用户名: 密码: 验证码:
GRIM-19抑制肺腺癌细胞株SPC-A1生长及作用机制体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     肺癌是当今世界各国常见的恶性肿瘤,已成为绝大多数国家癌症死亡的主要原因,目前被认为是对人类健康和生命威胁最大的恶性肿瘤。按组织学分类,分为非小细胞肺癌和小细胞肺癌,其中非小细胞肺癌分为腺癌、鳞癌、大细胞肺癌、鳞腺癌。其中腺癌目前占第一位。干扰素/维甲酸诱导凋亡相关基因-19(gene associated with retinoid-IFN-induced mortality-19,GRIM-19),是2000年由Angell等应用反义基因敲除的方法分离发现的一种细胞凋亡调节因子。在一些原发性肾细胞肿瘤和泌尿生殖系肿瘤中GRIM-19表达缺失或被严重抑制,用肾脏恶性肿瘤细胞系的研究证实:GRIM-19的下调通过增强依赖Stat3(signal transducers and activators of transcription 3)基因的表达而促进肿瘤生长,并且首次表明GRIM-19具有肿瘤抑制因子作用。对于GRIM-19在肺腺癌的表达情况、是否抑制其生长及抑制机制目前还没有见到相关报道。我们先期已经对GRIM-19在肺癌组织中的表达一般情况与正常肺组织表达情况做了一个对比研究,但肺腺癌中表达具体情况没有做进一步研究分析。本研究对GRIM-19和Stat3基因在肺腺癌组织与肺组织中表达作对比,采用体内外实验研究,验证GRIM-19抑制肺腺癌生长和初步探讨其作用机制。
     目的:
     本研究以人肺癌组织及对应的肺组织为材料,检测GRIM-19、Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1在肺腺癌及正常肺组织中的表达情况;对pIRES-Puro2-GRIM-19-Myc质粒进行测序,分别将pIRES-Puro2-GRIM-19-Myc和pIRES-Puro2-GRIM-19-Myc真核表达质粒转染SPC-A1细胞中,建立稳转细胞株SPC-A1/GRIM-19和SPC-A1/CON,将上述两种细胞分别种植于不同组的BALB/C裸鼠皮下,28天杀死裸鼠,取出皮下肿瘤组织,分别检测GRIM-19、Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1等的表达。在体内外验证GRIM-19抑制肺腺癌生长及其作用机制。
     方法:
     收集肺腺癌和对应的肺组织标本,用免疫组化方法比较肺腺癌组织和对应肺组织中GRIM-19蛋白表达。再用Western blot法比较肺腺癌和肺组织GRIM-19、STAT3蛋白的表达。分别抽取37例患者肺腺癌组织及肺组织中的总RNA,然后采用RT-PCR法比较肺腺癌组织和正常肺组织中GRIM-19、Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1的mRNA表达。
     中国科技大学生命科学学院肖卫华教授馈赠PIRES-Puro2-GRIM-19-Myc和PIRES-Puro2- Myc真核表达质粒,上海生工对此进行测序,判断是否有基因突变。Lipofectamine将真核表达质粒pIRES-Puro2-GRIM-19-Myc和pIRES-Puro2-Myc转染肺腺癌细胞株SPC-A1中,建立稳转细胞株。用MTT方法检测GRIM-19是否对肺腺癌细胞株SPC-A1的生长影响。用Western blot法比较稳转细胞株SPC-A1/GRIM-19和SPC-A1/CON的GRIM-19和STAT3蛋白表达。然后采用RT-PCR法分别比较稳转细胞株SPC-A1/GRIM-19和SPC-A1/CON的GRIM-19、Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1、VEGF的mRNA表达。通过上述方法,在体外实验判断GRIM-19是否抑制肺腺癌细胞株的生长及其机制。
     分别取SPC-A1/GRIM-19, SPC-A1/CON (2×106)种植于5周的BALB/C裸鼠(雌性),观察4周,每隔7天检测一次其体积变化,用体内实验判断GRIM-19是否对肺腺癌细胞株SPC-A1的生长影响。第28天分别取不同组BALB/C裸鼠的皮下肿瘤组织,用Western blot法比较其GRIM-19、STAT3和MMP2蛋白表达。分别提取不同组BALB/C裸鼠的皮下肿瘤组织的总RNA,然后采用RT-PCR法比较其GRIM-19、Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1、VEGF的mRNA表达情况。通过上述方法,在体内实验判断GRIM-19是否抑制肺腺癌细胞株的生长及其机制。
     结果:
     一、GRIM-19、STAT3及其下游靶基因在肺腺癌组织和肺组织中的表达用免疫组化检测结果显示:GRIM-19蛋白在肺腺癌组织表达明显低于在肺组织表达。Western Blot结果表明:肺腺癌组与肺组织组相比,GRIM-19蛋白表达水平在肺腺癌中明显低于肺组织,差异有统计学意义(p<0.01)。STAT3蛋白表达与之相反。RT-PCR结果表明:肺腺癌组与肺组织相比,GRIM-19基因表达水平明显减低,差异有统计学意义(p<0.01);与之相反,RT-PCR结果发现Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1的表达在肺腺癌组织中高于其肺组织中。
     二、GRIM-19抑制肺腺癌细胞株SPC-A1生长体外实验结果
     上海生工对对PIRES-Puro2-GRIM-19-Myc真核表达质粒测序无基因突变。用Lipofectamine将真核表达质粒pIRES-Puro2-GRIM-19-Myc和pIRES-Puro2-Myc转染肺腺癌细胞株SPC-A1中, G418(浓度0.60μg/mL)持续筛选6周建立稳转细胞株: SPC-A1/GRIM-19和SPC-A1/CON。Western Blot结果表明:SPC-A1/GRIM-19细胞株与SPC-A1/CON细胞株相比, SPC-A1/CON细胞株中的GRIM-19蛋白水平表达明显低于SPC-A1/GRIM-19细胞中的表达,差异有统计学意义(p<0.01)。STAT3蛋白表达与之相反。RT-PCR结果表明:SPC-A1/GRIM-19细胞株与SPC-A1/CON细胞株相比, SPC-A1/CON细胞株中的GRIM-19表达水平明显低于SPC-A1/GRIM-19细胞株中的表达水平,差异有统计学意义(p<0.01),RT-PCR结果发现Stat3及其下游靶基因Bcl-2、CyclinB1、CyclinD1,VEGF的mRNA表达与之相反。
     三、GRIM-19抑制肺腺癌细胞株SPC-A1生长体内实验结果
