,2010,101:1800–1806.
    [187] WANG L X, LI J C, WANG Y Q, ZHAO L J. Preparation ofnanocrystalline Fe3xLaxO4ferrite and their adsorption capability for Congo red[J]. Journal of Hazardous Materials,2011,196:342–349.
    [188] LI F H, BAO Y, CHAI J, et al. Synthesis and application of widelysoluble graphene sheet [J]. Langmuir,2010,26:12314–12320.
    [189] DENG S D, LI X H, FU H. Acid violet6B as a novel corrosion inhibitorfor cold rolled steel in hydrochloric acid solution [J]. Corrosion Science,2011,53:760–768.
    [190] HU C G, CHEN Z L, SHEN A G, et al. Water-soluble single-walledcarbon nanotubes via noncovalent functionalization by a rigid, planar andconjugated diazo dye [J]. Carbon,2006,44:428–434.
    [191] LI Z J, ZHANG X W, LIN J, et al. Azo dye treatment with simultaneouselectricity production in an anaerobic–aerobic sequential reactor and microbialfuel cell coupled system [J]. Bioresource Technology,2010,101:4440–4445.
    [192] ZHANG J M, WANG D D, XU K W. Calculation of the surface energyof hcp metals by using the modified embedded atom method [J].Applied Surface Science,2006,253:2018–2024.
    [193] FU B Q, LIU W, LI Z L. Calculation of the surface energy of fcc-metalswith the empirical electron surface model [J]. Applied Surface Science,2010,256:6899–6907.
    [194] AGHEMENLOH E, IDIODI J O A, AZI S O. Surface energies of hcpmetals using equivalent crystal theory [J]. Computational Materials Science,2009,46:524–530.
    [195] JIANG Q, LU H M, ZHAO M. Modelling of surface energies ofelemental crystals [J]. Journal of Physics: Condensed Matter,2004,16:521–530.
    [196] LI Y D, LI L Q, LIAO H W, WANG H R. Preparation of pure nickel,cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction [J].Journal of Materials Chemistry,1999,9:2675–2677.
    [197] XU R, XIE T, ZHAO Y G, LI Y D. Single-crystal metal nanoplatelets:cobalt, nickel, copper, and silver [J]. Crystal Growth&Design,2007,7:1904–1911.
    [198] DUAN L F, JIA S S, ZHAO L. J. Synthesis and characterization ofmetallic Co with different hierarchical structures prepared by a simplesolvothermal method [J]. European Jouranl Inorganic Chemistry,2010,13:1957–1962.
    [199] ZHU L P, ZHANG W D, XIAO H M, et al. Facile synthesis of metallicCo hierarchical nanostructured microspheres by a simple solvothermal process[J]. The Journal of Physical Chemistry C,2008,112:10073–10078.
    [200] ZHANG Y J, YAO Q, ZHANG Y, et al. Solvothermal synthesis ofmagnetic chains self-assembled by flowerlike cobalt submicrospheres [J].Crystal Growth&Design,2008,8:3206–3212.
    [201] DMITRY P D, BBAWENDI M G. A solution-phase chemical approach toa new crystal staucture of cobalt [J]. Angewandte Chemie International Edition,1999,38:12.
    [202] LIU Z T, LI X, LIU Z W. Synthesis and catalytic behaviors of cobaltnanocrystals with special morphologies [J]. Jouranl Powder Technology,2009,189:514–519.
    [203] CANTILLO C O, PEREZ O P. Synthesis and characterization ofmetastable nanocrystalline cobalt [J]. Journal Applied Physics,2009,105:07A332.
    [204] LI F H, BAO Y, CHAI J, et al. Synthesis and application of widelysoluble graphene sheets [J]. Langmuir,2010,26:12314–12320.
    [205] ZHANG G S, QU J H, LIU H J, et al. CuFe2O4/activated carboncomposite: A novel magnetic adsorbent for the removal of acid orange II andcatalytic regeneration [J].Chemosphere,2007,68:1058–1066.
    [206] ELOUSSAIEF M, BENZINA M. Efficiency of natural and acid-activatedclays in the removal of Pb(II) from aqueous solutions [J]. Journal of HazardousMaterials,2010,178:753–757.
    [207] JAVANBAKHT V, ZILOUEI H, KARIMI K. Lead biosorption bydifferent morphologies of fungus mucor indicus[J]. International biodeterioration&biodegradation,2011,65:294–300.
    [208]WU S C, PENG X L, CHENG K C, et al. Adsorption kinetics of Pb andCd by two plant growth promoting rhizobacteria [J]. Bioresource Technology,2009,100:4559–4563.
    [209] HU B, LUO H J. Adsorption of hexavalent chromium ontomontmorillonite modified with hydroxyaluminum andcetyltrimethylammonium bromide [J]. Applied Surface Science,2010,257:769–775.
