用户名: 密码: 验证码:
猪异种骨移植靶抗原分布及除抗原处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)探讨猪骨组织靶抗原分布特点。(2)观察脱脂部分脱蛋白、超深低温冷冻、超深低温冷冻+酶消化对猪骨组织抗原表达的影响,并研究其性状和生物力学特性改变。(3)研究不同方法处理的猪骨材料与兔成骨细胞组织相容性的变化。(4)不同方法处理的猪骨材料植入兔体内,观察宿主免疫排斥反应和移植骨的转归。
     方法:(1)采用免疫组化的方法观察α-Gal抗原、MHC-Ⅰ抗原和MHC-Ⅱ抗原在猪骨中的分布情况。(2)观察不同方法处理的猪骨材料的异种抗原及性状改变:实验分为A、B、C、D组。A组:脱脂部分脱蛋白组;B组:超深低温冷冻组;C组:超深低温冷冻+酶消化组;D组:新鲜猪骨移植组。免疫组化方法观察各组骨材料异种抗原的变化情况,大体观察不同组骨材料的形貌特征结构,扫描电镜观察各组材料的细微结构变化,比较各组骨材料的孔径大小和孔隙率;生物力学实验测定各组骨材料的力学性能变化。(3)不同方法处理的异种骨材料的细胞相容性:将A、B、C组骨材料体外分别与兔成骨细胞联合培养,每块材料上加入浓度为1×10~7╱ml的细胞悬液20μl,连续培养7天。分别于1、3、5、7天采用MTT法,检测兔成骨细胞在各组骨材料上的增殖情况,倒置显微镜和扫描电镜观察细胞在骨材料上的粘附生长,流式细胞仪分析细胞周期的变化。(4)不同方法处理的异种骨材料体内移植免疫研究:实验分为A、B、C、D、E、F组,A组:脱脂部分脱蛋白组;B组:超深低温冷冻组;C组:超深低温冷冻+酶消化组;D组:新鲜异种骨移植组;E组:自体骨移植组;F组:对照组(假手术组)。将各组骨材料分别植入新西兰大白兔双侧骶棘肌内,分别于术后1、2、4周取兔耳缘静脉血,流式细胞仪检测各组外周血中CD4~+、CD8~+T淋巴细胞亚群和CD4~+/CD8~+比值的变化;ELISA定量检测各组术后1、2、4、6周血清中IL-2和IL-4水平的变化;组织病理学观察移植骨材料周围炎性细胞浸润情况。(5)不同方法处理的异种骨材料修复兔桡骨缺损的研究:实验分组同(4),将各组骨材料分别植入兔桡骨缺损处,分别于术后6、12、24周取材,X线片检查,根据Lane-Sandhux的X线评分标准,定量观察各组骨缺损的修复情况;组织切片行HE和Masson染色,显微镜下观察各组骨愈合和新骨形成情况。
     结果:
     (1)免疫组化研究发现正常猪骨中,α-Gal、MHC-Ⅰ抗原广泛表达在骨髓细胞和骨细胞、成骨细胞胞膜及哈佛氏管周围,MHC-Ⅱ抗原主要表达于骨髓细胞。
     (2)不同方法处理的猪骨材料的异种抗原及性状改变:①各组抗原表达的比较,A组无骨细胞存留,无抗原阳性表达;B组骨陷窝和Harversian管周围仍有骨细胞存留,骨细胞表面可见少量α-Gal抗原、MHC-Ⅰ和MHC-Ⅱ抗原的阳性表达;C组可见骨陷窝内残存蓝染细胞核,无异种抗原的阳性表达;D组骨髓及骨细胞表面大量α-Gal抗原、MHC-Ⅰ和MHC-Ⅱ抗原的阳性表达。②扫描电镜观察,各组骨材料孔径大小比较A组>C组>B组>D组,B、D组间比较无统计学差异(P>0.05),其余各组间比较均有差异(P<0.05);材料孔隙率比较A组>C组>B组>D组,其中A组与C组、B组与D组之间比较无明显差别(P>0.05),其余各组间差别明显(P<0.05)。③轴向压缩实验,最大载荷比较D组>C组>B组>A组,其中A组明显小于其他各组(P<0.05),而B、C、D组间无明显差别(P>0.05)。
     (3)不同方法处理的异种骨材料的细胞相容性:兔成骨细胞在各组猪骨材料表面上均有生长,并且在第5天后成骨细胞增殖达到高峰,扫描电镜观察和MTT检测结果显示,各组生物相容性能C组>A组>B组。流式细胞术检测A、C组骨材料表面成骨细胞的细胞周期之间无明显差异,这两组细胞的S期+G_2/M期明显高于B组(P<0.05)。
     (4)不同方法处理的异种骨材料体内移植免疫研究:各组术后1-2周CD4~+、CD8~+T淋巴细胞均逐渐升高,CD4~+/CD8~+比值在各组术后1周最高,以后逐渐下降,2周时B、D组较高,A、C、E组比较无明显差别。ELISA法检测外周血清IL-2、IL-4水平,术后D组外周血IL-2、IL-4水平最高,术后1周时达到最高峰,以后逐渐下降,F组水平最低。A、B、C组间比较结果显示,术后不同时间点B组血清中IL-2、IL-4水平均明显高于A组和C组(P<0.05)。术后6周,各组组织病理学研究发现,D组移植骨材料周围大量淋巴细胞和巨噬细胞聚集;其次为B组,植骨材料周围中等量的淋巴细胞浸润;A组、C组、E组骨材料周围少量淋巴细胞浸润。
     (5)不同方法处理的异种骨材料修复兔桡骨缺损的研究:不同方法处理的骨材料修复兔桡骨缺损,经放射学和组织学评估,术后6周、12周和24周各组成骨能力依次为:E组>C组>A组>B组>D组>F组。
     结论:
     (1)α-Gal、MHC-Ⅰ抗原广泛表达在猪骨骨髓细胞和骨细胞、成骨细胞膜及哈佛氏管周围,MHC-Ⅱ抗原主要表达于骨髓细胞。
     (2)脱脂部分脱蛋白和超深低温冷冻+酶处理方法可以有效去除异种主要抗原,单纯超深低温冷冻可以明显降低猪骨的异种抗原表达,但是不能完全有效去除异种主要抗原。
     (3)各组骨材料孔径大小比较,三种处理方法获得的异种骨材料的孔径大小均可满足成骨细胞生长所需要的孔径要求。但是超深低温冷冻组骨材料孔隙率最小,可能会影响成骨细胞的长入。脱脂部分脱蛋白组生物力学性能最差,超深低温冷冻和超深低温冷冻+酶消化法对猪骨生物力学性能无明显影响,接近正常新鲜猪骨移植组。
     (4)各组骨材料体外与兔成骨细胞复合培养,超深低温冷冻+酶消化联合处理后的骨材料的生物相容性优于脱蛋白处理和单纯超深低温冷冻处理。
     (5)各组骨材料植入兔体内,异种骨移植免疫排斥反应主要发生在术后1-2周,超深低温冷冻+酶消化组和脱脂部分脱蛋白组骨材料免疫排斥反应较轻,单纯超深低温冷冻组免疫排斥较重。
     (6)超深低温冷冻+酶消化组和脱脂部分脱蛋白组骨缺损修复能力无明显差别,两组骨缺损修复能力均明显优于超深低温冷冻组。
     (7)超深低温冷冻+酶处理可以有效去除异种骨抗原,同脱脂部分脱蛋白组相比,具有良好的生物力学性能;具备合适的孔径大小和孔隙率,适合成骨细胞生长,具有良好的细胞生物相容性能;体内移植免疫排斥反应较轻微,骨缺损修复能力强,有望将来作为临床异种骨移植处理的有效方法之一。
Objective: (1) To investigate the distribution of xenogenous targeted antigen on porcine bone tissue. (2) To study the change of xenogenous antigen、biomechanical and physical properties, the porcine bone tissues were processed with three different methods. (3) To investigate the cellular compatibility of xenogenous bone scaffold materials. (4) To observe the immunological rejection and the turnover of the bone graft, the porcine bone tissues with different methods was implanted into the rabbits.
