用户名: 密码: 验证码:
哈达山砂土剪切破坏的三轴试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将大连理工大学环境土力学研究室自行研制开发的三轴试验土样变形的数字图像测量系统应用于土工三轴试验,克服传统接触式变形测量方法的不足,提高了变形测量的精度,为土工三轴试验提供了全新的、更合理有效的变形测量手段。通过对黑色乳胶膜上白色角点的捕捉识别,得到每时每刻的角点信息,从而整理分析局部与整体的强度和变形特性;再利用有限元分散得到全表面的变形场,进而研究剪切带的形成、发展及影响因素等相关问题。
     以哈达山砂土作为试验土体,充分利用数字图像测量技术的高精度性,研究其强度和变形特性。试验结果表明:(1)围压是影响砂土强度和变形的一个很重要的外部因素,围压越大,达到同一轴向应变值时主应力差值越大。一般情况下,高围压下主应力差和轴向应变曲线上容易出现峰值点,砂土易表现为应变软化型,低围压下应力应变曲线上没有明显的峰值,加载到一定程度后主应力差随轴向应变的变化不大,砂土易表现为应变稳定型。(2)密实度也是影响土强度和变形的一个重要因素,密实度大的砂土其强度相比较大,相同密实度下,中砂较细砂强度大,不易变形。(3)在加载初期,体积应变随时间的关系曲线上都有一小段斜率变小的阶段,然后又逐渐增大,证实了砂土的剪胀(剪缩)性。(4)由于端部约束作用,试样中间四层的轴向应变和径向应变都较之整体变形大,所以整体主应力差较之中间四层主应力差大。
     以哈达山砂土作为试验土体,充分利用数字图像测量技术的面场特性,研究三轴试样剪切带的形态、出现剪切带试样的应力应变特性以及剪切带的形成条件和影响因素。试验结果表明:(1)哈达山砂土三轴试样出现剪切带的必要条件可能是土样具有较大的相对密度和相对较高的周围压力,相对较高的试样和不饱和状态的试样比较容易出现剪切带。(2)在试验过程中出现剪切带的土体,其应力应变曲线上有明显峰值,剪切带完全形成后,土体强度趋近于残余强度。没有出现剪切带的土体,其应力应变曲线变化趋势很缓慢,没有峰值出现。如鼓胀塑性变形,其应力应变曲线一直变化非常缓慢。(3)试验过程中的剪切速率对剪切带的形成也是一重要影响因素,从试验数据处理的结果看,大的剪切速率加快了剪切破坏的形成。
The application of digital image processing technique for local deformation measurement in triaxial test brings a lot of advantages comparing to the traditional measurement method. It improves the accuracy of deformation measurement, and provides a new, more reasonable and effective method in specimen deformation measurement. By capturing and identifying the black rubber membrane of the white corner, get the corner point information of every moment, which analyzed the part and the overall strength and deformation characteristics. Re-use of the finite element dispersion to get full-surface deformation field, to study shear band formation, development and affecting factors and so on.
     Based on the high precision characteristics of digital image processing technique, using hadashan sand as test specimen, the strength and deformation characteristics are studied. The laboratory test results show that: (1) Confining pressure is a very important external factor that affects the strength and deformation of sands, the higher the confining pressure, the larger is the deviatoric stress when they reach the same strain. In general, it's easier to observe the peak-point in deviatoric stress and axial strain curve, sand tends to display strain-softening behavior. There is no obvious peak-point in stress-strain curve when the confining pressure is low, when the load reaches a certain high value, there is no obvious difference in stress-strain curve, sand is easy to show strain stability. (2) The density is also a very important factor that affect the strength and deformation of sand, the higher the density, the stronger the strength. Medium sand has a higher shear strength than the fine sand when they have the same density, so the medium sand is difficult to deform. (3) During the initial loading period, there is a small zone where the gradient is initially negative and then become positive in the volume strain-time curve, it is proved that the shear contraction(shear dilatation) of the sand. (4) As a role of end restraint, the middle four pieces compared to the overall specimen, the former have higher axial and radial strain, so deviatoric stress of the overall compared to the middle four pieces is higher.
     Based on the planar characteristics of digital image processing technique, using hadashan sand as test specimen, the characteristics of triaxial specimen, the stress-strain characteristics, the formation conditions and the influencing factors of shear band were studied. The laboratory test results show that :(1) The necessary condition under which shear band might appear in hadashan sand specimen was the relatively high density, high cell pressure and a relatively low degree of saturation. (2) For the specimen which has shear band during the triaxial test, there is a obvious peak-point in the stress-strain curve, specimen's strength reaches the residual strength. There is no peak-point in the stress-strain curve and the curve is flat for the specimen without shear band, take the drum deformation for example, there is little change in the stress-strain curve. (3) Shear rate is also a significant influencing factor to the formation of the shear band during the triaxial test; the testing data show that, the rapid shear rate accelerates the formation of the shear band.