    [210] SHI T H, WANG ZH CH, et al. Removal of hexavalent chromium fromaqueous solutions by D301, D314and D354anion-exchange resins [J]. Journalof Hazardous Materials,2009,161:900–906.
    [211] GONZáLEZ A, MORENO N, NAVIA R, QUEROL X. Study of achilean petroleum coke fluidized bed combustion fly ash and its potentialapplication in copper, lead and gexavalent chromium removal [J]. Fuel,2010,89:3012–3021.
    [212] LAN Y Q, LI CH, MAO J D, SUN J. Influence of clay minerals on thereduction of Cr6+by citric acid [J]. Chemosphere,2008,71:781–787.
    [213] MOLINARI R, ARGURIO P, POERIO T. Comparison ofpolyethylenimine, polyacrylic acid andpoly(dimethylamine-co-epichlorohydrin-co-ethylenediamine) in Cu2+removalfrom wastewaters by polymer-assisted rltrafiltration [J]. Desalination,2004,162:217–228.
    [214] GODE F, PEHLIVAN E. Removal of chromium (III) from aqueoussolutions using lewatit S100: the effect of pH, time, metal concentration andtemperature [J]. Journal of Hazardous Materials,2006,136:330–337.
    [215] HU Z, LEI L, LI Y, NI Y. Chromium adsorption on high-performanceactivated carbons from aqueous solution [J]. Sepration PurificationgTechnology,2003,31:13–18.
    [216] LI Z, TAN B, ALLIX M et al. Direct coprecipitation route tomonodisperse dual-functionalized magnetic iron oxide nanocrystals withoutsize selection [J]. small,2008,4:231–239.
    [217] CHENG W, TANG K B, QI Y X, et al. One-step synthesis ofsuperparamagnetic monodisperse porous Fe3O4hollow and core-shell spheres[J]. Journal of Materials Chemistry,2010,20:1799–1805
    [218] WEI X CH, WEI Z W, ZHANG L P, et al. Water-soluble nanocrystalpowders of magnetite and maghemite coated with gluconic acid: preparation,structure characterization, and surface coordination [J]. Journal Colloid andInterface Science,2011,354:76–81.
    [219] WANG H, YU Y F, CHEN Q W, CHENG K. Carboxyl-functionalizednanoparticles with magnetic core and mesopore carbon shell as adsorbents forthe removal of heavy metal eons from aqueous solution [J]. DaltonTransactions,2011,40:559–563.
    [220] EREN E, AFSIN B, ONAL Y. Removal of lead ions by acid activatedand manganese oxide-coated bentonite [J]. Journal of Hazardous Materials,2009,161:677–685.
    [221] NI Y H, JIN L N, ZHANG L, HONG J M. Honeycomb-like Ni@Ccomposite nanostructures: synthesis, properties and applications in thedetection of glucose and the removal of heavy-metal ions [J]. Journal ofMaterials Chemistry,2010,20:6430–6436.
    [222] ZHUANG Y, YANG Y, XIANG G L, WANG X. Magnesium silicatehollow nanostructures as highly efficient absorbents for toxic metal Ions [J].The Journal of Physical Chemistry C,2009,113:10441–10445.
    [223] BUDAEVA A D, ZOLTOEV E V. Porous structure and sorptionproperties of nitrogen-containing activated carbon [J]. Fuel,2010,89:2623–2627.
    [224] CHEN S Y, SHEN W, YU F, et al. Preparation of amidoximatedbacterial cellulose and its adsorption mechanism for Cu2+and Pb2+[J]. JournalApplied Polymer Science,2010,117:8–15.
    [225] ZOU W H, HAN R P, CHEN Z Z, et al. Kinetic study of adsorption ofCu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolitein batch mode [J]. Colloids Surfaces A.2006,279:238–246.
    [226] NATA I F, SALIM G W, LEE C K. Facile preparation of magneticcarbonaceous nanoparticles for Pb2+ions removal [J]. Journal of HazardousMaterials,2010,183:853–858.
    [227] JIANG M Q, WANG Q P, JIN X Y CHEN Z L. Removal of Pb(II) fromaqueous solution using modified and unmodified kaolinite clay [J]. Journal ofHazardous Materials,2009,170:332–339.
    [228] AI Z H, CHENG Y, ZHANG L Z, QIU J R. Efficient removal of Cr(VI)from aqueous solution with Fe@Fe2O3core-shell nanowires [J]. EnvironmentalScience Technology,2008,42:6955–6960.
    [229] SUN L, ZHANG L D, LIANG C H, et al. Chitosan modified Fe0nanowires in porous anodic alumina and their application for the removal ofhexavalent chromium from water [J]. Journal of Materials Chemistry,2011,21:5877–5880.