     把SPC-A1/GRIM-19和SPC-A1/CON细胞分别种植于BALB/C裸鼠皮下,每周检测其肿瘤大小,构建其生长曲线,结果显示:种植SPC-A1/GRIM-19细胞的BALB/C裸鼠的皮下肿瘤的体积明显减小(p<0.01)。4周后分别取不同组BALB/C裸鼠的皮下肿瘤组织用Western blot法检测其GRIM-19、STAT3和MMP2蛋白,结果表明:种植SPC-A1/GRIM-19细胞的BALB/C裸鼠的皮下肿瘤组织与种植SPC-A1/CON细胞的BALB/C裸鼠的皮下肿瘤组织相比: GRIM-19的蛋白水平在SPC-A1/CON细胞的瘤组织中的表达明显低于SPC-A1/GRIM-19细胞的瘤组织的表达,差异有统计学意义(p<0.01)。STAT3、MMP2的蛋白表达与之相反。RT-PCR结果表明:种植SPC-A1/GRIM-19细胞的BALB/C裸鼠的皮下肿瘤组织与种植SPC-A1/CON细胞的BALB/C裸鼠的皮下肿瘤组织相比:GRIM-19的mRNA表达水平明显升高,差异有统计学意义(p<0.01); Stat3及其下游靶基因Bcl-2、Cyclin B1、Cyclin D1,VEGF的mRNA表达水平与之相反。
     结论
     1.肺腺癌组GRIM-19的mRNA水平及蛋白水平明显低于其在相对应的正常肺组织的表达,并且基因表达水平的降低伴随有蛋白表达的相应下降;肺腺癌组Stat3的mRNA水平及蛋白及其下游靶基因Bcl-2、Cyclin B1、CyclinD1、VEGF基因表达水平均高于其在肺组织中的表达。
     2.通过建立肺腺癌稳转细胞株SPC-A1/GRIM-19和SPC-A1/C0N,在体外验证GRIM-19抑制肺腺癌生长。
     3.把SPC-A1/GRIM-19和SPC-A1/CON稳转细胞株分别种植不同组BALB/C裸鼠的皮下,在体内验证GRIM19抑制肺腺癌生长。
Background
     According to the World Health Organization,lung cancer is currently the leading cause of cancer-related death in the world. Recently,a number of studies have shown that the family of proteins known as gene associated with retinoid- IFN- induced mortality (GRIMs) may represent novel types of tumor suppressors.Gene associated with retinoid interferon-induced mortality-19(GRIM-19), was originally identified as a cell death regulatory gene using the antisense technical knockout approach by Angell et al. In a number of primary RCC and in some urinogenital tumors.the expression of GRIM-19 is lost or severely depressed .By using an RCC cell line, researchers show that down regulation of GRIM-19 promotes tumor growth via an augmentation of Stat3-dependent gene expression. These studies for the first time show a tumor suppressor like activity of GRIM-19. Maximo et al confirmed that Hürthle cell thyroid carcinomas exist mutation of GRIM-19. In this study, we revealed that GRIM-19 were significantly reduced at mRNA and protein levels in lung adenocarcinoma tissue . STAT3 and its downstream target genes were tended to express a higher basal level in lung adenocarcinoma tissues. Overexpression of GRIM-19 was also found to suppress lung adenocancinoma tumor growth both in vitro and in vivo.Taken together,these finding will likely contribute to the future development of GRIM-19-based gene therapy approaches to treat lung adenocancinoma.
     Objective
     In the present study, we used lung adenocarcinoma tissues and lung tissues to investigate the expression of GRIM-19, Stat3 and it’s downstream target gene Bcl-2, Cyclin B1,Cyclin D1,Analyzing the relationship between GRIM-19 and Stat3, and to further explore the effects of GRIM-19 on SPC-A1 tumor cell growth in vitro and vivo.
     Methods
     Thirty-seven lung adenocarcinoma tumor samples and thirty-seven lung tissues were collected for expression of GRIM-19 in immunohistochemistry ; the expressions of GRIM-19 and STAT3 were measured by Western Blot. Total RNA were extracted from 37 cases lung adenocarcinoma tumor samples and lung tissues, respectively, and the expression of GRIM-19, Stat3 and its downstream target genes Bcl-2, Cyclin B1, Cyclin D1 was measured by RT-PCR.