     Methods: (1) Distribution ofα-Gal、MHC-Ⅰand MHC-Ⅱantigen on porcine bone tissue were observed by immunohistochemistry. (2) Physical properties and heteroantigens of porcine bone were detected: The experiment was divided into group A、B、C、D according to different materials. Group A: porcine bone was processed with defatting and partial deproteinization; Group B: porcine bone was preserved in liqiud nitrogen;Group C: porcine bone was preserved in liqiud nitrogen and was digested by enzyme; Group D: fresh porcine bone. The change of expression of heteroantigen was detected by immunohistochemistry, and the microstructure and biomechanical properties of different groups were observed by Electronic Scanning and INSTRON 8874. (3) Cellular compatibility of xenogenous bone scaffold materials: Osteoblasts of rabbit were cultured with the bone scaffold materials of group A, group B, group C,respectively. Osteoblasts in 1×10~7/ml density were cultured with the three materials for 7 days. And the adhesion and growth of osteoblasts were observed with phase microscope and electronic scanning microscope, the cell cycle was analyzed with flow cytometer. The growth of osteoblasts were observed on 1、3、5、7 day were detected by MTT assay. (4) The immune reaction of bone xenotransplantaion: The experiment was divided into group A、B、C、D、E、F according to different materials. Group A:porcine bone was processed with defatting and partial deproteinization;Group B: porcine bone was preserved in liqiud nitrogen; Group C: porcine bone was preserved in liqiud nitrogen and was digested with enzyme;Group D: fresh porcine bone; Group E: bone atuograft; Group F: control group. The bone scaffold materials were implanted into the bilaterial spinal muscles of rabbits. At 1、2、4 weeks postoperatively, the examination of CD4~+、CD8~+、CD4~+/CD8~+ in blood was detected by flow cytometer, and the levels of IL-2 and IL-4 in blood were analyzed by quantitative ELISA assay.The infiltration of lymphocytes and macrophages surrounding soft tissue of bone graft were also observed in order to evaluation biocompatibility of bone graft. (5) The effect of repairing bone defect with different processed porcine bone scaffold materials: Sixty New Zealand white rabbits were chosen, and the radial critical bone defects were made for 15mm long. The experiment was randomly divided into group A、B、C、D、E、F according to different materials, and each group details was equal to part (4). The bone defects were grafted by xenogenous bone materials derived from different groups. Groups of rabbits were sacrificed and the specimens were procured at 6、12、24 weeks after surgery for examination X-rays photography and histology evaluation. The ability of repaii'ing bone defect of each group was evaluated by Lane-Sandhux radiographic scoring. To study the bone defect repairing and reconstruction, new bone formation and substitute, the 5μm paraffin slices were obtained and were stained by hematoxylin-eosin and Masson method.