引文
[1]沈珠江.关于土力学发展前景的设想.岩土工程学报,1994,16(1):110-111.
    [2]袁驷,张跃等.二十一世纪土木工程学科的发展趋势.北京:科学出版社,1997:247-260.
    [3]谢定义.二十一世纪土力学的思考.岩土工程学报,1997,19(4):112-114.
    [4]卢肇钧.关于土力学发展与展望的综合述评.北京:科学出版社,1997:195-207.
    [5]周镜.跨世纪的我国土力学及基础工程.北京:清华大学出版社,1998.
    [6]Yan h.Nonlinear Load-deformation Characteristics and footings under cyclic loading:(ph.D.Dissertation).Southern California:University of Southern California.2001.
    [7]Burland J B,Symes M J.A simple axial displacement gauge for use in the Triaxial apparatus[J].Geotechnical,1982,32(1),62-65.
    [8]Clayton C R I,Khatrush S A,Bica A,Siddique A,The use of hall effect semiconductors in geotechnical instrumentation[J].Geotechnical Twisting journal,ASTM,1989,12(1),69-76.
    [9]Goto S,Tatsuoka F,etal.A simple gauge for local small strain measurements in the laboratory[J].Soils and Foundations,1991,31(1),169-180.
    [10]王俊发,马旭,杨传华.土保护层塑料薄膜防渗渠道的铺膜临界角[J].农机化研究,2008,4,49-51.
    [11]孙益振.基于三轴试样局部变形测量的土体应力应变研究[D].大连:大连理工大学,2005
    [12]王助贫.三轴试样变形的数字图像测量方法及其应用[D].大连:大连理工大学,2002.(wAUG Zhu-pin.Application of digital image processing technique for soil specimendeformation measurement in triaxial test triaxial presscondition[D].Dalian:Dalian University of Technology,2002.)
    [13]邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法[J].岩土工程学报,2002,24(2):159-163.
    [14]Frost J D.Imaging technologies:New tools for civil engineers.Journal of computing in civil engineering,1999,13(2):59-60.
    [15]Jacquot P,Facchini M.Interferometric imaging:Involvement in civil engineering.Journal of computing in civil engineering,1999,13(2):61-70.
    [16]Athanasios N P,Panayiotis D,Mahesh B,Clinton L D.Computer vision technique for tracking bed load movement.Journal of computing in civil engineering,1999,13(2):71-79.
    [17]胡敏良.挑流水舌雾化的研究.水动力学研究与进展A辑,1994,3.
    [18]丁万山,崔永东,张景镇.应用数字图象处理技术研究涡流场.南京航空航天大学学报,1995,3.
    [19]Mesut P,Sibel P,Horace M Y.Magnetic resonance imaging of hydrocarbon-contaminated porous media.Journal of computing in civil engineering,1999,13(2):96-102.
    [20]Jerzy M B,Janusz K.Automatic image analysis in evaluation of aggregate shape.Journal of computing in civil engineering,1999,13(2):123-129.
    [21]Burns S E,Zhang M.Digital image analysis to assess microbubble behavior in porous media.Journal of computing in civil engineering,1999,13(1):43-48.
    [22]Bhatia S K,Soliman A F.Frequency distribution of void ratio of granular materials determined by an image analyzer.Soils and foundations,1990,30(1):1-16.
    [23]AI-Shibli K,Macari E,Sture S.Digital imaging techniques for the assessment of homogeneity of granular materials,Emerging technologies in geotechnical engineering,1996:121-128.
    [24]Kuo C Y,Frost J D.Uniformity evaluation of cohesion-less specimens using digital image analysis.J.Geotech.Engrg.,ASCE,1996:122(5):390-396.
    [25]All M G,Roman D H.Soil particle size distribution by mosaic imaging and watershed analysis.Journal of computing in civil engineering,]999,13(2):80-87.
    [26]Wudhbir,Abedinzadeh R.Quantification of particle shape and angularity using the image analyzer.ASTM Geotech.Testing J.,1991,14(3):296-308.
    [27]Kuo C Y,Frost J D,Lai J S,Wang L B.Three dimensional image analysis of aggregate particles from orthogonal projections.Transp.Res.Rec.1526,1996:98-103.
    [28]Raschke S A,nryciw R D.Grain-size distribution of granular soils by computer vision.ASTM Geotech.Testing J.,1997,20(4):433-442.
    [29]Hryciw R D,Raschke S A.Development of computer vision technique for in-situ soil characterization.Transp.Res.Rec.1526,1996:86-97.