     SPC-A1 cells were transfected with either pIRES-Puro2-Myc or pIRES-Puro2-GRIM-19-Myc into cells using Lipofectamine (Invitrogen, Carlsbad,CA). For stable expression of GRIM-19-Myc, transfectants were selected in growth medium containing 0.60μg/mL puromycin. The established stable lines were designated as SPC-A1 /Control and SPC-A1 /GRIM-19, respectively. SPC-A1 /Control and SPC-A1 /GRIM-19 cells were harvested,the expressions of GRIM-19 and STAT3 were measured by Western Blot. Total RNA were extracted from SPC-A1 /Control and SPC-A1 /GRIM-19, respectively. and the expression of GRIM-19, Stat3 and its downstream target genes Bcl-2, Cyclin B1, Cyclin D1 ,VEGF was measured by RT-PCR.
     Female BALB/c nude mice (Shanghai Institute of Experimental Animals) were divided into 2 groups. Each group contained 4 mouses. All mouses were housed in a pathogen-free environment.SPC-A1/GRIM-19, SPC-A1/Control (2×106) cells in 0.1 mL saline containing 50% Matrigel were implanted subcutaneously on the dorsal flank of 5-week-old female athymic nude mice. Mice were sacrificed on day 28, and tumor sizes were determined. Various tissues (lung, liver,spleen, kidney, heart, and tumor) were harvested from these mice for monitoring metastases. Tumors were excised. Tissues were processed for Western blot(GRIM-19,STAT3,MMP2), RT-PCR(Bcl-2, Cyclin B1, Cyclin D1 ,VEGF) .Tumor growth was monitored by measuring tumor dimensions with a caliper and the volume was calculated using the formula V= (4/3)×πa2b, where 2a = minor axis, 2b = major axis of prolate spheroid
     Results
     1.Expression of GRIM-19, Stat3 and it’s downstream target gene Bcl-2、Cyclin B1、Cyclin D1 in lung adenocarcinoma and lung tissues
     Since GRIM-19 was identified as a potential tumor suppressor in recent studies, we checked the expression status of GRIM-19 in lung adenocarcinoma and normal lung tissues. GRIM-19 was highly expressed in normal lung tissues and decreased in lung adenocarcinoma tumor samples.
     While normal lung tissues showed high levels of GRIM-19, they generally had a low expression levels of STAT3. In contrast, a significantly reduced expression of GRIM-19 and increased expression of STAT3 were observed in lung adenocarcinoma tissues . Interestingly, a negative correlation was found between the expression levels of GRIM-19 and STAT3 expression both in normal and lung adenocarcinoma tissues.After expressions of GRIM-19 and STAT3 were detected, we further examined mRNA expression of some STAT3-regulated genes such as Cyclin B1, CyclinD1, Bcl-2. Consistent with the increase of STAT3 and the reduction in GRIM-19 levels, the STAT3-regulated genes expressions at mRNA level were elevated in lung adenocarcinoma tissues compared to lung tissues.
     2.GRIM-19 suppresses cell proliferation and reduces STAT3 and it’s downstream target gene expression in lung adenocarcinoma cell line SPC-A1
     For testifing the effect of GRIM-19 on cell proliferation, we established a GRIM-19 stabilized expression lung adenocarcinoma cell line, SPC-A1/GRIM-19 and SPC-A1/Control cell line. SPC-A1 cells expressed a low basal level of GRIM-19. A significant increase in GRIM-19 expression and a down-regulation of STAT3 were observed after transfection with pIRES-Puro2-GRIM-19-Myc.The growth of SPC-A1 /GRIM-19 cells, as indicated by MTT assay, was markedly inhibited on day 3 and day 4compared to the SPC-A1 / CON cells (P < 0.05 respectively).
     STAT3 is known to up-regulate the expression of genes associated with angiogenesis , antiapoptosis ,increasing tumor cell proliferation such as the vascular endothelial growth factor (VEGF) , Bcl-2 ,Cyclin B1 and CyclinD1. We examined if SPC-A1 /GRIM-19 cells had reduced expression of these genes compared to SPC-A1 /CON cells.The expression of GRIM-19 significantly suppressed the expression of VEGF (an angiogenic growth factor) , Bcl-2(antiapoptosis) and Cyclin B1 and CyclinD1 (increasing tumor cell proliferation).
     3.GRIM-19 suppress human lung adenocarcinoma cell line SPC-A1 growth in vivo.
     We next determined if the GRIM-19 could inhibit tumor growth using a xenograft tumor model. we transplanted SPC-A1/GRIM-19 and SPC-A1/Control cells into athymic nude mice. Cells(106)were transplanted subcutaneously into the right flank(n=4 per group) and tumor growth was monitored for 28 days. On day 28, animals were sacrificed and final tumor weights and volumes were determined.Tumor weights and volumes were significantly smaller in SPC-A1/GRIM-19 group than SPC-A1/Control group(P<0.01)). We next examined the expression of STAT3, and GRIM-19 in tumors derived from mice using Western blot analysis. As expected,GRIM-19 expression levels were higher in SPC-A1/GRIM-19 group than in SPC-A1/Control group(P<0.01).The levels of STAT3 were strongly reduced in SPC-A1/GRIM-19 group (P<0.01) . STAT3 is also known to up-regulate the expression of genes associated with tumor invasion such as matrix metalloproteases(MMPS),We,therefore, examined if SPC-A1/GRIM-19 group had reduced expression of these genes. MMP-2 was suppressed in the tumors treated with SPC-A1/GRIM-19 .We examined if SPC-A1/GRIM-19 group had reduced expression of STAT3-dependent growth–associated genes compared to SPC-A1 /CON group. The expression level of all these gene transcripts was decreased in SPC-A1/GRIM-19 cells compared to SPC-A1/Control. Tumor infiltration into muscle or lymph node metastasis was not observed in all 8 mice .