     Results:
     (1)α-Gal、MHC-Ⅰxenogenous antigens were extensively observed on the surface of bone marrow cells、osteocytes, osteoblasts and Harversian canals, and the MHC-Ⅱantigen mainly expressed on the bone marrow cells.
     (2) Change of physical property and xenogenous antigens: No positive antigen expression in group A and group C, a few positive xenogenous antigens expression were detected in group B, while many positive xenogenous antigens expression were detected in group D. The results of pore size showed that group A>group C>group B>group D, there was no significant difference between group B and group D (P>0.05), and there was significant difference among the other groups (P<0.05); The results of porosity showed that group A>group C>group B>group D, there was no significant difference between group A and group C, group B and group D (P>0.05). Biomechanical analysis demonstrated that the maximum load in axial compression test, group D>group C>group B>group A, the minimum load was observed in group A and it was significantly inferior than the other groups (P<0.05), there was no significantly difference among group B、group C and group D (P>0.05).
     (3) The results of cellular compatibility of xenogenous bone scaffold materials demonstrated that rabbit osteoblasts were survival in all groups, and the cell proliferation reached the peak at the fifth day. The cellular compatibility was detected by electronic scanning microscope and MTT assay, the results showed that group C>group A>group B. Compared to group B, the xenogenous bone materials in group A and group C had little influence on the G_0/G_1 stage and S stage of the rabbit osteoblasts.
     (4) CD4~+, CD8~+ T lymphocytes gradually increased in 2 weeks after operation. The CD4~+/CD8~+ ratio reached the peak at 1 week after operation, then decreased gradually. The detection of CD4~+/CD8~+ ratio at 2 weeks postoperatively, there was no significant difference among group A、group C and group E, while the CD4~+/CD8~+ ratio reached higher level. Evaluation of IL-2 and IL-4 in serum by ELISA assay, the highest level" of IL-2 and IL-4 was detected in group D at 1 week after operation, the lowest level was in group F. Compared to group A and group C, the level of IL-2 and IL-4 were increased obviously in group B at different intervals after operation (P<0.05). There was medium dose of lymphocytes infiltration surrounding the soft tissue of bone graft in group B, and there was few lymphocytes infiltration in group A and group C.
     (5) According to the Lane-Sandhux radiographic scoring and the histological evaluation, the ability of reconstruction of radial defect was followed, group E>group C>group A>group B>group D>group F.
     Conclusions:
     (1)α-Gal、MHC-Ⅰxenogenous antigens were extensively observed on the surface of bone marrow cells、osteocytes、osteoblasts and Harversian canals, and the MHC-Ⅱantigen mainly expressed on the surface of bone marrow cells.
     (2) The expression of xenogenous antigen was decreased obviously in group B, but there was still some of positive expression of antigen on the porcine bone tissues. The xenogenous antigen was effectively deleted in group A and group C.
     (3) The results of pore size showed that group A>group C>group B, the pore size of porcine bone materials derived these groups could meet the requirement of osteoblasts ingrowth, but porosity of group B was lowest, which maybe hinder the ingrowth of osteoblast. The xenogenous bone materials had the poor biomechanical performance in group A. Compared to the normal fresh porcine bone tissue, there was no significantly influence on the biomechanical performance in group B and group C.
     (4) The cellular biocompatibility showed that group C>group A>group B.
     (5) Immunological rejection of bone xenograft occurred during 2 weeks after operation, the host immunological response was lightly in group A and group C, and there was obviously immunological rejection in group B.
     (6) The ability of reconstruction of radial bone defect demonstrated that group C>group A>group B.
引文
1. Gamradt SC, Lieberman JR. Bone graft for revision hip arthroplasty: biology and future applications. Clin Orthop Relat Res, 2003; 417: 183-194.
    2. Rougraff BT. Bone graft alternatives in the treatment of benign bone tumors. Instr Course Lect, 2005; 54: 505-512.
    3. Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br, 2005; 87(2): 142-150.
    4. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury, 2005; 36 Suppl 3: S20-27.
    5. Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet, 1999; 353 Suppl 1: SI28-29.
    6. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg, 2005; 13(1): 77-86.
    7. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg, 1996; 35(5): 413-417.
    8. Goulet JA, Senunas LE, DeSilva GL, et al. Autogenous iliac. crest bone graft. Complications and functional assessment. Clin Orthop Relat Res, 1997; 339: 76-81.
    9. Patel R, Trampuz A. Infections transmitted through musculoskelet al-tissue allografls. N Engl J Med, 2004; 350(25): 2544-2546.
    10. Park SA, Shin JW, Yang YI, et al. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials, 2004; 25(3): 527-35.
    11. Auchincloss H Jr. Xenogeneic transplantation. A review. Transplantation, 1988; 46(1): 1-20.
    12. Dorling A. Clinical xenotransplantation: pigs might fly? American Journal of Transplantation, 2002; 2(8): 695-700.
    13. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg, 2005; 13(1): 77-86.
