用户名: 密码: 验证码:
原位制备MoSi2基复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硅化钼及其复合材料,以其高熔点、优异的高温抗氧化性、高温具有塑性变形能力、与多种增强相化学相容等优点,具有巨大的应用潜力,成为材料研究热点之一。本文采用原位无压烧结和微波烧结工艺成功制备了MoSi_2及其复合材料,借助于压痕法测定了其室温力学性能,运用扫描电子显微镜、微探针、X射线衍射仪等分析手段观察分析其微观形貌及相组成。同时利用XP-5型摩擦磨损试验机考查了原位烧结的SiC-WSi_2/MoSi_2基复合材料的摩擦磨损性能,并讨论了其磨损机理,得出了如下结论:
     1.原位无压烧结的复合材料的力学性能比纯MoSi_2试样有较大程度的提高,而SiC/MoSi_2复合材料以10%SiC/MoSi_2试样的综合力学性能最佳,其抗弯强度、断裂韧性分别达到了274.5MPa和5.5MPa·m1/2,比通过热压烧结的高致密纯MoSi_2分别提高了40.7%和30.7%。WSi_2/MoSi_2复合材料以含20%WSi_2/MoSi_2试样的综合力学性能最好,其抗弯强度、硬度、断裂韧性分别为301.6MPa、10.26GPa和7.87MPa·m~(1/2),比通过热压烧结的高致密纯MoSi_2分别提高了54.7%、16.1%和86.9%。SiC-WSi_2/MoSi_2复合材料的整体性能并不理想,其硬度和断裂韧性分别为7.997GPa和6.534MPa·m~(1/2)。复合材料的强化机制依次为细晶强化、弥散强化、第二相颗粒强化和固溶强化等,韧化机制依次为细晶增韧、裂纹偏转和第二相颗粒增韧等。
     2.微波烧结实验结果显示复合材料在1400oC温度下烧结时的综合性能达到最佳,其中SiC10%的SiCp/MoSi_2复合材料经1400oC微波烧结后抗弯强度、硬度和韧性分别为270.6MPa、8.36GPa和8.96MPa·m1/2;而SiCp-WSi_2/MoSi_2复合材料MSWC3在1400oC下,其抗弯强度、硬度和韧性分别为200MPa、8.916GPa和9.269MPa·m1/2。与其他方法压制的MoSi_2基材料的性能进行比较,微波烧结合成的MoSi_2基复合材料的性能得到了明显的改善和提高;通过细晶强化,第二相弥散强化,固溶强化,裂纹偏转等机制达到了利用SiC和WSi_2增韧补强MoSi_2基复合材料的目的。
     3. SiCp-WSi_2/MoSi_2复合材料具有较好的耐磨性。转速一定时,随载荷的增大,摩擦系数减小,磨损率增大,MoSi_2基复合材料的主要磨损机制为氧化、粘着磨损。载荷一定时,转速对复合材料摩擦系数与磨损率有一定的影响,摩擦系数与磨损率先增大后降低,而后维持一定水平;随着转速的增大复合材料的磨损机制主要表现为疲劳磨损和粘着磨损。
Due to the higher melting point, outstanding high-temperature oxidation resistance, stable electrical resistance, plastic deformation at high temperature and good compatibility with many reinforcements, the MoSi_2 and MoSi_2 based composites have great potential in application and have been given increasingly interest in recent years. The MoSi_2 and MoSi_2 matrix composites had been successfully prepared by in-situ pressureless reaction sintering and microwave reactive sintering in this paper. Then the mechanical properties at room-temperature were determined by Vickers indentation. The microstructure, surface micrograph and phase composition were investigated by means of SEM, microprobe, XRD. The frictional and wear properties of SiC-WSi_2/MoSi_2 matrix composite which was sintered by in situ was further examined by using XP-5 type friction and wear tester, and the wear mechanism was discussed. The results are shown as follows:
     1. SiC/MoSi_2、WSi_2/MoSi_2 and SiC-WSi_2/MoSi_2 composites with different volume fraction were successfully prepared by in-situ pressureless reaction sintering. The mechanical properties of composites have a greater increase than that of pure MoSi_2 specimens, When the volume fraction of SiC increases to 10%, the bending strength and fracture toughness of SiC/MoSi_2 composite reach the highest value of 274·5MPa and 5.5MPa·m1/2 ,respectively, which are approximately 40.7% and 30.7% higher than MoSi_2 matrix which sintered by hot-pressing. When the volume fraction of WSi_2 increases to 20%, the flexural strength, Vickers hardness and fracture toughness of WSi_2/MoSi_2 composite reach the highest value of 301.6MPa、10.26GPa and 7.87MPa·m1/2, which increased about 54.7%,16.1% and 86.9% as compared to MoSi_2 matrix which sintered by hot-pressing.