     Conclusion
     In summary, we have revealed that GRIM-19 levels were significantly reduced at the mRNA and protein levels in lung adenocarcinoma tissues; furthermore, STAT3 levels were increased and accompanied by changes in related downstream target genes. Overexpression of GRIM-19 was found to cause suppression of lung adenocarcinoma tumor growth, both in vitro and in vivo, which may contribute to the future development of gene therapy for lung adenocarcinoma using a GRIM-19-based approach.
引文
1.王梅,魏文强.中国肺癌患者住院人次增长现况及其主要影响因素分析.中国肿瘤,2007,16(9)∶672-675.
    2. Peto R,Darby S,Deo H,等.1950年以来英国的吸烟、戒烟和肺癌状况:全国统计和两项病例对照研究的综合报告.英国医学杂志中文版,2000,3(4)∶169.
    3. Travis WD,Travis LB, Devesa SS (January 1995). "Lung cancer". Cancer 75 (Suppl. 1): 191–202.
    4. Kimchi, A. DAP genes:novel apoptotic genes isolated by a functional approach to gene cloning. Biochim. Biophys. Acta 1998;1377, F13–F33.
    5. Angell JE, Lindner DJ, Shapiro PS, et al. Identification of GRIM-19, a novel cell death- regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach [J]. J Biol Chem, 2000, 275 (43): 33416–33426
    6. Kalvakolanu DV. The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth supression[J]. Cytokine Growth Factor Rev, 2004, 15(2-3): 169-194
    7. Brantley EC, Nabors LB, Gillespie GY, et al. Loss of protein inhibitors of activatedSTAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res, 2008,14(15):4694-4704.
    8. Chun-Liang Chen, Ling Cen, Jennifer Kohout, et al. Signal transducer and activator of transcription3 activation is associated with bladder cancer cell growth and survival. Molecular Cancer, 2008, (7):78-89.
    9. Sarasin-Filipowicz M, Oakeley EJ, Duong FH, et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci USA. 2008;105(19):7034-7039.
    10. Borden EC, Lindner D, Dreicer R, Hussein M, Peereboom D.Second-generation interferons for cancer: clinical targets. Semin Cancer Biol 2000;10(2):125–144.
    11. Zhang J, Yang J, Roy SK, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3.Proc Natl Acad Sci U S A,2003,100(16):9342–9347
    12. Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, Cao X. GRIM-19,a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 2003;22:1325-1335.
    13. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, Lufei C, Zeng Q, Cao X. Grim-19,a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 2004;24:8447-8456
    14. Shen YX,Ballar P,Fang SY.Ubiquitin ligase gp78 increases solubility and facilitates degradtion of the Z variant of a-1-antitrypsin.BBRC 2006;349:1285-1293
    15.鄂征主编.组织培养和分子细胞学技术.第2版.北京:北京出版社1999:438-439.
    16. Maurer CC,Syrigos KN.Biology of Tobcco and smoking//Syrigos KN , Nutting CM,and Roussos C.Tumors of the Chest-Biology,Diagnosis and Management.New York:Springer Berlin Heidelberg,2006:23-39.
    17. Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis.Apoptosis, 2007,12(5):815-833.
    18.Lowe SW,Lin AW. Apoptosis in cancer. Carcinogenesis.2000, 21(3):485-95.
    19.Lovegrove FE,Gharib SA, Patel SN, et al. Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol, 2007,171(6):1894-1903.
    20.Claveria C, Caminero E, Martinez-A C, et al.GH3,a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J, 2002, 21 (13):3327-3336
    21. Ma X, Karra S, Guo W, et al. Regulation of interferon and retinoic acid-induced cell death activation through thioredoxin reductase. J Biol Chem, 2001, 276 (27): 24843-24854
    22. Chidambaram NV, Angell JE, Ling W, et al. Chromosomal localization of human GRIM-19,a novel IFN-beta and retinoic acid-activated regulator of cell death. J Interferon Cytokine Res,2000,20(7):661–665
    23.Rodriguez-Nieto S, Sanchez-Cespedes M. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis. published, January 28, 2009
    24. Fearnley IM, Carroll J, Shannon RJ, et al.GRIM-19, a cell death regulatory gene product, is a subunit ofbovine mitochondrial NADH: ubiquinone oxidoreductase (complexI). J Biol Chem,2001,276(42):38345–38348
    25.Alchanati I, Nallar S C, Sun P, et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas [J]. Oncogene, 2006 , 25(54): 7138-47.
    26.Chen Y, Yuen W H, Fu J, et al. The mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis [ J ] Mol Cell Biol, 2007, 27 (18) : 64202- 64321
    27.Huang G, Chen Y, Lu H, et al. Coup ling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoicacid-induced cancer cell death. [ J ]1Cell Death Differ, 2007, 14 (2) : 3272 3371
    28.Baggetto LG.Deviant energetic metabolism of glycolytic cancer cells. Biochimie 1992,74: 959–974.
    29.Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004, 4: 891–899.
    30.Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential [J]. Mol Biol Cell, 2008, 19(5): 1893 -902.