    14.段海平,郑永唐,达天武等.脱抗原牛角胎骨移植家兔后的特异性免疫反应.免疫学杂志,2002;18(3):204-206.
    15. Joschek S, Nies B, Krotz R, et al. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 2000; 21(16): 1645-1658.
    1. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg, 2005; 13(1): 77-86.
    2. Eastlund T. Infectious disease transmission through cell, tissue and organ transplantation. Reducing the risk through donor selection. Cell transplantation, 1995; 4(5): 455-477.
    3. Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg Am, 1992; 74(6): 939-950.
    4. Auchincloss H Jr. Xenogeneic transplantation. A review. Transplantation, 1988; 46(1): 1-20.
    5. Vaughan HA, Loveland BE, Sandrin MS. Gal alpha(1, 3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation, 1994; 58(8): 879-882.
    6. Ramachandran S, Jaramillo A, Xu XC, et al. Human immune responses to porcine endogenous retrovirus-derived peptides presented naturally in the context of porcine and human major histocompatibility complex class Ⅰ molecules: implications in xenotransplantation of porcine organs. Transplantation, 2004; 77(10): 1580-1588.
    7. Galili U. The alpha-gal epitope(Gal alpha 1-3Gal beta 1-4GlcNAc-R) in xenotransplantation. Biochimie, 2001; 83(7): 557-563.
    8. Tanemura M, Yin D, Chong AS, et al. Differential immune responses to alpha-gal epitopes on xenografls and allografts: implications for accommodation in xenotransplantation. J Clin Invest, 2000; 105(3): 301-310.
    9. Tanemura M, Ogawa H, Yin DP, et al. Elimination of anti-Gal B cells by alpha-Gal ricin 1. Transplantation, 2002; 73(12): 1859-1868.
    10.寿建国,糜建红,应大君等.版纳微型猪近交系椎间盘异种抗原α-半乳糖基的分布.中国修复重建外科杂志,2002;16(5):359-361.
    11. Galili U, LaTemple DC, Radic MZ. A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation, 1998; 65(8): 1129-1132.
    12. Platt JL. New directions for organ transplantation. Nature, 1998; 392(6679 Suppl): 11-17.
    13. Galili U. Significance of anti-Gal IgG in chronic xenograft rejection. Transplant Proc, 1999; 31(1-2): 940-941.
    1. Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet, 1999; 353 Suppl 1: SI28-29.
    2. Giarmoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury, 2005; 36 Suppl 3: S20-27.
    3. Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am, 1994; 27(5): 1037-1074.
    4. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg, 1996; 35(5): 413-417.
    5. Patel R, Trampuz A. Infections transmitted through musculoskelet al-tissue allografts. N Engl J Med, 2004; 350(25): 2544-2546.
    6.段海平,郑永唐,达天武等.脱抗原牛角胎骨移植家兔后的特异性免疫反应.免疫学杂志,2002;18(3):204-206.
    7. Adbin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem, 1999; 72(3): 196-410.
    8.于洪波,魏奉才,孙善珍.液氮冻存降低成骨细胞免疫原性的实验研究.口腔颌面外科杂志,2006;16(3):215-218.
    9. Oh JH, Zoller JE, Kubler A. A new bone banking technique to maintain osteoblast viability in frozen human iliac cancellous bone. Cryobiology, 2002; 44(3): 279-287.
    10. Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res, 1972; 71(2): 345-355.
    11.林丛,侯宽永,张文秀,等.深低温在肝细胞移植中减轻免疫排斥反应的作用.北京医科大学学报,1998;30(1):32-34.
    12.陈慰峰,金伯泉.医学免疫学[M].第四版.北京:人民卫生出版社,2004:34-37.
    13. Esteban O, Zhao H. Directed evolution of soluble single-chain human class Ⅱ MHC molecules. J Mol Biol, 2004; 340(1): 81-95.
    14. Heyligers IC, Klein-Nulend J. Detection of living cells in non-processed but deep-frozen bone allografts. Cell Tissue Bank, 2005; 6(1): 25-31.
    15.张文斌.无细胞胶原基质的研究进展.国外医学生物医学工程分册,2004;27(2):127-130.
    16. Groeneveld EH, van den Bergh JP, Holzmann P, et al. Mineralization processes in demineralized bone matrix grafts in human maxillary sinus floor elevations. J Biomed Mater Res, 1999; 48(4): 393-402.
    17. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005; 26(27): 5474-5491.
    18. Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res, 1998; 39(2): 190-199.
    19. Chang BS, Lee CK, Hong KS, etal. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000; 21(12): 1291-1298.
    20. Currey JD. Bones: structure and mechanics. Princeton, N. J. Princeton University Press, 2002: 1-380.
    21. Seeman E, Delmas PD. Bone quality the material and structural basis of bone strength and fragility. N Engl J Med, 2006; 354(21): 2250-2261.
    22. Niyibizi C, Eyre DR. Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type Ⅰ collagen. Eur J Biochem, 1994; 224(3): 943-950.
    23. Baum J, Brodsky B. Folding of peptide models of collagen and misfolding in disease. Curr Opin Struct Biol, 1999; 9(1): 122-128.