     The mechanical properties of SiC-WSi_2/MoSi_2 composites material are not as good as expected, its hardness and fracture toughness reach to 7.997GPa and 6.534MPa·m1/2. The strengthen mechanism of the composites were fine-grain strengthening, dispersion strengthening, the second-phase particles and solid solution strengthening. The sequence of the contribution to toughening is as follows: fine-grain toughening, crack deflection and the second-phase particles.
     2. The results showed that the composite materials can achieve the best mechanical properties at 1400oC , the bending strength, hardness and toughness of 10% SiC-containing SiCp/MoSi_2 composite materials are 270.6MPa, 8.36GPa and 8.96MPa·m~(1/2) which sintered by microwave at 1400oC. The bending strength, hardness and toughness of SiC-WSi_2/MoSi_2 composites (MSWC3) were 200MPa, 8.916GPa and 9.269MPa·m~(1/2). Compared with the MoSi_2 matrix materials synthesized by other methods, the mechanical properties of MoSi_2 matrix materials synthesized by microwave sintering had a marked improvement and increase. MoSi_2 matrix had been successfully reinforced by SiC and WSi_2, through fine-grain strengthening, the second-phase dispersion strengthening, solid solution strengthening and crack deflecting.
     3. SiCp-WSi_2/MoSi_2 composite material had good abrasion resistance. When the rotational speed is constant, the friction coefficient droped gradually and the wear rate tended to increase with the increase of load. The main wear mechanism of MoSi_2 matrix composites were oxidation and adhesive. When the load is constant, the rotational speed has a certain influence on the friction coefficient and wear rate of composite materials, the friction coefficient and wear rate increase at first and then reduced, at last them maintain a certain level; as the speed increases, wear mechanism of composite materials are mainly fatigue wear and adhesive wear.
引文
[1] Henzel M, Kovalclk J, Dusza J.Micro and nano-indentation of MoSi_2 [J].J Materials Science, 2004, 39:3769-3772.
    [2]李公平,张小东,丁宝卫.载能钼团簇束与单晶硅碰撞室温下合成二硅化钼[J].核技术,2005,28(3): 221-226.
    [3]易丹青,刘会群,肖来荣.MoSi_2基复合材料组织性能的研究发展[J].材料导报,2006,20(7):409-414.
    [4]张厚安,刘心宇.MoSi_2基高温结构材料的研究现状与发展[J].机械工程材料,2001,25(10):5-7.
    [5] Berteaud A J,Badot J C. High temperature microwave heating in refractory materials[J].J Microwave Power, 1976,11 (4) :116-121.
    [6]张厚安,刘心宇.MoSi_2基高温结构材料的研究现状与发展[J].机械工程材料,2001,25(10):5-7 (38).
    [7] Novakovic R, Bernhard K. Advanced ceramics for use in highly oxidising/corrosive environments[J]. Key Engineering Materials,2001, 201:183-189.
    [8]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994.
    [9]山口正治,马越佑吉,丁树深译.金属间化合物[M].北京:科学出版社,1991.
    [10] Johannes M,Guillaume B,Fransvan.The texture in diffusion grown layers of disilicides MeSi_2(Me=Mo,W,Ti,Nb,Ta) and compounds with related structures(NbGe2,TaGe2,TeGe2,TiNiCu)[J].Z Metallkde,1984,75:141-146.
    [11]周曦亚,方培育.MoSi_2及其复合材料的研究与应用[J].中国陶瓷工业,2006,13(1),34-37.
    [12] Petrovic J J.Toughening strategies for MoSi_2-based high temperature structural silicides[J]. Intermatallics, 2000,8:1175-1182.
    [13]时存. MoSi_2及其复合材料的高温摩擦磨损性能研究[D].湘潭:湖南科技大学,2009.
    [14]金燕苹,洪涛,郑灵仪. SiC晶须强韧化MoSi_2复合材料[J].材料研究学报, 1994,8(2):183-187.
    [15]张秀芳,曹顺华,邹世民.反应烧结SiC陶瓷的研究进展[J].粉末冶金工业, 2008,18(5):48-51.
    [16]邱海鹏,孙明,丁海英等.三维碳化硅纤维增强碳化硅基复合材料的研究[J].硅酸盐通报,2006,(1):63-65.
    [17]鄢永高.反应烧结制备高强SiCw/SiC材料的研究[D].武汉:武汉理工大学,2004.