    31. Zhou Q, Amar S. Identification of proteins differentially expressed in human monocytes exposed to Porphyromonas gingivalis and its purified components by high-throughput immunoblotting. Infect Immun, 2006, 74(2):1204-14.
    32.龚龙波,罗学来,刘双又,等.GRIM-19及其靶基因产物STAT3与结直肠癌恶性程度的关系[J]。癌症,2007,26(7):683-7.
    33. Zhang X, Choe MS, Lee JE, et al. Grim-19 expression and its correlation with clinical outcomes of an induction chemotherapy for patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) [J].J Clin Oncol, 2005, 23(16S):5519.
    34.Máximo V, Botelho T, Capela J,et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid [J]. Br J Cancer, 2005, 92(10): 1892-8.
    35 .Ihle JN. STATs: signal transducers and activators of transcription. Cell, 1996, 84 (3): 331-334
    36. Darnell JE Jr. STATs and gene regulation. Science, 1997,277 (5332): 1630 - 1635
    37. Bromberg J F, Wrzeszczynska M H, Devgan G, et al. Stat3 as an oncogene [J]. Cell, 1999, 98(3): 295-30
    38. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis[J]. Oncogene, 2000, 19(21): 2474- 88.
    39.Mora L B, Buettner R, Seigne J, et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells[J].Cancer Research, 2002, 62(22):6659-66.
    40.Ni Z, Lou W, Leman E S, et al. Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells [J]. Cancer Res,
    41.Huang F, Tong X, Fu L,et al. Knockdown of STAT3 by shRNA inhibits the growth of CAOV3 ovarian cancer cell line in vitro and in vivo [J]. Acta Biochim Biophys Sin,2008, 40(6):519-525.
    42.Fmnades A,Hamburger AW,Gwtwin BI,et al. ErbB-2 kinase is required for constitutive STAT3 activation in malignant lung epithelial cell. Int J Cancer,1999,83(4): 564-570.
    43.李民综述.人血清粒细胞集落刺激因子与肺癌.河南肿瘤学杂志。2002年;第15卷,第3期:233-234.
    44.Liu J, Kern JA. Neuregulain-1 activates the JAK-STAT pathway and regulates lung epithelial cell proliferation. Am J Respir Cell MiI BioI, 2002,27(3):306-313.
    454. Jung JE, Lee HG, Cho IH, et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEBJ,2005,19(10):1296-1298
    46.王红,韩一平. STAT3蛋白在原发性支气管肺癌组织中的表达及其临床意义.第二军医大学学报,2001,Sep,22(9):836-837
    47.胥文春,罗春丽,冯文莉,等. STAT3与VECF在非小细胞肺癌的表达及关系.重庆医科大学学报。2003,28(4):460-466
    48.孙楠,田大,赵翔,等. STAT 3在非小细胞肺癌中的表达及与预后的关系[J].中国现代医学杂志,2006,19(16): 2906-2909.
    49.Grad J M, Zeng X R, Boise L H. Regulation of Bcl-xL: a little bit of this and a little bit of STAT[J]. Curr Opin Oncol, 2000, 12(6): 543–9.
    50. Kalakonda S, Nallar SC, Lindner DJ, etal Tumor-suppressive activity of the cell death activator GRIM-19 on a constitutively active signal transducer and activator of transcription 3. Cancer Res2007;. 67(13):6212–6220.
    51. Zhang L, Gao L, Li Y, Lin G, Shao Y, Ji K, Yu H, Hu J, Kalvakolanu DV, Kopecko DJ, Zhao X, Xu DQ. 2008. Effects of plasmid-based Stat3-specifi c short hairpin RNA and GRIM-19 on PC-3M tumor cell growth. Clin Cancer Res 14(2):559–568.
    52.Hartweel LH,Weinert TA.Checkpionts:controls that ensures the orde of cell cycles events .science,1989,246(4930):629-634.
    53.Hartweel LH,Kastan MB.Cell cycle controls and cancer. science,1994,266(5192):1821-1828.
    54.Banerjee SK,Weston AP,Zoubine MN,et al.Expression of Cyclin B1 and Cyclin B1 in helicobacter pylori associated gastric MALT and MALT lynrphoma :relationship to cell death , proliferation ,and transformation.Am J Pathol ,2000,156(1):217-225.
    55.Sarela AI,Verebeke CS,Ramsdare J,et al. Expression of survivin ,a novel inhibitor of apoptosis and cell regulatory protein ,in pancreatic adenocarcinoma. Br J Cancer,2002,86(6):886-892
    56.Saitoh M,Ohmichi M,Takahashi K,et al.Medroxyprogesterone acetate induces cell proliferation through up-regulation of Cyclin D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade in human breast cancer cells.Endocrinology,2005,146(11):4917-4925.
    57. Salatino M,Labriola L,Schillaci R,et al.Mechanisms of cell cycle arrest in response to TGF-beta in progestin-dependent and-independent growth of mammary tumors.Exp Cell Res,2001,265(1):152-166.
    58.Esteller M,Herman JG.Cancer as epigenetic disease:DNA Methylation and chromatin alterations in human tumours.J Pathol,2002,196(1):1-7
    59.Coffey RN,William GR,Hegarty PK.Prostate carcinoma cells for increased apoptosis is associated with up-regulation of the caspases.Cancer,2001,92(9):2297-2308
    60.Nicholson DW,Thornberry NA,Apoptosis:Life and death decisions.Science,2003,299(6504):214-215
    61. Shi h.A structural view of mitochondria-mediated apoptosis.Nat Biol,2001,8(5):394-401
    62. Joza N.Essential role of the mithochondria apoptosis-inducing factor in programmed celldeath,Nature,2001,410(6828):549-554
    63.Grooss A,McDonnell JM,Korsmeyer SJ.Bcl-2 family members and the mitochondriain apoptosis.Genes Deu,1999,13:1899-1911.