    24. DePaula CA, Truncale KG, Gertzman AA. Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank, 2005; 6(4): 287-298.
    25.罗卓荆,胡蕴玉,王茜等.30%H_2O_2浸渍对牛松质骨力学特性的影响.中华骨科杂志,1997;17(11):714-717.
    26. Matter HP, Garrel TV, Bilderbeek U, etal. Biomechanical examinations of cancellous bone concerning the influence of duration and temperature of cryopreservation. J Biomed Mater Res, 2001; 55(1): 40-44.
    27. Kang Q, An YH, Friedman RJ. Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res, 1997; 58(10): 1171-1173.
    28.张朝春,张发惠,郑和平等.超深低温冷冻对大鼠骨力学性能影响的生物力学研究.中国临床解剖学杂志,2004;22(3):315-317.
    29. Actis AB, Obwegeser JA, Bertolotto P. Effects of enzymatic treatments on the biomechanical properties of screws made of bone. J Biomater Appl, 2003; 17(3): 207-219.
    30.杨立华,王远亮,何创龙等.脱除异种骨中非胶原蛋白的研究.高技术通讯,2005;15(4):41-44.
    1. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅰ. Traditional factors. Tissue Eng, 2001; 7(6): 679-689.
    2. Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials, 2001; 22(11): 1279-1288.
    3. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000; 21(24): 2529-2543.
    4. Pizzoferrato A, Ciapetti G, Stea S, et al. Cell culture methods for testing biocompatibility. Clin Mater, 1994; 15(3): 173-190.
    5. Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs, 2005; 8(3): 131-6.
    6. Kirkpatrick CJ, Bittinger F, Wagner M, et al. Current trends in biocompatibility testing. Proc Inst Mech Eng, 1998; 212(2): 75-84.
    7. Zhang Y, Tanner KE, Gurav N, et al. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. J Biomed Mater Res A, 2006; 81 A(2): 409-417.
    8. Chang BS, Lee CK, Hong KS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000; 21(12): 1291-1298.
    9. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000; 21(7): 667-681.
    10. Price RL, Gutwein LG, Kaledin L, et al. Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. J Biomed Mater Res A, 2003; 67(4): 1284-1293.
    11. Lee TM, Chang E, Yang CY. Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: Effect of surface chemistries of the alloy. Biomaterials, 2004; 25(1): 23-32.
    12. Lopes MA, Knowles JC, Kuru L, et al. Flow cytometry for assessing biocompatibility. J Biomed Mater Res, 1998; 41(4): 649-656.
    13.戴建国,黄培林,郭英等.细胞周期检测作为生物相容性评价指标的研究.东南大学学报(自然科学版),2005;35(2):271-274.
    1. Dorling A. Clinical xenotransplantation: pigs might fly? American Journal of Transplantation, 2002; 2(8): 695-700.
    2. Armour AD, Fish JS, Woodhouse KA, et al. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro. Plast Reconstr Surg,2006; 117(3):845-856.
    3. Erdbrugger W, Konertz W, Dohmen PM, et al. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng, 2006; 12(8):2059-2068.
    4. Salgado AJ, Figueiredo JE, Coutinho OP, et al. Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. J Mater Sci Mater Med, 2005; 16(3):267-275.
    5. Platt JL. New directions for organ transplantation. Nature, 1998; 392(6679 Suppl):11-17.
    6. Murphy B, Auchincloss H Jr, Carpenter CB, et al. T cell recognition of xeno-MHC peptides during concordant xenograft rejection. Transplantation, 1996; 61(8):1133-1137.
    7. Gerna G, Lilleri D, Fornara C, et al. Monitoring of human cytomegalovirus-specific CD4 and CD8 T-cell immunity in patients receiving solid organ transplantation. American Journal of Transplantation, 2006; 6(10):2356-2364.
    8. Davila E, Byrne GW, LaBreche PT, et al. T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation, 2006; 13(1):31-40.
    9. Voggenreiter G, Assenmacher S, Kreuzfelder E, et al. Immunosuppression with FK506 increases bone induction in demineralized isogeneic and xenogeneic bone matrix in the rat. Journal of Bone & Mineral Research, 2000; 15(9):1825-1834.
    10. Aubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. Journal of Cellular Biochemistry, 1999; 72(3):396-410.
    11. Zhang XG, Lu Y, Wang B, et al. Cytokine production during the inhibition of acute vascular rejection in a concordant hamster-to-rat cardiac xenotransplantation model. Chin Med J (Engl), 2007; 120(2):145-149.
    1. Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop Relat Res, 1985; 200: 322-342.
    2. Parikh SN. Bone graft substitutes in modem orthopedics. Orthopedics, 2002; 25(11): 1301-1309.
    3. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg, 1996; 35(5): 413-417.
    4. Goulet JA, Senunas LE, DeSilva GL, et al. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res, 1997; 339: 76-81.
    5. Patel R, Trampuz A. Infections transmitted through musculoskelet al-tissue allografts. N Engl J Med, 2004; 350(25): 2544-2546.
    6. Park SA, Shin JW, Yang YI, et al. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials, 2004; 25(3):527-535.
    7. Suh H, Park JC, Han DW, et al. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Artif Organs, 2001; 25(1): 14-21.
    8. Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop ClinNorthAm, 1987; 18(2):213-225.
