用户名: 密码: 验证码:
年龄及性别相关的大鼠视皮层细胞的功能衰退
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人和动物的视皮层功能会随着年龄的增长出现衰退,如老年视皮层双眼细胞减少;老年视皮层细胞对视觉刺激的方位及运动方向判别能力下降;对视觉信号的分析及提取速度显著下降,反应延迟明显增长;对视觉信号的提取能力显著下降,对图形的适应性增强,这些皮层功能的衰退可能是导致视觉功能年龄相关衰退的生理基础。目前的很多研究表明皮层功能衰退部分是由老年皮层抑制系统的退化所导致,老年皮层突触结构的丢失也是皮层功能衰退的潜在机制。深入探讨随年龄产生的皮层功能性变化对了解非病理性老化过程的机制及探讨延缓衰老的途径的都十分有意义。
     本研究采用在体场电位和细胞外单细胞记录方法,比较了老年和青年大鼠视皮层—外膝体通路的短时程突触可塑性,比较了老年和青年大鼠初级视皮层对闪光刺激的反应调制特性。此外,我们还比较了不同性别老年大鼠的视皮层功能衰退的可能差异。最后,我们用免疫组织化学的方法研究了神经递质GABA免疫神经元在老年和青年大鼠初级视皮层分布的差异。主要取得以下结果。
     1.比较了5只老年大鼠和6只青年大鼠外膝体—皮层视觉通路的短时程突触可塑性的特点,发现老年大鼠在25ms-1000ms间隔的双脉冲刺激抑制比和10Hz~40Hz的串刺激抑制比都要显著的高于青年大鼠。该结果提示老年大鼠皮层内的抑制性降低,这可能与年龄相关的皮层内GABA能系统退化有关。
     2.研究了青年大鼠初级视皮层51个神经元和老年大鼠初级视皮层46个神经元对1,2,4,8 Hz闪光刺激反应的特性。发现老年大鼠初级视皮层神经元的闪光刺激适应系数Ai(Ai定义为反应平台期的平均发放数比初始反应的平均发放数)的平均值在4Hz(young:0.42±0.02;aged:0.33±0.02,P<0.01 t-test)和8Hz(young:0.32±0.02;aged:0.17+0.01;P<0.0001 t-test)比青年大鼠要显著降低,表明老年大鼠V1区神经元对高频闪光刺激的适应明显强于青年大鼠。这一结果可能与老年大鼠皮层神经元更易疲劳有关。此外,对比于青年大鼠,老年大鼠初级视皮层神经元的自发放频率显著增高、信号—噪音比显著降低、对闪光刺激的反应潜伏期显著延长。我们的结果提示:老年大鼠初级视皮层神经元的多种反应特性都比青年大鼠显著的衰退。
Visual functions deteriorate gradually during normal aging process, such as the decrease of visual acuity and contrast sensitivity, impairment in the ability of orientation discrimination and motion direction as well as reduction of eyes summation and temporal processing speed. Age related visual function declines can not be attributed completely to changes in optical media and retinal morphology. Considerable visual functions impairment in the old may result from neuronal morphological changes or transmitter pathways degeneration (such as weakened GABA inhibition) in the visual processing centers, such as the primary visual cortex. To uncover the neural mechanism underlying the visual function degradation is of great practical importance to how to improve life quality for the old population and to slow down the aging process in human beings.
    Using in vivo field potentials recording and extracellular single-unit recording techniques, we compared the short-term synaptic plasticity of geniculo-cortical visual pathway in aged and young rats. The response properties of primary visual cortical cells to flash stimuli in aged and young rats were also examined. Moreover, we investigated the sexual difference of visual cortex's function in aged rats. The density of GABA-immunoreactive neurons in primary visual cortex was quantitatively studied by immunohistochemistry method. Main results are as following:
    1. We compared the short-term synaptic plasticity of geniculo-cortical visual pathway in five aged rats and six young rats. Our results showed either the pair-pulse depression ratio with interstumilus intervals from 25 ms to 1000ms or the frequency depression ratio at 10 Hz~40 Hz were significantly high in aged rats. The decreased short-term depression suggests the degradation of inhibition system in cortex of aged rats, which may be related to the degradation of GABAergic system during aging.
    2. Response properties of primary visual cortical cells to 1, 2, 4, 8 Hz flash stimuli
引文
Abbott LF, Varela JA, Sen K, Nelson SB, Synaptic depression and cortical gain control. Science 1997; 275, 220-224.
    
    Adams I. Comparison of synaptic changes in the precentral and postcentral cerebral cortex of aging humans: a quantitative ultrastructural study. Neurobiology of Aging. 1987; 8:203-212.
    