    64. Green DR,Reed JC.Mitochondria and apoptosis.Sciene,1998,281:1309-1311
    65. Kroemer G. The proto-oncogene Bcl-2 and is role in regulating apoptosis.Nat Med, 1997,3:614-619
    66. Shariat SF, Anwuri VA, Lamb DJ , et al. Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. J Clin Oncol, 2004, 22(9): 1655-1663
    67. Juttner S, Wissmann C, Jons T, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol, 2006, 24 (2): 228-240
    68.张泳谷仲平周勇安王云杰RNAi沉默VEGF的表达及其治疗肺癌的初步研究细胞与分子免疫学杂志, 2009;25 (4):341-343
    69. Ellis LM, Takahashi Y, Liu W, et al. Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist. 2000,5(suppl):11–15.
    70. Nakayama Y, Sako T, Shibao K, et al. Prognostic value of plasma vascular endothelial growth factor in patients with colorectal cancer. Anticancer Res. 2002, 22(4): 2437–244
    71.Mook OR,Frederiks WM,Van Noorden CJ.The role of gelatinases in colorecta; cancer progression and metastasis.Biochim Biophys Acta.2004;17;1705(2):69-89.
    72.Wu J,Akaike T,Hayashida K,Okamoto T,et al.Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases.Jpn J Cancer Res.2001;92(4):439-451
    73.Oba K,Konno H,Tanaka T,et al.Prevention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166.Cancer Lett.2002;10;175(1):45-51
    74.Papadopouloi S,Scolrilas A,Arnogianaki N,et al.Expression of gelatinase-A(MMP-2) in human colon cancer and normal colon mucosa.Tumour Biol.2001 Nov-De;22(6):383-389
    1. Kimchi, A. DAP genes:novel apoptotic genes isolated by a functional approach to gene cloning. Biochim. Biophys. Acta 1998;1377, F13–F33.
    2. Kalvakolanu DV. Interferons and cell growth control. Histol Histopathol 2000;15:523–537.
    3. Lindner, D. J., Kalvakolanu, D. V. & Borden, E. C. Increasing effectiveness of interferon-alpha for malignancies.Semin.Oncol.1997; 24(3Suppl9), S9 -99 -104.
    4. Moore, D. M., Kalvakolanu, D. V., Lippman, S. M., Kavanagh, J. J., Hong,W. K.,Borden, E. C., Paredes-Espinoza, M. & Krakoff, I. H. Retinoic acid and interferon in human cancer: mechanistic and clinical studies. Semin. Hematol. 1994; 31(4 Suppl 5),31–37.
    5. Lindner, D. J., Borden, E. C. & Kalvakolanu, D. V. Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin. Cancer Res. 1997; 3(6),931–937.
    6. Kalvakolanu DV. The GRIMs: a new interferface between cell death regulation and interferon/retinoid induced growth suppression. Cytokine Growth Factor Rev, 2004, 15(2-3):169-194
    7. Ma X, Karra S, Guo W, et al. Regulation of interferon and retinoic acid-induced cell death activation through thioredoxin reductase. J Biol Chem,2001,276(27):24843-24854
    8. Angell JE, Lindner DJ, Shapiro PS, et al. Identification of GRIM-19,a novelcell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem, 2000, 275 (43): 33416–33426
    9. Murray J,Zhang B, Taylor SW,et al.The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem,2003,278(16):13619–13622
    10. Fearnley IM, Carroll J, Shannon RJ, et al.GRIM-19,a cell death regulatory gene product, is a subunit ofbovine mitochondrial NADH: ubiquinone oxidoreductase (complexI). J Biol Chem,2001,276(42):38345–38348
    11. Hu J, Angell J E, Zhang J, et al. Characterization of monoclonal antibodies against GRIM-19, a novel IFN- beta and retinoic acid-activated regulator of cell death [ J ] . J Interferon Cytokine Res, 2002, 22 (10) : 1017-1026.
    12. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol (2004)24: 8447–8456.
    13. Gillison ML, Ambinder RF. Human herpesvirus-8. Curr Opin Oncol 1997; 9: 440–449.
    14. Neipel F, Fleckenstein B. The role of HHV-8 in Kaposi’s sarcoma. Semin Cancer Biol 1999; 9:151–164.
    15. Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274:1739–1744.
    16. Burysek L, Pitha PM. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J Virol 2001; 75:2345–2352.
    17. Zimring JC, Goodbourn S, Offermann MK. Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J Virol 1998; 72:701–707.
    18. Jayachandra S, Low KG, Thlick AE, Yu J, Ling PD, Chang Y, et al. Three unrelatedviral transforming proteins (vIRF, EBNA2, and E1A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc Natl Acad Sci USA 1999; 96: 11566–11571.
    19. Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV, et al. Viral interferon regulatory factor 1 of Kaposi’s Sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol 2002; 76:8797–8807.