    [18] Wan Jiang, Jing-Feng Li, Kenichi T.Mechanical properties of SiC-whisker-reinforced MoSi_2 composite[J]. The Japan Institute of Metals ,1997,36(4):355-361.
    [19] Yang J M, Jeng S M. Interface and mechanical behavior of MoSi_2-based composites[J]. J Materials Research. 1991,6(3):505-513.
    [20] Lan Sun,Jinsheng Pan.Fabrication and characterization of TiC-particle-reinforced MoSi_2 composites[J]. J European Ceramic Society. 2002,22(5):791-796.
    [21] Stergious A, Tsakiropoulos. The intermediate and high-temperature oxidation behaviour of Mo(Si1-xAlx)2 intermetallic alloys[J]. Intermetallics,1997,5:69-81.
    [22]余继红,江东亮.碳化硅陶瓷的发展与应用[J].陶瓷工程,1998,32(3):3-11.
    [23]郝寅雷,赵文兴.反应烧结碳化硅多相陶瓷制备方法研究进展[J].材料科学与工艺,2000,8(4):86-89.
    [24] Sharif A A,Misra A,Petrovic J J.Alloying of MoSi_2 for improved mechanical properties[J]. Intermetallics, 2001,9:869-873.
    [25] Mitra R,Rama R V V,Venugopal R A.Effect of small aluminum additions on microstructure and mechanical properties of molybdenum disilicide[J]. Intermetallics.1999.7:213-232.
    [26]周曦亚,方培育.二硅化钼陶瓷的强韧化[J].中国陶瓷,2006,42(3):19-21.
    [27] Misra A,Sharif A A,Petrovic J.J,et al.Rapid solution hardening at elevated temperatures by substitutional Realloying in MoSi_2[J]. TE Mitchell-Acta Materialia,2000,48:925-932.
    [28]黎文献,徐广卓,唐嵘等.钴对MoSi_2组织和性能的影响[J].稀有金属材料与工程,1998,127(4): 222-226.
    [29]吴海飞,徐金富,费有静.第二相对MoSi_2基复合材料组织与性能的影响[J].材料热处理学报, 2007, 28(8): 331-334.
    [30]林育炼,刘盛秋.耐火材料与能源[M].北京:冶金工业出版社,1993.
    [31]艾云龙,程玉桂,杨延清.WSi_2/MoSi_2复合发热元件的制备及组织性能[J].稀有金属材料与工程, 2005,34(6):962-965.
    [32]易丹青. MoSi_2基复合材料的研究进展[J].中国钼业,2006,30(4):3-11.
    [33]王炳根,王海蓉.二硅化钼用于钼基的耐热涂层[J].中国钼业,1997,21(1): 37-38.
    [34] Kuchino J, Kurokawa K. Effect of microstructure on oxidation resistance of MoSi_2 fabricated by spark plasma sintering [J]. Vacuum,2004,73(3-4): 623-628.
    [35]李玲艳,艾云龙,程玉桂.二硅化钼及其复合材料的的新进展[J].宇航材料工艺,2005,1: 10-14.
    [36]曲选辉,刘绍军.新型超高温材料结构MoSi_2的制备技术[J].材料导报, 1998, (2): 50-52.
    [37] Schlichting J. Molybdenum disilicide as a component of modern high temperature composites[J]. High Temp-High Press. in German, 1978,10:241.
    [38]张厚安,刘心宇.MoSi_2基高温结构材料的研究现状与发展[J].机械工程材料,2001,25(10):5-7.
    [39]李爱民,董维芳,孙康宁.金属间化合物的研究现状及其最新发展趋势[J].现代技术陶瓷,2004,(100): 27-34.
    [40]刘伯威,潘进,樊毅.SiC颗粒强韧化MoSi_2复合材料[J].复合材料学报,2002,19(1):59-62.
    [41] Nordberg L O,Ekstrom T.Hot-Pressed MoSi_2 Particulate Reinforced Sialon composite[J].J Am Ceram Soc,1995,78(3): 797-800.
    [42]沈建兴,张炳荣,刘宏.金属间化合物增韧陶瓷材料的效果与机理[J].硅酸盐通报,2000.4:54-57.
    [43] Lim C B,Yano T,Iseki T.Microstructure and mechanical properties of RB-SiC/MoSi_2 composite[J]. J Materials Science,1989,24:4144-4151.
    [44]宁爱林,申奇志,罗玉梅.MoSi_2弥散强化铜合金的密度研究[J].稀有金属与硬质合金,2003,32(2):22-25.
    [45] Chiang Y,Messoner R,Terwilliger C.Reaction-Bonded Silicon Carbide [J].Mater Sci Eng,1991,144(A): 63-74.