    Adams I. Plasticity of the synaptic contact zone following loss of synapses in the cerebral cortex of aging humans. Brain Research. 1987; 424:343-351.
    
    Adams I, Jones DG. Quantitative ultrastructural changes in rat cortical synapses during early-, mid- and late-adulthood. Brain Research. 1982; 239:349-363.
    
    Ahmad A, Spear, PD, Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J. Comp Neurol. 1993; 334, 631-643.
    
    Amenta F, Zaccheo D, Collier WL, Neurotransmitters, neuroreceptors and aging. Mech. Ageing Dev. 1991; 61, 249-273.
    
    Anderson B, Rutledge V. Age and hemisphere effects on dendritic structure. Brain. 1996;119:1983-1990.
    
    Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochemical Research. 1989; 14:555-562.
    
    Baracat B, Marquie JC, Age differences in sensitivity, response bias, and reaction time on a visual discrimination task. Exp. Aging Res. 1992; 18, 59-66.
    
    Barnes CA. Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends in Neurosciences. 1994; 17:13-18.
    
    Barnes CA, McNaughton BL. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence. Journal of Physiology. 1980; 309:473-485.
    
    Barnes CA, Rao G, Foster TC, McNaughton BL. Regionspecific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1. Hippocampus. 1992; 2:457-468.
    
    Baughman RW, Gilbert CD. Aspartate and glutamate as possible neurotransmitters in the visual cortex. Journal of Neuroscience. 1981; 1:427-439.
    
    Bertoni-Freddari C, Giuli C, Pieri C, Paci D. Age-related morphological rearrangements of synaptic junctions in the rat cerebellum and hippocampus. Archives of Gerontology and Geriatrics. 1986; 5:297-304.
    
    Bertoni-Freddari C, Meier-Ruge W, Ulrich J, Quantitative morphology of synaptic plasticity in the aging brain. Scanning Microsc. 1988; 2, 1027-1034.
    
    Bigham MH, Lidow MS, Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiol. Aging 1995; 16, 91-104.
    
    Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology. 1973; 232:331-356.
    
    Brody H. Organization of the cerebral cortex, III, A study of aging in the human cerebral cortex. Journal of Comparative Neurology. 1955; 102:511-556.
    
    Brody H. Aging of the vertebrate brain. In: Rockstein M, Sussman HM, eds. Development and aging in the nervous system. New York: Academic Press; 1973: 121-133.
    
    Buell SJ, Coleman PD. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science. 1979; 206:854-856.
    Buzsaki G, Bickford RG, Armstrong DM et al. Electric activity in the neocortex of freely moving young and aged rats. Neuroscience. 1988; 26:735-744.
    
    Carandini MJ, A Movshon et al. "Pattern adaptation and cross-orientation interactions in the primary visual cortex." Neuropharmacology 1998; 37(4-5): 501-11.
    
    Carpenter MK, Parker I, Miledi R. Messenger RNAs coding for receptors and channels in the cerebral cortex of adult and aged rats. Molecular Brain Research. 1992; 13:1-5.
    
    Cepeda C, Li Z, Levine MS, Aging reduces neostriatal responsiveness to N-methyl-D-aspartate and dopamine: an in vitro electrophysiological study. Neuroscience 1996; 73, 733-750.
    
    Chance FS, Nelson SB, Abbott LF, Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 1998; 18, 4785-4799.
    
    Cobo M, Exposito I, Mora F. Aging, prefrontal cortex, and amino acid neurotransmitters: differential effects produced by electrical stimulation. Neurobiology of Aging. 1993; 14:187-190.
    
    Cobo M, Exposito I, Porras A, Mora F. Release of amino acid neurotransmitters in different cortical areas of conscious adult and aged rats. Neurobiology of Aging. 1992; 13:705-709.
    
    Coffey CE, Lucke JF, et al. "Sex differences in brain aging: a quantitative magnetic resonance imaging study." Arch Neurol 1998; 55(2): 169-79.
    
    Cohen SA, Muller WE. Age-related alterations of NMDAreceptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Research. 1992; 584:174-180.
    
    Coleman PD, Flood DG. Net dendritic stability of layer II pyramidal neurons in F344 rat entorhinal cortex from 12 to 37 months. Neurobiology of Aging. 1991; 12:535-541
    Connor JR, Diamond MC, Connor JA, Johnson RE, A Golgi study of dendritic morphology in the occipital cortex of socially reared aged rats. Exp. Neurol. 1981;73,525-533.
    
    Cowell PE, Turetsky BI, et al. "Sex differences in aging of the human frontal and temporal lobes." JNeurosci 1994; 14(8): 4748-55.
    