    9. Cook SD, Baffes GC, Wolfe MW, et al. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg (Am), 1994; 76(6): 827-838.
    10. Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci, 2004; 362(1825):2821-2850.
    11. Solheim, E. Growth factors in bone. Int Orthopaedics, 1998; 22(6): 410-416.
    12. Yoon ST, Boden SD. Osteoinductive molecules in orthopaedics: basic science and preclinical studies. Clin Orthop Rela Res, 2002; 395: 33-43.
    13. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res, 1998; 346:26-37.
    14. Sampath TK, Reddi AH. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci U S A, 1983; 80(21):6591-6595.
    15. Viljanen VV, Lindholm TS. Comparison of native xenogeneic and allogeneic bone morphogenetic proteins in the sheep skull defect assay model. Annales Chirurgiae et Gynaecologiae, 1997; 86(3):255-259.
    16. Viljanen VV. Gao TJ. Lindholm TC, et al. Xenogeneic moose (Alces alces) bone morphogenetic protein (mBMP)-induced repair of critical-size skull defects in sheep. International Journal of Oral & Maxillofacial Surgery, 1996; 25(3):217-222.
    17. Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem, 2001;129(1):133-138.
    18. Murata M, Huang BZ, Shibata T, et al. Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone. Int J Oral Maxillofac Surg, 1999;28(3):232-237.
    
    19. Michaeli D, Martin GR, Kettman J, et al. Localization of antigenic determinants in the polypeptide chains of collagen. Science 1969; 166: 1522-1524.
    20. Takaoka K, Koezuka M, Nakahara H. Telopeptide-depleted Bovine Skin Collagen as a Carrier for Bone Morphogenetic Protein. J Orthop Res, 1991; 9: 902-907.
    21. DePaula CA, Truncale KG, Gertzman AA, et al. Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank, 2005; 6(4):287-98.
    22. Carpenter EM, Gendler E, Malinin TI, et al. Effect of hydrogen peroxide on osteoinduction by demineralized bone. Am J Orthop, 2006; 35(12):562-567.
    23. Amillo S, Gonzalez F, Illescas JA. Incorporation of cortical intercalary bone allografts. Experimental study on rabbits. An Sist Sanit Navar, 2003; 26(3):357-363.
    24. Schratt HE, Spyra JL. Experimental studies of healing and antigenicity of sterilized bone transplants. Chirurg, 1997; 68(1):77-83.
    1. Allan JS. Xenotransplantation at a crossroads: prevention versus progress. Nat Med, 1996; 2(1): 18-21.
    2. Brown P. Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease. BMJ, 2001; 322(7290): 841-844.
    3. Goddard MJ, Foweraker JE, Wallwork J. Xenotransplantation-2000. J Clin Pathol, 2000; 53(1): 44-48.
    4. Tannsjo T. Ethical aspects of transplantation surgery. Transplant Proc, 2003; 35(3): 1210-1213.
    5. Couzin J. Wanted: pig transplants that work. Science, 2002; 295(5557): 1008.
    6. Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyl transferase knockout pigs by nuclear transfer cloning. Science, 2002; 295(5557): 1089-1092.
    7. Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alphal, 3-galactosyl transferase gene in cloned pigs. Nat Biotechnol, 2002; 20(3): 251-255.
    8. Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1, 3-galactosyltransferase-deficient pigs. Science, 2003; 299(5605): 411-414.
    9. Shou JG, Mi JH, Ying DJ. Expression and distribution of xenoantigen alpha-Gal in intervertebral disk of Chinese banna rninipig inbred line. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2002; 16(5): 359-361.
    10.胡蕴玉,陆裕朴,刘玮等.重组合异种骨的实验研究和临床应用.中华外科杂志,1993;31(12):709-713.
    11. Seebach JD, Comrack C, Germana S, et al. HLA-Cw3 expression on porcine endothelial cells protects against xenogeneic cytotoxicity mediated by a subset of human NK cells. J Immunol, 1997; 159(7): 3655-3661.
    12. Ekelund A, Ahmed M, Bjurholm A, et al. Neuropeptides in heterotopic bone induced by bone matrix in imrnunosuppressed rats. Clin Orthop Relat Res, 1997; 345: 229-238.
    13. Ikebe S, Masumi S, Yano H, et al. Immunosuppressive effect of tacrolimus (FK-506). Bone xenografts in rabbits. Acta Orthop Scand. 1996, 67(4): 389-392.
    14. Okada K, Sakata H, Minarnoto A, et al. Effect of FK 506 administered topically versus intramuscularly on suppression of the corneal immune reaction in rats. Ophthalmologica, 1996; 210(3): 175-179.
    15.毕树雄,戴克戎,汤亭亭.CTLA4-Ig和IL-4诱导异种骨移植免疫耐受的体外研究.中华骨科杂志,2001;21(7):433-436.
    16.段海平,郑永唐,达天武等.脱抗原牛角胎骨移植家兔后的特异性免疫反应.免疫学杂志,2002;18(3):204-206.
    17. Kim SH, Shin JW, Park SA, et al. Chemical, structural properties, and osteo conductive effectiveness of bone block derived from porcine cancellous bone. J Biomed Mater Res B Appl Biomater, 2004; 68(1): 69-74.