    [46] Chiang Y M,Haggerty J S,Messoner R P.Resction-Based Processing Methods for Ceramic Matrix Composites[J].American Ceramic Society Bulletion,1989,68(2):420-428.
    [47] Jianguang Xu,Guojian Jiang.In situ synthesis of SiCw/MoSi_2 composite through SPS process[J].Journal of Alloys and Compounds, 2008,(462):170-174.
    [48]沈建兴,张炳荣.刘宏.金属间化合物增韧陶瓷材料的效果与机理[J].硅酸盐通报,2000,4:54-57.
    [49]张厚安,陈平,颜建辉等. La_2O_3和WSi_2增强MoSi_2基复合材料的摩擦磨损性能研究[J].摩擦学学报,2005,3(25):230-233.
    [50]陈平,张厚安,唐果宁等.MoSi_2材料摩擦磨损特性的研究与发展[J].材料导报,2001,(10):38-40.
    [51] Alman D E,Hawk J A,Petrovic J J.Wear of Engineering marerials[C]. ASM International Materials Park, Ohio,1998.
    [52] Alman D E,Govier R D.Influence of Al additions on the reactive synthesis of MoSi_2[J].Scrip Mater. 1996,34(8):1287-1293.
    [53]王含英,杨延清,吴中.原位反应热压复合SiCP/MoSi_2的显微结构与力学性能[J].上海金属,2006,3:65-69.
    [54] Petrovic J J,Vasudevan A K.Key developments in high temperature structural silicides[J].Mater Sci Eng,1999,A261:1-5.
    [55] Deevi S C.Self-propagating high-temperature synthesis of molybdenum disilicide[J].J Mater Sci 1991,26:3343-3353.
    [56]彭可,易茂中,冉丽萍.自蔓延热爆合成MoSi_2-WSi_2复合粉末[J].中国有色金属学报,2005, 15(6):870-875.
    [57]李颂文,张厚安,肖东明,等.稀土-WSi_2/MoSi_2复合材料的合成与性能[J],湖南科技大学学报:自然科学版,2004,19(4):55-58.
    [58]许剑光,张厚安,张光业.自蔓延高温合成制备二硅化钼基复合材料的研究进展[J].材料导报,2007,21(4):69-71.
    [59]冯培忠,曲选辉,王晓虹.二硅化钼的制备与应用的新发展[J].粉末冶金工业,2005,15(4):46-50.
    [60] MA Qin, YAN Bing-jun, KANG Mo-kuang, et al. Development and Applications of Metal Silicides[J].Rare Metal Materials and Engineering, 1999,28(1):10-13.
    [61]张荣军,杨延清,刘红梅.SiCp/WSi_2/MoSi_2复合材料的室温力学性能[J].材料科学与工程学报,2008,26(2):101-103.
    [62]张小立,吕振林,金志浩.无压反应烧结Mo(Si,Al)2-SiC复合材料的研究[J].稀有金属材料与工程,2005,34(8):1267-1270.
    [63] Petrovic J J,Toughening strategies for MoSi_2-based high temperature structural[J].silicides Intermetalics. 2000,8: 1175-1182.
    [64]许剑光,张厚安,张宝林等.SiCw/MoSi_2的化学炉自蔓延高温合成及反应过程研究[J].矿冶工程,2008,28(4):98-100.
    [65]许剑光,侯周福,唐果宁.原位无压反应烧结制备SiC/MoSi_2复合材料及其性能研究[J].矿冶工程,2009,29(4):103-106.
    [66]张来启,孙祖庆,张跃等.原位SiC颗粒增强MoSi_2基复合材料的显微组织和力学性能[J].金属学报,2001,(3):325-331.
    [67] Tinga W R,Voss W A G.Microwave power engineering[M]. Academic Press New York,1968,73.
    [68]范景莲,黄伯云,刘军.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1),31-33.
    [69] Roy R,Agrawal D,Cheng J. Full sintering of powder-metal bodies in a microwave field[J]. Nature,1999,399 (17):668-70.
    [70] Peelamedu R D, Rustum Roy ,Agrawal D K. Microwave-induced reaction sintering of NiAl2O4[J]. Materials Letters, 2002, 55: 234-240.
    [71] Menezes RR, Kiminami RHGA.Microwave sintering of alumina–zirconia nanocomposites [J]. J.Mater. Process.Tech,2007,(10):1-5.
    [72] Panneerselvam M,Agrawal Ankur, Rao K J.Microwave sintering of MoSi_2-SiC composites[J].Materials Science and Engineering, 2003, A356:267-273.