    Curcio CA, McNelly NA, Hinds JW. Aging in the rat olfactory system: relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium. Journal of Comparative Neurology. 1985; 235:519-528.
    
    de Brabander JM, Kramers RJ, Uylings HB. Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. European Journal of Neuroscience. 1998; 10:1261-1269.
    
    Dawson R, Jr., Wallace DR, Meldrum MJ. Endogenous glutamate release from frontal cortex of adult and aged rats. Neurobiology of Aging. 1989; 10:665-668.
    
    De Felipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology. 1992; 39:563-607.
    
    Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Annals of Neurology. 1978; 4:345-356.
    
    DeKosky ST, Bass NH. Effects of aging and senile dementia on the microchemical athology of human cerebral cortex. In: Amaducci L, Davison AN, Antuono P, eds. Aging. New York: Raven Press; 1980: 33-37.
    
    DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Annals of Neurology. 1990; 27:457-464.
    Detoledo-Morrell L, Geinisman Y, Morrell F. Agedependent alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiology of Aging. 1988; 9:581-590.
    
    Deupree DL, Bradley J, Turner DA. Age-related alterations in potentiation in the CA1 region in F344 rats. Neurobiology of Aging. 1993; 14:249-258.
    Diamond ME, Armstrong-James M, Ebner FF. Experiencedependent plasticity in adult rat barrel cortex. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90:2082-2086.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences. 1999; 22:391-397.
    Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR, Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb. Cortex 2003; 13, 950-961.
    Dustman RE, Emmerson RY, Shearer DE, Life span changes in electrophysiological measures of inhibition. Brain Cogn 1996; 30, 109-126.
    Elliott D, Whitaker D, Mac Veigh D, Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Res. 1990; 30, 541-547.
    Elzbieta S, Aleksandra S, Metabotropic glutamate receptors (mGluRs) are involved in early phase of memory formation: possible role of modulation of glutamate release. Neurochemistry International 2003; 43: 469-474
    Erdo SL, Wolff JR. Age-related loss of t-[35S]butylbicyclophosphorothionate binding to the gammaaminobutyric acidA receptor-coupled chloride ionophore in rat cerebral cortex. Journal of Neurochemistry. 1989; 53:648-651.
    Feldman ML, Peters A. Ballooning of myelin sheaths in normally aged macaques. Journal of Neurocytology. 1998; 27:605-614.
    
    Fiorillo CD, Williams JT. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 1998; 394: 78-82
    
    Foster TC, Barnes CA, Rao G, McNaughton BL. Increase in perforant path quantal size in aged F-344 rats. Neurobiology of Aging. 1991; 12:441-448.
    
    Foundas AL, Zipin D, Browning CA. Age-related changes of the insular cortex and lateral ventricles: conventional MRI volumetric measures. Journal of Neuroimaging. 1998; 8:216-221.
    
    Gallagher MJ, Huang H, Pritchett DB, Lynch DR. Interactions between ifenprodil and the NR2B subunit of the N-methyl-Daspartate receptor. Journal of Biological Chemistry. 1996; 271:9603-9611.
    
    Garcia-Segura LM, Azcoitia I, et al. "Neuroprotection by estradiol." Prog Neurobiol 2001; 63(1): 29-60.
    
    Gold CH, Malmberg B, et al. "Gender and health: a study of older unlike-sex twins." J Gerontol B Psychol Sci Soc Sci 2002; 57(3): S168-76.
    
    Gomez-Isla T, Price JL, McKeel DW, Jr., Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience. 1996; 16:4491-4500.
    
    Govoni S, Memo M, Saiani L, Spano PF, Trabucchi M. Impairment of brain neurotransmitter receptors in aged rats. Mechanisms of Ageing and Development. 1980; 12:39-46.
    
    Grady CL. Brain imaging and age-related changes in cognition. Experimental Gerontology. 1998; 33:661-673.
    Greengard P. The neurobiology of slow synaptic transmission. Science 2001; 294: 1024-1029
    
    Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000; 14:224-232.
    
    Gur RC, Gunning-Dixon FM, et al. "Brain region and sex differences in age association with brain volume: a quantitative MRI study of healthy young adults." Am J Geriatr Psychiatry 2002;10(1): 72-80.
    
    Gutierrez A, Khan ZU, Miralles CP, Mehta AK, Ruano D, Araujo F, Vitorica J, De Blas AL, GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging. Brain Res. Mol. Brain Res. 1997; 45, 59-70.
    
    Gutierrez A, Khan ZU, Miralles CP et al. GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging. Molecular Brain Research. 1997; 45:59-70.
    