    20. Zur Hausen H. Papillomaviruses and cancer:from basic studies to clinical application. Nat Rev Cancer, 2002, 2(5):342–350
    21. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res,2002,89(2):213–228
    22. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene [J]. Cell, 1999, 98(3): 295-303
    23. Bowman T, Garcia R,Turkson J,et al. STATs in oncogenesis [J]. Oncogene, 2000, 19 (21):2474-2488.
    24. Chidambaram NV, Angell JE, Ling W, Hofmann ER, Kalvakolanu DV. Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. J Interferon Cytok Res 2000;20 :661–665.
    25. Rodriguez-Nieto S, Sanchez-Cespedes M. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis. published, January 28, 2009
    26. Alchanati I, Nallar S C, Sun P, et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas [J]. Oncogene, 2006 , 25(54): 7138-7147.
    27. Baggetto LG.Deviant energetic metabolism of glycolytic cancer cells. Biochimie (1992)74: 959–974.
    28. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer (2004) 4: 891–899.
    29. Chen Y, Yuen W H, Fu J, et al. The mitochondrial respiratory chain controlsintracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis [ J ] . Mol Cell Biol, 2007, 27 (18) : 6420- 6432.
    30. Huang G, Chen Y, Lu H, et al. Coup ling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon- beta and retinoic acid-induced cancer cell death [ J ]. Cell Death Differ, 2007, 14 (2) : 327- 337.
    31. Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential [J]. Mol Biol Cell, 2008, 19(5): 1893 -1902.
    32. Caldenhoven E, van Dijk TB, Solari R, et al. STAT3 beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Bio Chem,1996,271(22):13221-13227
    33. Leong PL, Andrews GA, Johnson DE, et al. Targeted inhibition of STAT3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci USA, 2003,100(7):4138-4143.
    34. Yu C L,Meyer DJ,Campbell GS,et al.Enhanced DNA-binding activity of a Stat3–related protein in cells transformed by the Src oncoprotein.Science, 1995, 269 (5220):81–83
    35. Bromberg JF,Horvath CM,Besser D,et al.Stat3 activation is required for cellular transformation by v-src.Mol Cell Biol,1998,18(5):2553–2558
    36. Wen X,Lin HH,Shih HM,et al.Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells.J Biol Chem, 1999, 274 (53):38204–38210
    37. Zong CS,Zeng L,Jiang Y,et al.Stat3 plays an important role in oncogenic Ros-and insulin-like growth factor I receptor-induced anchorage–independent growth.J Biol Chem, 1998,273(43):28065–28072
    38. Zhang J, Yang J, Roy SK, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3.Proc Natl Acad Sci U S A, 2003,100(16):9342–9347
    39. Shinozaki S, Nakamura T, Ii mura M, et al. Up regulati on of Reg 1αand GW112in the epithelium of inflamed colonic mucosa [ J ]. Gut, 2001, 48 (5):623 - 629.
    40. Zhang XW, Huang Q, Yang Z, et al. GW112, A novel anti apoptotic protein that promotes tumor growth [ J ]. Cancer Research, 2004, 64 (7):2474 - 2481.
    41. Inohara,Chamaillard,McDonald C et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem, 2005, 74: 355- 383
    42. Ogura Y, Inohara N, Benito A et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem, 2001, 276(7) : 4812- 4818
    43. Barnich N, Hisamatsu T, Aguirre JE et al. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem, 2005, 280( 19) : 19021- 19026
    44. Ma X, Kalakonda S, Srnivasula SM, et al. GRIM-19 associates with the serine protease Htr A2 for promoting cell death [ J ]. Oncogene, 2007, 26 (33) : 4842-4849.
    45. Rozan LM, El-Deiry WS. Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target [ J ]. Cancer Bi ol Ther, 2006, 5 (9):1228-1235.
    46. GONG Long -Bo, LUO Xue -Lai, LIU Shuang -You, et al. Correlations of GRIM-19 and Its Target Gene Product STAT3 to Malignancy of Human Colorectal Carcinoma [J]. Ai Zheng, 2007,26(7): 683-687
    47. Máximo V, Botelho T, Capela J, Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid [ J ]. Br J Cancer, 2005, 92 (10) : 1892-1898.
    48. Papa F, Delia M, Trentadue R, et al. Differential effects of all-trans retinoic acid on the growth of human keratinocytes and mouth carcinoma epidermoid cultures Involvement of GRIM-19 and complex I of the respiratory chain [ J ]. Int J Immunopathol Pharmacol, 2007, 20 (4) : 719-729.
    49. Ying Zhou, Min Li, Ying Wei, et al. Down-Regulation of GRIM-19 Expression is Associated with hyperactivation of STAT3-Induced Gene expression and tumorgrowth in Human Cervical Cancers [ J ]. Journal of interferonJ & cytokine research.2009,29(10):51-59.
    50. James N I. STATs: Signal transduction and activators of transcription. Cell, 1996 , 84 (2) : 331~334.
    51. James E, Darnell J r. STATs and gene regulation. Science, 1997, 277 (12):1630~1635.
    52. Yi Z, James T, Christin C, et al. Activation of Stat3 in v-src2 transformed fibroblasts requires cooperation of Jak1 kinase activity. J Biol Chem , 2000 , 275 (32) : 24935~24944.
    53. Levy DE, Darnell JE Jr. Stats: transcriptional control and biologicalimpact [J]. Nat Rev Mol Cell Biol, 2002, 3 (9): 651-662.
    54. Takeda K,Clauseu BE,Kaisho T,et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of macrophages and neutrophils [J].Immunity,1999; 10:39-46
    55. Chung CD,Liao J,Lin B,et al. Specific inhibition of STAT3 signal transduction by PIAS3 [J]. Science, 1997; 278:1803-1810.