    18. Joschek S, Nies B, Krotz R, et al. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 2000; 21(16): 1645-1658.
    19. Valentini P, Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone(Bio-Oss): a clinical study of 20 patients. Int J periodontics Restorative Dent, 1997; 17(3): 232-241.
    20. Valentini P, Abensur D, Densari D, et al. Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implants Res, 1998; 9(1): 59-64.
    21.罗卓荆,胡蕴玉,候德门等.牛松质骨力学强度与去抗原处理时限的相关性实验.第四军医大学学报,1996;17(6):434-436.
    22.李彦林,杨浩,韩睿等.三种生物骨衍生材料移植早期外周血T淋巴细胞亚群的变化.中华创伤骨科杂志,2004;6(10):1160-1163.
    23.杨志明,李彦林,解慧琪等.生物衍生骨支架材料的组织相容性研究.中华整形外科杂志,2002;18(1):6-8.
    24. Edwards JT, Diegmann MH, Scarborough NJ. Osteoinduction of human demineralized bone: characterization in a rat model. Clin Orthop Relat Res, 1998; 35(7): 219-228.
    25.冯振洲,陈峥嵘,夏庆等.异种(猪)骨基质明胶修复兔桡骨缺损模型的实验研究.中国临床医学,2001;8(5):466-468.
    26. Xiao Y, Haase H, Young WG, et al. Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplant, 2004; 13(1): 15-25.
    27.沙镝,姜英令,高景恒等.猪长骨脱细胞骨细胞外基质的制备及生物力学、组织学性质的初步检测.实用美容整形外科杂志,2000;11(6):331-334.
    28.王昊,柏树令.骨脱细胞后的有机成分分析.中国修复重建外科杂志,2003;17(5):422-424.
    29.张建政,李亚非,骆洪涛等.脱细胞保鲜异种骨移植免疫反应的实验研究.山西医科大学学报,2004;35(6):550-552.
    30.何创龙,王远亮,杨立华等.Kiel骨理化性能的实验分析.重庆大学学报,2004;27(7):40-44.
    31.于洪波,魏奉才,孙善珍.液氮冻存降低成骨细胞免疫原性的实验研究.口腔颌面外科杂志,2006;16(3):215-218.
    32. Oh JH, Zoller JE, Kubler A. A new bone banking technique to maintain osteoblast viability in frozen human iliac cancellous bone. Cryobiology, 2002; 44(3): 279-287.
    33. Kang Q, An YH, Friedman RJ. Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res, 1997; 58(10): 1171-1173.
    34. Sculean A, Berakdar M, Chiantella GC. Healing of intrabony defects following treatment with a bovine-derived xenograft and collagen membrane. A controlled clinical study. J Clin Periodontol, 2003; 30(1): 73-80.
    35.刘玮,胡蕴钰,卢裕朴等.重组合异种骨的研制及其生物活性分析.中华医学杂志,1991;71(7):378-380.
    36.李彦林,杨志明.陶瓷样异种骨复合骨髓异位成骨的实验研究.中国修复重建外科杂志,1999;13(1):38-42.
    37.杜俊杰,胡蕴玉,罗卓荆等.碱性成纤维细胞生长因子增强人重组骨形态发生蛋白-2诱导成骨的调理机理.中国矫形外科杂志,1999;6(7):526-528.
    38. Briem D, Linhart W, Lehmann W, et al. Long-term outcomes after using porous hydroxyapatite ceramics(Endobon) for surgical management of fractures of the head of the tibia. Unfallchirurg, 2002; 105(2): 128-133.
    1. Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet, 1999; 353 Suppl 1: SI28-29.
    2. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury, 2005; 36 Suppl 3: S20-27.
    3. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg, 1996; 35(5): 413-417.
    4. Cook SD, Baffes GC, Wolfe MW, et al. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg Am, 1994; 76(6): 827-838.
    5. Goulet JA, Senunas LE, DeSilva GL, et al. Autogenous lilac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res, 1997; 339:76-81.
    6. Arrington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res, 1996; 329:300-309.
    7. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine, 1995; 20(9):1055-1060.
    8. Friedlaender GE, Strong DM, Tomford WW, et al. Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am, 1999; 30(4):583-588.
    9. Conrad EU, Gretch DR, Obermeyer KR, et al. Transmission of the hepatitis-C virus by tissue transplantation. J Bone Joint Surg Am, 1995; 77(2):214-224.
    10. Tomford WW. Transmission of disease through transplantation of musculoskelet al allografts. J Bone Joint Surg Am, 1995; 77(11):1742-1754.
    11. Patel R, Trampuz A. Infections transmitted through musculoskelet al-tissue allografts. N Engl J Med, 2004; 350(25):2544-2546.
    12. Hulbert SF, Young FA, Mathews RS. Potential of ceramic materials as permanently implantable skelet al prostheses. J Biomed Mater Res, 1970; 4(3):433-456.
    13. Parikh SN. Bone graft substitutes in modern orthopedics. Orthopedics, 2002; 25(11):1301-1309.
    14. Mousset B, Benoit MA, Delloye C, et al. Biodegradable implants for potential use in bone infection. An in vitro study of antibiotic-loaded calcium sulphate. Int Orthop, 1995; 19(3):157-161.
    15. Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res , 2003;406:228-236.