    [30]Ghalib A M,Hryciw R D,Skin S C.Image texture analysis and neural network for the characterization of uniform soils.Proc.,Cong.on Computing in Civ.Engrg.,ASCE,Reston,Va.,1998:671-682.
    [31]Werner A M,Lange D A.Quantitative image analysis of masonry mortar microstructure.Journal of computing in civil engineering,1999,13(2):110-115.
    [32]王盛源,关锦荷,蒋雪琴.饱和粘土微粒结构及其工程特性研究.水运工程,1999,5.
    [33]刘红玫.黄土孔隙微结构的计算机图像处理分析方法.高原地震,1999,3.
    [34]Khalid A,Stein S.Sand shear band thickness measurements by digital imaging techniques.Journal of computing in civil engineering,1999,13(2):103-109.
    [35]Masad E,Muhunthan B,Shashidhar N,Harman T.Internal structure characterization of asphalt concrete using image analysis.Journal of computing in civil engineering,1999,13(2):88-95.
    [36]Desrues J,Chambon R,Mokni M,Mazerolle F.Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography.Geotechnique,1996,3:529-546.
    [37]Harris W,Viggiani G,Mooney M A,Finno R J.Use of stereophotogrammetry to analyze the development of shear bands in sand.hSTM Geotech.Testing J.,1995,18(4):405-420.
    [38]李元海,朱合华,上野胜利,等.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报,2004,26(1):36-41.
    [39]何卫忠。用数字相关分析测量砂土的位移场[J].江苏建筑.2000,3:56-59.
    [40]马少鹏,王来贵,赵永红.岩石圆孔结构破坏过程变形场演化的试验研究[J].岩土力学,2006,7(1):1082-1086.
    [41]邵龙潭,王助贫,韩国城.三轴试验土样径向变形的计算机图像测量.岩土工程学报,2001,23(3):337-341.
    [42]邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159-163
    [43]邵龙潭,王助贫,刘永禄.三轴试样变形数字图像测量的误差和精度分析.大连理工大学学报,2002,42(1):98-103.
    [44]刘学尧,张克恭等.土力学和地基.北京,中国建筑工业出版社,1995.
    [45]刘祖德,陆士强,包承纲 etal.发展水平报告之一:土的抗剪强度特性.岩土工程学报,1986,8(1):6-46.
    [46]郭莹,郭承侃,陆尚漠.土力学(第二版).大连,大连理工大学出版社,2003.
    [47]Ueng T,Tzou Y,Lee C.The effect of end restraint on volume change and partical breakage of sands in triaxial tests.Advanced Trixial Testing of Soil and Rock,ASTM STP977,1988.
    [48]Duncan J M,Dunlop P.The significance of cad and base restraint.Journal of soil mechanics and foundations division,ASCE,1968,94(I):271-290.
    [49]Zhang H,Garga V K.Quasi-steady state:a real behavior.Can Geotech Journal,1997,34(5):749-761.
    [50]Rowe P W,Barden L.Importance of free ends in triaxia]testing.Journal of soil mechanics and foundations division,ASCE,1964,90(i):1-27.Saada A S,Townsend F C.Laboratory strength testing of soils[A].Laboratory Shear Strength of Soil,ASTM STP 740[C],1981.
    [51]Bishop A W Henkei D F.The measurement of soil properties in the triaxial test[M].London,Edward Amold Ltd,1969.
    [52]Saada A S,Townsend F C.Laboratory strength testing of soils[A].Laboratory Shear Strength of Soil,ASTM STP 740[C],1981.
    [53]Baldi G,Hight DW,Thomas G E.A reevaluation of conventional Triaxial test methods[A].Advanced Triaxial Testing of Soil and Rock,ASTM STP 997[C],1988,219-263.
    [54]王学滨,潘一山,马瑾.剪切带内部应变(率)分析及基于能量准则的失稳判据[J].工程力学,2003.
    [55]HICHER P Y,WAHYUDI H,TESSIER.D.Microstructure analysis of strain localization in clay[J].Computers and Geotechnic,1994,16:205-222.
    [56]BURLANDJ B.On the compressibility and shear strength of natural clays[J].Geotechnique,1990,40:329-3?8.
    [57]KHALID A A,STEIN S.Sand shear band thickness measurements by digital imaging techniques[J].Journal of computing in civil engineering,1993,5:103-I08.
    [58]蒋刚,李苏春.南京粉土与粉质黏土的剪切带三轴试验与性状分析[J].南京工业大学学报(自然科学版),2008.
    [59]徐连民.剪切带形成过程中的边界约束和加载速度效应[J].水利学报,2005.
    [60]孙红.各向异性损伤模型及其在土力学中的应用[D].上海:同济大学地下建筑与工程系,1999.
    [61]蔡正银,李相崧.无黏性土中剪切带的形成过程[J].岩土工程学报,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700