    56. Kumisada K, Negoro S, Tone E, et al. Signal transducers and activators of transcription in the heart transducers not only a hypertrophic signal but a protective signal against doxorubicin - induced cardiomyopathy [J]. Proc Nati Acad Sci USA, 2000; 97:315-319.
    57. Niu G, Wright KL,Hung M, et al. Constitutive STAT3 activity up– regulates VEGF expression and tumor angiogenesis [J]. Oncogene, 2002; 21(13):2000-2013.
    58. Riku Fagerlunds, Krister Melen, Leena Kinnunen, et al. Argine/Lysine– rich Nuclear Localization signals mediate interactions between dimeric Stats and importin a5 [J].The journal of Biological Chemistry, 2002; 277:3072-3084.
    59. He B, You L, Uematsu K, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cance[J]. Proc Natl Acad Sci U S A, 2003;100 (24):14133-14144.
    60. Wang L, Banerjee S. Differential PIAS3 expression in human malignancy [J].OncolRep, 2004 11(6):1319-1329.
    61. Bowman T, Garcia R, Turkson J. STATs in oncogenesis [J].Oncogene, 2000; 19(21):2474-2491
    62. TURKSON J ,BOWMAN T , GARCIAR ,et al. Stat3 activation by Src induces specific gene regulation and is required forcell transformation [J ] . Mol Cell Biol ,1998 ,18 :254522552-254522571.
    63. HOSEA F H ,THOMAS F M , PING S ,et al. Stable expression of constitutively activated STAT3 in benign prostatic epithelialcells changes their phenotype to that resembling malignant cells[J ] . Mol Cancer , 2005 , 4(1) :2217-2227
    64. NING Z Q ,L I J ,McGUINNESS M ,et al. STAT3 activation is required for Asp (816) mutant c-Kit induced tumorigenicity[J] . Oncogene ,2001 ,20(33) : 452824536-452824549
    65. BENEKL I M , ZHENG X , KATHL EEN A ,et al. Constitutive activity of signaltransducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease2free survival [J] .Blood , 2002 ,99(1) : 2522257-2522281
    66. EPLING-BURNETTE P K,L IU J H ,CATL ETT2FALCONER ,et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression [J] . J Clin Invest , 2001 ,107(3) :3512362-3512379
    67. TAKEMOTO S ,MULLOYJ C ,CERESETO A ,et al. Proliferation of adult T cell leukemia Iymphoma cells is associated with the constitutive activation of JAK/ STAT proteins [J]. Proc Nati Acad Sci USA ,1997(94) : 13897213902-13897213914.
    68. FRANKD A ,MAHAJAN S ,RITZJ .B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription STAT1 and STAT3 constitutively phosphorylated on serine residues [J] . J Clin Invest ,1997 ,100 :314023148-314023161.
    69. NAGPAL J K,MISHRA R , DAS B R. Activation of Stat3 as one of the early eventsin tobacco chewing2mediated oral carcinogenesis [J] .Cancer ,2002 ,94(9) :239322400-239322412.
    70. GRANDIS J R ,DRENNING S D ,ZENG Q ,et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo [J] . Proc Natl Acad Sci USA ,2000 ,97 (8) :422724232-422724242
    71. HSIEH F C ,CHENG G, L IN J ,et al. Evaluation of potential Stat3-regulated genes in human breast cancer [J] . Biochem Biophys Res Commun ,2005 ,335(2) :2922299-2922312.
    72. DOLL ED-FILHART M ,CAMP R L , KOWALSKI D P ,et al. Tissue microarray analysis of signal transducers and activators of transcription 3 ( Stat3) and phospho2Stat3 in node negative breast cancer shows nuclear localization is associated with a better prognosis [J ] . Clin Cancer Res , 2003 , 9 : 594600-594624
    73. DIEN J ,AMIN H M , CHIU N ,et al. Signal transducers and activators of transcription23 up2regulates tissue inhibitor of metalloproteinase21 expression and decreases invasiveness of breast cancer [J ] . Am J Pathol , 2006 ,169(2) :6332642-6332652.
    74. MA X T ,WANG S , YE YJ ,et al. Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma [J]. World J Gastroenterol , 2004 ,10(11):156921573-156921584.
    75. KUSABA T , NAKAYAMA T , YAMAZUMI K,et al. Expression of p2STAT3 in human colorectal adenocarcinoma and adenoma ; correlation with clinicopathological factors [J].Cancer Research, 2006 ,66(7) : 291342917-291342929.
    76. KAWADA M , SENO H , UENOYAMA Y, et al. Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of beta-catenin in colorectal cancer [J] . Cancer Research , 2006 ,66(6) : 291322917 -291322928.
    77. MORA L B , BUETTNER R , SEIGNE J ,et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells [J] . CancerRes ,2002 ,62(22) :665926666-665926681.
    78. HORINAGA M ,OKITA H ,NAKASHIMA J ,et al. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer [J] . Urology ,2005 ,66(3) :6712675-6712683.
    79.胥文春,罗春丽,冯文莉,等.非小细胞肺癌组织中STAT3的表达及临床意义[J].临床检验杂志,2003 ,21 ( Suppl) :23224-23230.
    80. Niu G, Bowman T, Huang M, et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth [J ] . Oncogene, 2002, 21(46): 7001-7010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700