    16. Peters CL, Hines JL, Bachus KN. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A, 2006; 76(3):456-462.
    17. Stubbs D, Deakin M, Chapman-Sheath P, et al. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials, 2004; 25(20): 5037 -5044.
    18. El-Amin SF, Lu HH, Khan Y, et al. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003; 24(7): 1213-1221.
    19. McKee MD, Wild LM, Schemitsch EH, et al. The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma, 2002; 16(9):622-627.
    20. Nelson CL, McLaren SG, Skinner RA, et al. The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. J Orthop Res, 2002; 20(4):643-647.
    21. Ferraro JW. Experimental evaluation of ceramic calcium phosphate as a substitute for bone grafts. Plast Reconstr Surg, 1979; 63(5):634-640.
    22. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin North Am, 1986; 30(1):49-67.
    23. Holt GE, Halpern JL, Dovan TT, et al. Evolution of an in vivo bioreactor. J Orthop Res, 2005; 23(4):916-923.
    24. Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop Clin North Am, 2000; 31(3):389-398.
    25. Johnson KD, Frierson KE, Keller TS, et al. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res, 1996; 14(3):351-369.
    26. Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am, 1999; 30(4):591-598.
    27. Fleming JE Jr, Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am, 2000; 31(3):357-374.
    28. Chapman MW, Bucholz R, Cornell C. Treatment of acute fractures with a collagen-calcium phosphate graft material. A randomized clinical trial. J Bone Joint Surg Am, 1997; 79(4):495-502.
    29. Grimes JS, Bocklage TJ, Pitcher JD. Collagen and biphasic calcium phosphate bone graft in large osseous defects. Orthopedics, 2006; 29(2):145-148.
    30. Walsh WR, Harrison J, Loefler A, et al. Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop Relat Res, 2000; (375):258-66.
    31. Tay BK, Le AX, Heilman M, et al. Use of a collagen-hydroxyapatite matrix in spinal fusion. A rabbit model. Spine, 1998; 23(21):2276-2281.
    32. Kraiwattanapong C, Boden SD, Louis-Ugbo J, et al. Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine, 2005; 30(9):1001-1007.
    33. Blaker JJ, Gough JE, Maquet V, et al. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A, 2003; 67(4):1401-1411.
    34. Georgiou G, Knowles JC. Glass reinforced hydroxyapatite for hard tissue surgery-part 1: Mechanical properties. Biomaterials, 2001; 22(20):2811-2815.
    35. Salih V, Georgiou G, Knowles JC, et al. Glass reinforced hydroxyapatite for hard tissue surgery-part II: in vitro evaluation of bone cell growth and function. Biomaterials, 2001; 22(20):2817-2824.
    36. Raschke M, Wildemann B, Inden P, et al. Insulin-like growth factor-1 and transforming growth factor-betal accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone, 2002; 30(1):144-151.
    37. Kroeber MW, Rovinsky D, Haskell A. et al. Biomechanical testing of bioabsorbable cannulated screws for slipped capital femoral epiphysis fixation. Orthopedics, 2002; 25(6):659-662.
    38. Khouw IM, van Wachem PB, de Leij LF, et al. Inhibition of the tissue reaction to a biodegradable biomaterial by monoclonal antibodies to IFN-gamma. J Biomed Mater Res, 1998; 41:202-210.
    39. Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2004; 71B(1):52-65.
    40. Wan Y, Yu A, Wu H, et al. Porous-conductive chitosan scaffolds for tissue engineering II. in vitro and in vivo degradation. J Mater Sci Mater Med, 2005; 16(11):1017-1028.
    41. Urist MR. Bone: formation by autoinduction. Science, 1965; 150(698):893-899.
    42. Goldhaber P. Osteogenic induction across millipore filters in vivo. Science, 1961; 133:2065-2067.
    43. Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. J Bone Joint Surg Am, 1986; 68(8):1264-1274.
    44. Oakes DA, Lee CC, Lieberman JR. An evaluation of human demineralized bone matrices in a rat femoral defect model. Clin Orthop Relat Res, 2003; 413:281-290.
    45. Etienne G, Ragland PS, Mont MA. Use of cancellous bone chips and demineralized bone matrix in the treatment of acetabular osteolysis: preliminary 2-year follow-up. Orthopedics, 2004; 27(1 Suppl):s123-126.
    46. Thalgott JS, Giuffre JM, Fritts K, et al. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J, 2001; 1(2): 131-137.
    47. Colnot C, Romero DM, Huang S. Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects. Clin Orthop Relat Res, 2005; (435):69-78.
    48. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br, 2001; 83(1):3-8.
    49. Sampath TK, Reddi AH. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci USA, 1983; 80(21): 6591-6595.
    50. De Biase P, Capanna R. Clinical applications of BMPs. Injury, 2005; 36 Suppl 3:S43-6.
    51. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am, 2001; 83-A Suppl 1(Pt 2):S151-158.
    52. Bourque WT, Gross M, Hall BK. Expression of four growth factors during fracture repair. Int J Dev Biol, 1993; 37(4):573-579.
    53. Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res, 1995; (313):8-18.
    54. Connolly J, Guse R, Lippiello L, et al. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am, 1989; 71(5):684-691.
    55. Szpalski M, Gunzburg R. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics, 2002; 25(5 Suppl):s601-609.
    56. Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng, 2005; 11(5-6):787-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700