    [73]刘平安,王慧.陶瓷的微波烧结及研究现状[J].中国陶瓷,2005,41(4):5-7.
    [74]全峰.微波烧结WC-10Co硬质合金的结构与性能研究[D].武汉:武汉理工大学,2007.
    [75]常爱民.氧化物电子陶瓷材料的微波处理研究[D].成都:电子科技大学,2002:1
    [76]徐耕夫,庄汉锐,李文兰.氮化硅陶瓷的微波烧结[J].硅酸盐学报, 1998,4:53-58.
    [77]朱文迅,吴一平.微波烧结技术及其进展[J].材料科学与工程,1998,16(2):61-64.
    [78] Ravi B G, Praveen V, Panneer S M. Microwave-assisted preparation and sintering of mullite and mullite–zirconia composites from metal organics[J]. Materials Research Bulletin, 1998,33(10):1527-1536.
    [79] Jiping Cheng, Dinesh Agrawa,l Yunjin Zhang. Development of translucent aluminumnitride (AlN) using microwave sintering process[J].J Electro ceramics, 2002,9:67-72.
    [80]李云凯,纪康俊,钟家湘等.纳米Al2O3-ZrO2(3Y)复相陶瓷的微波烧结[J].硅酸盐学报,1998,26(6):740- 744.
    [81]晋勇,王玉环,胡希川等.微波烧结金属陶瓷材料的工艺研究[J].工具技术,2004,38(9):96-98,107.
    [82]史晓亮,杨华,邵刚勤等.Al2O3/WC-10Co/ZrO2/Ni金属陶瓷的微波烧结[J].中南大学学报(自然科学版),2007,38(4):623-628.
    [83]徐耕夫,庄汉锐,蔡杰等.β-Sialon陶瓷的微波烧结研究[J].无机材料学报,1996,11(3):459-464.
    [84] Hawk J A,Alman D E, Petrovic J J.Abrasive Wear Behavior of MoSi_2/SiC and MoSi_2/ZrO2 Composites [J].Scripta Metallurgica Et Materialia, 1995, 32(11):1765-1770.
    [85]阎逢元,林新华,吕晋军.碳化硼颗粒增强二硅化钼复合材料的摩擦学性能[J].摩擦学学报,2002,22(4):263-267.
    [86] Pan J, Surappa M K, Saravanan R A.Fabrication and Characterization of SiC/MoSi_2 Composites [J].Mater Sci Eng, 1998, 244(A):191~198.
    [87] Sun L, Pan J S.Fabrication and characterization of TiCw/MoSi_2 and SiCw/MoSi_2 composites [J].Materials Letters, 2002, 53(1):63–67.
    [88] Suzuki K,Niihara K.Synthesis and mechanical properties of Mo≤3Si3C≤1 and Mo≤3Si3C≤1–based composites[J].Intermetallics,1998,6:7-13.
    [89] Jianguang Xu,Baolin Zhang ,Guojian Jiang,et al. Fabrication and characterization of SiCw/MoSi_2 composite from COSHSed powder[J].J Mater Sci, 2007 (42):5795–5798.
    [90]易丹青,杜若昕,曹昱.M_5Si_3型硅化物的研究及相关的物理冶金学问题[J].金属学报,2001,37(11):1121-1130.
    [91]寇开昌.MoSi_2-WSi_2复合材料的研究与应用[D].西安:西北工业大学,2000.
    [92] Ke Peng, Maozhong Yi, Liping Ran,et al. Reactive Hot Pressing of SiC/MoSi_2 Nanocomposites [J]. Communications of the American Ceramic Society, 2007,90(11):3708-3711.
    [93]侯周福,许剑光,唐果宁等.无压烧结CeO_2-ZrO_2-MoSi_2复合材料及其力学性能研究[J].湖南科技大学学报(自然版), 2009, 24(4):31-34.
    [94]刘红梅.原位合成SiC/(Mo,W) Si_2复合材料的组织与性能[J].西北工业大学学报,2007,25(4): 512-515.
    [95]江莞,赵世柯,王刚. MoSi_2材料的研究现状及应用前景[J].无机材料学报,2001,(4):577-585.
    [96] Park H C, Lee Y B, Lee S G, et al.Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates[J]. Ceramics International, 2005,31:293~296.
    [97]周飞. MoSi_2和WSi_2相结构和性能的电子理论研究[J].硅酸盐学报,2000,28(5):462-464.
    [98] Toloff N S.An Overview of Powder Proeessing of Silicide and Their ComPosites[J].Mater Sci Eng,1999, A261:169-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700