    Gutierrez A, Khan ZU, Miralles CP, De Blas AL. Altered expression of gamma 2L and gamma 2S GABAA receptor subunits in the aging rat brain. Molecular Brain Research. 1996; 35:91-102.
    
    Guttmann CR, Jolesz FA, Kikinis R et al. White matter changes with normal aging. Neurology. 1998;50:972-978.
    
    Hanes DP, Thompson KG, Schall JD Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res 1995; 103:85—96.
    
    Hare TA, Wood JH, Manyam BV, Gerner RH, Ballenger JC, Post RM. Central nervous system gamma-aminobutyric acid activity in man. Relationship to age and sex as reflected in CSF. Archives of Neurology. 1982; 39:247-249.
    
    Haug H. The aging human cerebral cortex: Morphometry of areal differences and their functional meaning. In: Dani SU, Hori A, Walter GF, eds. Principles of neural aging. Amsterdam: Elsevier Science; 1997 :247-261.
    
    Haug H, Barmwater U, Eggers R, Fischer D, Kuhel S, Sass NL. Anatomical changes in aging brain: morphometric analysis of the human presencephalon. In: Cervos-Navarro J, Sarkander HI, eds. Aging. New York: Raven Press; 1983: 1-12.
    
    Haug H, Eggers R. Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiology of Aging. 1991; 12:336-338.
    
    Haug H, Knebel G, Mecke E, Orun C, Sass NL. The aging of cortical cytoarchitectonics in the light of stereological investigations. Progress in Clinicaland Biological Research. 1981; 59B:193-197.
    
    Henderson G, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. Journal of the Neurological Sciences. 1980; 46:113-136.
    
    Ho KC, Roessmann U, Straumfjord JV, Monroe G. Analysis of brain weight. I. Adult brain weight in relation to sex, race, and age. Archives of pathology and laboratory medicine. 1980;104:635-639.
    
    Hollmann M, Heinemann S. Cloned glutamate receptors. Annual Review of Neuroscience. 1994; 17:31-108.
    
    Hoyer S, Krier C. Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiology of Aging. 1986; 7:23-29.
    
    Hua T, Li X, He L, Zhou Y, Wang Y, Leventhal AG, Functional degradation of visual cortical cells in old cats. Neurobiol. Aging 2006; 27, 155-162.
    
    Huttenlocher PR. Synaptic density in human frontal cortex -developmental changes and effects of aging. Brain Research. 1979; 163:195-205.
    Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. Journal of Comparative Neurology. 1997; 386:661-680.
    
    Jacobs B, Scheibel AB. A quantitative dendritic analysis of Wernicke's area in humans. I. Lifespan changes. Journal of Comparative Neurology. 1993; 327:83-96.
    
    Jasper H, Khan R, Elliot K, Amino acids released from the cerebral cortex in relation to its state of activation. Science. 1965; 147:1448-1449.
    
    Jia F, Xie X, Zhou Y, Short-term depression of synaptic transmission from rat lateral geniculate nucleus to primary visual cortex in vivo. Brain Res. 2004; 1002, 158-161.
    
    Johnson SC, Saykin AJ, Baxter LC et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000; 11:179- 187.
    
    Jouvenceau A, Dutar P, Billard JM. Alteration of NMDA receptor-mediated synaptic responses in CA1 area of the aged rat hippocampus: contribution of GABAergic and cholinergic deficits. Hippocampus. 1998; 8:627-637.
    
    Joyce CA, Paller KA, McIsaac HK, Kutas M. Memory changes with normal aging: behavioral and electrophysiological measures. Psychophysiology. 1998; 35:669-678.
    
    Kaas JH, Merzenich MM, Killackey HP. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annual Review of Neuroscience. 1983; 6:325-356.
    
    Kim CB, Tom BW, Spear PD, Effects of aging on the densities, numbers, and sizes of retinal ganglion cells in rhesus monkey. Neurobiol. Aging 1996; 17, 431-438.
    Kitamura Y, Zhao XH, Ohnuki T, Takei M, Nomura Y. Agerelated changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse. Neuroscience Letters. 1992; 137:169-172.
    
    Kito S, Miyoshi R, Nomoto T. Influence of age on NMDA receptor complex in rat brain studied by in vitro autoradiography. Journal of Histochemistry and Cytochemistry. 1990; 38:1725-1731.
    
    Kline DW, Culham JC, Bartel P, Lynk L, Aging effects on vernier hyperacuity: a function of oscillation rate but not target contrast. Optom. Vis. Sci. 2001; 78, 676-682.
    