    [230] HU J, LO I M C, CHEN G H. Fast removal and recovery of Cr(VI) usingsurface-modified jacobsite (MnFe2O4) nanoparticles [J]. Langmuir,2005,21:11173–11179.
    [231] SELVARAJ K, MANMANI S, PATTABHI S. Removal of hexavalenthromium using distillery sludge [J]. Bioresource Technology,2003,89:207–211.
    [232] CHERGUI A, BAKHTI M Z, CHAHBOUB A, et al. Simultaneousbiosorption of Cu2+, Zn2+and Cr6+from aqueous solution by streptomycesrimosus biomass [J]. Desalination,2007,206:179–184.
    [233] LEE W, KIM K S, KIM S B, et al. Enhanced Cr(VI) removal using ironnanoparticle decorated grapheme [J]. Nanoscale,2011,3:3583–3585.
    [234] YUE J C, ZHAO X T, XIA D G. Electrochemical lithium storage ofC/Co composite as an anode material for lithium ion batteries [J].Electrochemistry Communications,2012,18:44–47.
    [235] KIM D Y, AHN H J, KIM J S, et al. The Electrochemical properties ofnano-sized cobalt powder as an anode material for lithium batteries [J].Electronic Materials Letters,2009,5:183–186.
    [236] KANG Y M, SONG M S, KIM J H, et al. A study on thecharge–discharge mechanism of Co3O4as an anode for the Li ion secondarybattery [J]. Electrochimica Acta,2005,50:3667–3673.
    [237] GONZáLEZ J R, ALCáNTARA R, NACIMIENTO F, TIRADO J L.CoSn-graphite electrode material prepared by using the polyol method andhigh-intensity ultrasonication [J]. Electrochimica Acta,2011,56:9808–9817.
    [238] ZHANG Y, TAN Y W, STORMER H L, KIM P. Experimentalobservation of the quantum Hall effect and Berry's phase in graphene [J].Nature,2005,438:201-204.
    [239] PARK S, RUOFF R S. Chemical methods for the production ofgraphemes[J]. Nature Nanotechnology,2009,4:217–224.
    [240] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improvedsynthesis of graphene oxide [J]. ACS Nano,2010,4:4806–4814.
    [241] SUN H M, CAO L Y, LU L H. Magnetite/reduced graphene oxidenanocomposites: One step solvothermal synthesis and use as a novel platformfor removal of dye pollutants [J].Nano Research,2011,4:550–562.
    [242] DIKIN D A, STANKOVICH S, ZIMNTY E J, et al. Preparation andcharacterization of graphene oxide paper [J].Nature,2007,448:457–460.
    [243] KUNDU P, NETHRAVATHI C, DESHPANDE P A, et al. Ultrafastmicrowave-assisted route to surfactant-free ultrafine Pt nanoparticles ongraphene: Synergistic Co-reduction mechanism and high catalytic activity[J].Chemistry Material,2011,23:2772–2780.
    [244] MURUGAN A V, MURALIGNATH T, RAPID A M. Facilemicrowave-solvothermal synthesis of graphene nanosheets and theirpolyaniline nanocomposites for energy strorage [J]. Chemistry Material,2009,21:5004–5006.
    [245] WANG Q H, JIAO L F, DU H M, et al. Chainlike structures assembledby Co hierarchitectures: synthesis and electrochemical properties as negativematerials for alkaline secondary batteries [J]. Journal of Materials Chemistry,2011,21:14159–14162.
    [246] YAO Y G, MIAO S D, LIU S Z, et al. Synthesis, characterization, andadsorption properties of magnetic Fe3O4@graphene nanocomposite [J].Chemical Engineering Journal,2012,184:326–330.
    [247] AHMAD R, KUMAR R. Adsorptive removal of Congo red dye fromaqueous solution using bael shell carbon [J]. Applied Surface Science,2010,257:1628–1632.
    [248] NAGARETHINAM K, MARIAPPAN M. Adsorption of Congo red onvarious activated carbons, a comparative study [J].Water Air Soil Pollut,2002,138:289–294.
    [249] PAN Y Z, BAO H Q, LI L. Noncovalently functionalized multiwalledcarbon nanotubes by chitosan-grafted reduced graphene oxide and theirsynergistic reinforcing effects in chitosan films [J]. ACS Applled Material&Interfaces,2011,3:48194830.
    [250] ZHANG G S, QU J H, LIU H J, et al. CuFe2O4/activated carbonnanocomposite: A novel magnetic adsorbent for the removal of acid orange IIand catalytic regeneration [J]. Chemosphere,2007,68:1058–1066.
    [251] WU X L, WANG L, CHEN CH L, et al. Water-dispersiblemagnetite-graphene-LDH composites for efficient arsenate removal [J]. Journalof Materials Chemistry,2011,21:17353–17359.