    Kline DW, Schieber F, Abusamra LC, Coyne AC, Age, the eye, and the visual channels: contrast sensitivity and response speed. J. Gerontol. 1983; 38, 211-216.
    
    Krnjevic K. Role of GABA in cerebral cortex. Canadian Journal of Physiology and Pharmacology. 1997; 75:439-451.
    
    Kornhuber ME, Kornhuber J, Retz W, Riederer P. L-glutamate and L-aspartate concentrations in the developing and aging human putamen tissue. Journal of Neural Transmission - General Section. 1993; 93:145-150.
    
    Kmjevic K. Chemical Nature of Synaptic Transmission in Vertebrates. Physiological Reviews. 1974; 54:418-540.
    
    Kmjevic K, Phillis JW. Acetylcholine-sensitive cells in the cerebral cortex. Journal of Physiology. 1963; 166:296-327.
    
    Krzywkowski P, Potier B, Billard JM, Dutar P, Lamour Y. Synaptic mechanisms and calcium binding proteins in the aged rat brain. Life Sciences. 1996; 59:421-428.
    
    Le Jeune H, Cecyre D, Rowe W, Meaney MJ, Quirion R. Ionotropic glutamate receptor subtypes in the aged memoryimpaired and unimpaired Long-Evans rat. Neuroscience. 1996; 74:349-363.
    Leuba G. Aging of dendrites in the cerebral cortex of the mouse. Neuropathology and Applied Neurobiology. 1983; 9:467-475.
    
    Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y, GABA and its agonists improved visual cortical function in senescent monkeys. Science 2003; 300, 812-815.
    
    Lintl P, Braak H. Loss of intracortical myelinated fibers: a distinctive age-related alteration in the human striate area. Acta Neuropathologica (Berl). 1983; 61:178-182.
    
    Liu FJ, Wu X, Yu MX. ERPs of characters of Chinese words compared with tone and picture stimuli in adolescents and aged persons. Clinical Electroencephalography. 1998; 29:146-152.
    
    Lowy MT, Wittenberg L, Yamamoto BK. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. Journal of Neurochemistry. 1995; 65:268- 274.
    
    Macrae TH. Tubulin post-translational modification: enzymes and their mechanism of action. Eur J Biochem 1997; 244: 265-278
    
    Magnusson KR. Aging of glutamate receptors: correlations between binding and spatial memory performance in mice. Mechanisms of Ageing and Development. 1998; 104:227-248.
    
    Magnusson KR, Cotman CW. Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiology of Aging. 1993; 14:197-206.
    
    Magnusson KR. Declines in mRNA expression of different subunits may account for differential effects of aging on agonist and antagonist binding to the NMDA receptor. Journal of Neuroscience. 2000; 20:1666-1674.
    
    McCarthy MM, Auger AP, et al. Getting excited about GABA and sex differences in the brain. Trends Neurosci 2002; 25(6): 307-12.
    McDonald JW, Johnston MT. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research 1990,15:41-70
    
    Mhatre MC, Fernandes G, Ticku MK. Aging reduces the mRNA of alpha 1 GABAA receptor subunit in rat cerebral cortex. European Journal of Pharmacology. 1991; 208:171-174.
    
    Markus EJ, Petit TL. Neocortical synaptogenesis, aging, and behavior: lifespan development in the motor-sensory system of the rat. Experimental Neurology. 1987; 96:262-278.
    
    Matsumae M, Kikinis R, Morocz IA et al. Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. Journal of Neurosurgery. 1996; 84:982-991.
    
    Matsuyama S, Nei K, Tanaka C, Regulation of GABA release via NMDA and 5-HT1A receptors in guinea pig dentate gyrus. Brain Res. 1997; 761, 105-112.
    
    Meier-Ruge W, Hunziker O, Iwangoff P, Reichlmleter K, Sandoz P. Alteration of morphological and neurochemical parameters of the brain due to normal aging. In: Nandy K, ed. Senile dementia: Biochemical approach. New York: Elsevier- North Holland; 1978: 33-44.
    
    Meinecke DL, Peters A. GABA immunoreactive neurons in rat visual cortex. Journal of Comparative Neurology. 1987;261:388-404.
    
    Mervis R. Structural alterations in neurons of aged canine neocortex: a Golgi study. Experimental Neurology. 1978;62:417-432.
    
    Mendelson JR, Wells EF, Age-related changes in the visual cortex. Vision Res. 2002; 42, 695-703.
    
    Mhatre MC, Ticku MK. Aging related alterations in GABAA receptor subunit mRNA levels in Fischer rats. Molecular Brain Research. 1992; 14:71-78.
    
    Mizumori SJ, Barnes CA, McNaughton BL. Differential effects of age on subpopulations of hippocampal theta cells. Neurobiology of Aging. 1992; 13:673-679.
    
    Monyer H, Sprengel R, Schoepfer R et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992; 256:1217-1221.
    
    Mountjoy CQ, Rossor MN, Iversen LL, Roth M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain. 1984; 107:507-518.
    
    Mungai JM. Dendritic patterns in the somatic sensory cortex of the cat. Journal of Anatomy. 1967; 101:403-418.
    
    Murray HE, Rantle CM, et al. Sexually dimorphic ontogeny of GABAergic influences on periventricular somatostatin neurons. Neuroendocrinology 1999; 70(6): 384-91.
    
    Nabeshima T, Yamada K, Hayashi T et al. Changes in muscarinic cholinergic, PCP, GABAA, D1, and 5-HT2A receptor binding, but not in benzodiazepine receptor binding in the brains of aged rats. Life Sciences. 1994; 55:1585-1593.
    
    Nakamura S, Akiguchi I, Kameyama M, Mizuno N. Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathologica. 1985; 65:281-284.
    
    Nielsen-Bohlman L, Knight RT. Prefrontal alterations during memory processing in aging. Cerebral Cortex. 1995; 5:541-549.
    
    Nomura H, Ando F, Niino N, Shimokata H, Miyake Y, Age-related change in contrast sensitivity among Japanese adults. Jpn. J. Ophthalmol. 2003;47, 299-303.
    Owsley C, Sekuler R, Boldt C, Aging and low-contrast vision: face perception. Invest Ophthalmol. Vis. Sci. 1981; 21, 362-365.
    
    Pakkenberg B, Gundersen HJ, Neocortical neuron number in humans: effect of sex and age. J. Comp Neurol. 1997; 384, 312-320.
    
    Palombi PS, Caspary DM. Physiology of the aged Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli. Journal of Neurophysiology. 1996; 76:3114-3125.
    
    Peinado JM, Mora F. Glutamic acid as a putative transmitter of the interhemispheric corticocortical connections in the rat. Journal of Neurochemistry. 1986; 47:1598-1603.
    
    Penny GR, Afsharpour S, Kitai ST. The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalinand substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience. 1986; 17:1011-1045.
    
    Peters A. Age-related changes in oligodendrocytes in monkey cerebral cortex. Journal of Comparative Neurology. 1996;371:153-163.
    
    Peters A. The absence of significant neuronal loss from cerebral cortex with age. Neurobiology of Aging. 1993; 14:657-658.
    
    Peters A, The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 2002; 31, 581-593.
    
    Peters A, Moss MB, Sethares C, Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J. Comp Neurol. 2000; 419, 364-376.
    
    Peters A, Nigro NJ, McNally KJ, A further evaluation of the effect of age on striate cortex of the rhesus monkey. Neurobiol. Aging 1997; 18, 29-36.
    Peters A, Sethares C, Killiany RJ, Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp Neurol. 2001; 435, 241-248.
    
    Peterson C, Cotman CW. Strain-dependent decrease in glutamate binding to the N-methyl-D-aspartic acid receptor during aging. Neuroscience Letters. 1989; 104:309-313.
    
    Post-Munson DJ, Lum-Ragan JT, Mahle CD, Gribkoff VK, Reduced bicuculline response and GABAA agonist binding in aged rat hippocampus. Neurobiol. Aging 1994; 15, 629-633.
    
    Potier B, Rascol O, Jazat F, Lamour Y, Dutar P. Alterations in the properties of hippocampal pyramidal neurons in the aged rat. Neuroscience. 1992; 48:793-806.
    
    Priestley T, Laughton P, Myers J, Le Bourdelles B, Kerby J, Whiting PJ. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Molecular Pharmacology. 1995; 48:841-848.
    
    Raz N, Briggs SD, Marks W, Acker JD. Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex. Psychology and Aging. 1999; 14:436-444.
    
    Raz N, Gunning FM, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 1997; 7(3): 268-82.
    
    Resnick SM, Goldszal AF, et al. One-year age changes in MRI brain volumes in older adults. Cereb Cortex 2000; 10(5): 464-72.
    
    Ribak CE. Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. Journal of Neurocytology. 1978; 7:461-478.
    
    Rosenzweig ES, Rao G, McNaughton BL, Barnes CA. Role of temporal summation in age-related long-term potentiationinduction deficits. Hippocampus. 1997; 7:549-558.
    
    Ross JE, Clarke DD, Bron AJ, Effect of age on contrast sensitivity function: uniocular and binocular findings. Br. J. Ophthalmol. 1985; 69, 51-56.
    
    Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982; 105:313-330.
    
    Roy D, Singh R. Age-related change in the multiple unit activity of the rat brain parietal cortex and the effect of centrophenoxine. Experimental Gerontology. 1988; 23:161-174.
    
    Ruano D, Machado A, Vitorica J. Absence of modifications of the pharmacological properties of the GABAA receptor complex during aging, as assessed in 3- and 24-month-old rat cerebral cortex. European Journal of Pharmacology. 1993; 246:81-87.
    
    Rypma B, D'Esposito M. Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience. 2000; 3:509-515.
    
    Saransaari P, Oja SS. Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mechanisms of Ageing and Development. 1995; 81:61-71.
    
    Satinoff E, Li H, Tcheng TK et al. Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? American Journal of Physiology. 1993; 265:R1216-R1222.
    Satorre J, Cano J, Reinoso-Suarez F, Stability of the neuronal population of the dorsallateral geniculate nucleus (LGNd) of aged rats. Brain Res. 1985; 339, 375-377.
    
    Scarpace PJ, Abrass IB, Alpha- and beta-adrenergic receptor function in the brain during senescence. Neurobiol. Aging 1988; 9, 53-58.
    
    Schefrin BE, Tregear SJ, Harvey LO, Jr, Werner JS, Senescent changes in scotopic contrast sensitivity. Vision Res. 1999;39, 3728-3736.
    
    Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB. Progressive dendritic changes in aging human cortex. Experimental Neurology. 1975; 47:392-403.
    
    Schmolesky MT, Wang Y, Pu M, Leventhal AG, Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat. Neurosci. 2000; 3, 384-390.
    
    Seeburg PH The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels. Trends in Pharmacological Sciences. 1993; 14:297-303.
    
    Sharma D, Singh R. Age-related decline in multiple unit action potentials of cerebral cortex correlates with the number of lipofuscin-containing neurons. Indian Journal of Experimental Biology. 1996; 34:776-781.
    
    Sharp PE, Barnes CA, McNaughton BL. Effects of aging on environmental modulation of hippocampal evoked responses. Behavioral Neuroscience. 1987; 101:170-178.
    
    Shaw NA, Cant BR. Age-dependent changes in the latency of the pattern visual evoked potential. Electroencephalography and Clinical Neurophysiology. 1980; 48:237-241.
    
    Sholl DA. The surface area of cortical neurons. Journal of Anatomy. 1955; 89:571-572.
    Simpson DM, Erwin CW. Evoked potential latency change with age suggests differential aging of primary somatosensory cortex. Neurobiology of Aging. 1983; 4:59-63.
    
    Spengler F, Godde B, Dinse HR. Effects of ageing on topographic organization of somatosensory cortex. Neuroreport. 1995; 6:469-473.
    
    Stern WC, Pugh WW, Morgane PJ. Single unit activity in frontal cortex and caudate nucleus of young and old rats. Neurobiology of Aging. 1985; 6:245-248.
    
    Stefanova N, Bozhilova-Pastirova A, et al. Sex and age differences of neurons expressing GABA-immunoreactivity in the rat bed nucleus of the stria terminalis. Int J Dev Neurosci 1998; 16(6): 443-8.
    
    Streit P Glutamate and aspartate as transmitter candidates for systems of the cerebral cortex. In: Peters A, Jones EG, eds. Cerebral Cortex. New York and London: Plenum Press; 1984:119-143.
    
    Tamaru M, Yoneda Y, Ogita K, Shimizu J, Nagata Y. Agerelated decreases of the N-methyl-D-aspartate receptor complex in the rat cerebral cortex andhippocampus. Brain Research. 1991; 542:83-90.
    
    Tapiero H, Mathe G, Couvreur P, et al. Free amino acids in human heath andpathologies II Glutamine and glutamate. Biomed Pharmacother 2002; 56: 446-457
    
    Terry RD, Deteresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Annals of Neurology. 1987; 21:530-539.
    
    Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology. 1991; 30:572-580.
    
    Timiras PS. Aging of the nervous system: functional changes. In: Timiras PS, ed. Physiological basis of aging and geriatrics. Florida: CRC Press, Inc.; 1994: 103-114.
    
    Timiras PS, Hudson DB, Oklund S. Changes in central nervous system free amino acids with development and aging. Progress in Brain Research. 1973; 40:267-275.
    
    Tohgi H, Takahashi S, Abe T. The effect of age on concentrations of monoamines, amino acids, and their related substances in the cerebrospinal fluid. Journal of Neural Transmission - Parkinsons Disease and Dementia Section. 1993; 5:215-226.
    