    [252] TURCHANIN A, WEBER D, BüENFELD M, et al. Conversion ofself-assembled monolayers into nanocrystalline graphene: Structure andelectric transport [J]. ACSnano,2011,5:3896–3904.
    [253] KIM T Y, LEE H W, STOLLER M, et al. High-performancesupercapacitors based on poly(ionic liquid)-modified graphene electrodes [J].ACSnano,2011,1:436–442.
    [254] YANG X, XU M S, QIU W M, et al. Graphene uniformly decorated withgold nanodots: in situ synthesis, enhanced dispersibility and applications [J].Journal of Materials Chemistry,2011,21:8096–8103.
    [255] XIE G Q, XI P X, LIU H Y, et al. A facile chemical method to producesuperparamagnetic graphene oxide–Fe3O4hybrid composite and its applicationin the removal of dyes from aqueous solution [J]. Journal of MaterialsChemistry,2012,22:1033–1039.
    [256] CHEN W, LI S, CHEN CH, YAN L F. Self-assembly and embedding ofnanoparticles by in situ reduced graphene for preparation of a3Dgraphene/nanoparticle aerogel [J]. Advanced materials,2011,23:5679–5683.
    [257] JANG J W, CHO S G, MOON G H, et al. Photocatalytic synthesis ofpure and water-dispersible graphene monosheets [J]. Chemical EngineeringJournal,2012,18:2762–2767.
    [258] XU Y, BAI H, LU G, et al. Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets [J]. Journal of theAmerican Chemical Society,2008,130:5856–5857.
    [259] YANG Q, PAN X, HUANG F, LI K. Fabrication of high-concentrationand stable aqueous suspensions of graphene nanosheets by noncovalentfunctionalization with lignin and cellulose derivatives [J]. The Journal ofPhysical Chemistry C,2010,114:3811–3816.
    [260] SALAVAGIONE H J, GóMEZ M A, MARTíNEZ G. Polymericmodification of graphene through esterification of graphite oxide andpoly(vinyl alcohol)[J]. Macromolecules,2009,42:6331–6334.
    [261] SHAN C, YANG H, HAN D, et al. Water-soluble graphene covalentlyfunctionalized by biocompatible poly-L-lysine [J]. Langmuir,2009,25:12030–12033.
    [262] LI D, MLLER M B, GILJE S, KANER R B. Processable aqueousdispersions of graphene nanosheets [J]. Nature Nanotechnology,2008,3:101–105.
    [263] CONG H P, HE J J, LU Y, Yu S H. Water-solublemagnetic-functionalized reduced graphene oxide sheets: In situ synthesis andmagnetic resonance imaging applications [J]. small,2010,6:169–173.
    [264] SHEN X P, WU J L, BAI S, ZHOU H. One-pot solvothermal synthesesand magnetic properties of graphene-based magnetic nanocomposites [J].Journal of Alloys and Compounds,2010,506:136–140.
    [265] TUINSTRA F, KOENIG J L. Raman spectrum of graphite [J]. Journal ofChemical Physics,1970,53:1126–1130.
    [266] WEI X C, WEI ZH W, ZHANG L P, et al. Highly water-solublenanocrystal powders of magnetite and maghemite coated with gluconic acid:Preparation, structure characterization, and surface coordination [J]. Journal ofColloid and Interface Science,2011,354:76–81.
    [267] XIONG Y J, MCLELLAN J M, YIN Y D, XIA Y N. Synthesis ofpalladium icosahedra with twinned structure by blocking oxidative etching withcitric acid or citrate ions [J]. Angewandte Chemie International Edition,2007,46:790–794.
    [268] BROWN K R, WALTER D G, NATAN M J. Seeding of colloidal Aunanoparticle solutions.2. Improved control of particle size and shape [J].Chemistry Material,2000,12:306–313.
    [269] MALLIN M P, MURPHY C J. Solution-phase synthesis of sub-10nmAu Ag alloy nanoparticles [J]. Nano Letters,2002,2:1235–1237.
    [270] DENG H, LI X L, PENG Q, et al. Monodisperse magnetic single-crystalferrite microspheres [J]. Angewandte Chemie International Edition,2005,44:2782–2785.
    [271] BASTI H, TAHAR L B, SMIRI L S, et al. Catechol derivatives-coatedFe3O4and γ-Fe2O3nanoparticles as potential MRI contrast agents [J]. Journalof Colloid and Interface Science,2010,341:248–254.
    [272] TIAN Y, YU B B, LI X, LI K. Facile solvothermal synthesis ofmonodisperse Fe3O4nanocrystals with precise size control of one nanometre aspotential MRI contrast agents [J]. Journal of Materials Chemistry,2011,21:2476–2481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700