    Tran DB, Silverman SE, Zimmerman K, Feldon SE, Age-related deterioration of motion perception and detection. Graefes Arch. Clin. Exp. Ophthalmol. 1998; 236, 269-273.
    
    Trott CT, Friedman D, Ritter W, Fabiani M. Item and source memory: differential age effects revealed by event-related potentials. Neuroreport. 1997; 8:3373-3378.
    
    Tsang CC, Speeg KV, Jr., Wilkinson GR. Aging and benzodiazepine binding in the rat cerebral cortex. Life Sciences. 1982; 30:343-346.
    
    Turgeon SM, Albin RL. GABAB binding sites in early adult and aging rat brain. Neurobiology of Aging. 1994; 15:705-711. Uylings HB, de Brabander JM, Neuronal changes in normal human aging and Alzheimer's disease. Brain Cogn 2002; 49,268-276.
    
    Valjakka A, Sirvio J, Pitkanen A, Riekkinen PJ. Brain amines and neocortical EEG in young and aged rats. Comparative Biochemistry and Physiology Part C, Pharmacology, Toxicology and Endocrinology. 1990; 96:299-304.
    
    Van Essen DC, Anderson CH, Felleman DJ Information processing in the primate visual system: an integrated systems perspective. Science 1992; 255:419—423.
    Vaughan DW. Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex. Journal of Comparative Neurology. 1977; 171:501-515.
    
    Veliskova J and Moshe SL Sexual dimorphism and developmental regulation of substantia nigra function. Ann Neurol 2001; 50(5): 596-601.
    
    Wang H, Xie X, Li X, Chen B, Zhou Y, Function degradation of visual cortical cells in aged rats. Brain Res. accepted.
    
    Wang Y, Zhou Y, Ma Y, Leventhal AG, Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys. Cereb. Cortex 2005; 15, 403-408.
    
    Waterhouse BD, Azizi SA, Burne RA, Woodward DJ, Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res. 1990; 514, 276-292.
    
    Weale RA, Senile changes in visual acuity. Trans. Ophthalmol. Soc. U. K. 1975; 95, 36-38.
    
    Wellman CL, Pelleymounter MA. Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiology of Aging. 1999; 20:381-393.
    
    Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC. Agerelated changes in multiple neurotransmitter systems in the monkey brain. Neurobiology of Aging. 1989; 10:11-19.
    
    Wenk GL, Walker LC, Price DL, Cork LC. Loss of NMDA, but not GABAA, binding in the brains of aged rats and monkeys. Neurobiology of Aging. 1991; 12:93-98.
    
    West MJ, Regionally specific loss of neurons in the aging human hippocampus. Neurobiol. Aging 1993; 14, 287-293.
    
    Wheeler DD. Aging of membrane transport mechanisms in the central nervous system. GABA transport in rat cortical synaptosomes. Experimental Gerontology. 1982; 17:71-85.
    Wheeler DD, Ondo JG. Endogenous GABA concentration in cortical synaptosomes from young and aged rats. Experimental Gerontology. 1986; 21:79-85.
    
    White EL. Cortical Circuits: Synaptic Organization of the Cerebral Cortex Structure, Function, and Theory. Boston: Birkhauser; 1989.
    
    Wickelgren I. For the cortex, neuron loss may be less than thought. Science. 1996; 273:48-50.
    
    Wong TP, Cuello AC, and De Koninck Y Imbalance of tonic excitation and inhibition onto layer V pyramidal neurons in aged impaired rats. Abstracts Society for Neuroscience 2000; 26, 1838.
    
    Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y. Loss of presynaptic and postsynaptic structures is accompanied by compensatory increase in action potentialdependent synaptic input to layer V neocortical pyramidal neurons in aged rats. Journal of Neuroscience. 2000; 20:8596-8606.
    
    Xu J, Kobayashi S et al. Gender effects on age-related changes in brain structure. AJNR Am J Neuroradiol 2000; 21(1): 112-8.
    
    Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-kinase activation of the protein-kinase-B pathway. Nature 1998; 396: 584-587
    
    Yousem DM, Maldjian JA, Hummel T et al. The effect of age on odor-stimulated functional MR imaging. AJNR American Journal of Neuroradiology. 1999; 20:600-608.
    
    Zecevic N, Bourgeois JP, Rakic P. Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Developmental Brain Research. 1989; 50:11-32.
    
    Zorumski CF, Izumi Y. Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Progress in Brain Research. 1998; 118:173-182.
    华田苗 老年猫视皮层细胞的功能衰退及形态学研究 中国科技大学博士论文 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700