用户名: 密码: 验证码:
基于几何代数的GIS计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间分析是地理信息系统(GIS)的核心功能,也是GIS深化应用与服务的重要支撑。随着物联网、对地观测等技术的发展,地理数据愈发丰富,出现海量的高维度、多要素的密集型GIS空间数据。但与之相对的GIS空间数据的计算规则与分析方法却相对滞后,使得海量数据资源难以得到有效利用。现有空间数据分析方法在多维对象的自适应表达、空间数据的统一分析以及多维统一分析框架的构建方面仍显不足。引入几何代数的多维表达结构及统一运算结构,从底层理论上对现有表达与计算方法进行创新,设计面向多维度、多要素复杂数据的计算模型,是突破传统GIS分析方法不统一、构建效率低下等问题,应对目前GIS应用瓶颈的有效途径。
     论文以研究组前期基于几何代数的GIS理论、方法与应用的探索研究为基础,开展基于几何代数的GIS计算模型研究。分析了几何代数空间的多维度表达特征与地理空间的表达模式,开展了基于几何代数的GIS计算空间构建研究,对基于几何代数GIS计算方法与计算模板的构建进行了探索。在解析传统算法基础上,系统研究了基于几何代数GIS算法的构建方法与计算策略,最后以系统实现与案例示范的方式对上述理论加以验证。论文主要研究内容与取得的成果如下:
     (1)利用几何代数的多维度表达特性设计了地理空间向几何代数空间的嵌入模式,构建了基于几何代数的GIS运算空间,利用blade和多重向量结构实现了GIS基本对象和多要素融合对象运算结构构建;针对不同几何代数模型的分析特性,定义了相应的多重向量运算规则与算子算法库,并将其向多重向量扩展;以几何积的可反性为基础,构建了几何代数框架下问题求解的一般策略,设计了GIS计算从空间定义—对象表达—问题形式化表达—几何代数求解的一般流程;
     (2)基于几何代数空间中几何对象的直接可运算性及计算规则的统一性,构建了多维统一的分析框架,并在传统方法解析基础上构建算法模板。为多维矢量、高维场和网络数据设计相应的维度嵌入与算法求解策略。提出了基于多重向量的多维矢量特征融合表达,给出了多维矢量数据计算规则与计算模板并进行了案例示范;设计了基于几何代数多维统一的场空间构建与表达方法,利用几何代数微分运算与特征空间投影实现场特征参数的统一计算,进而从特征维度、特征结构和特征参数三个角度出发构建了多维场数据的统一分析方法;利用几何代数维度运算构建了GIS网络中节点、边与路径的统一表达结构与延拓方法,设计不同类别路径约束嵌入方法,实现节点型和混合型约束网络最优路径的求解。
     (3)设计了基于几何代数的GIS计算引擎,为几何代数算法的计算机实现提供基础。构建了几何代数空间和GIS空间中的存储类结构和计算类结构,并详细论述了运算接口设计及数据流结构的构建;基于计算空间、算子库和算法求解三层架构思路进行了计算引擎研发,并设计了几何代数空间算子向GIS空间算法的扩展方法;制定空间计算算法的流程模板,进而构建了算法功能的插件式嵌入机制。
     (4)设计了“基于几何代数的多维空间计算系统”,面向多元数据的维度融合建模和动态关系计算进行了案例验证。系统实现了CityGML、dxf、Shape file等多维矢量数据,三维场数据以及多约束网络数据的统一表达与融合分析;设计了多元场景结构中的空间关系动态求解算法,场景污染物结构特征分析算法和顾及污染物分布的最优路径规划算法,验证了系统对多元混合、多维度、动态场景的分析能力。
     本论文研究显示:基于几何代数构建的GIS计算模型可应对多维度、多要素及具有复杂结构的GIS空间数据分析需求,在所设计的几何代数算子、算法库的支撑下,可构建简明、直观、可扩展的GIS空间求解模板。通过基于几何代数GIS计算引擎的设计,实现复杂、动态场景中GIS问题统一分析与代数化求解。基于几何代数的GIS计算模型有望为复杂的GIS空间分析问题提出一套完整的运算框架与求解模式,促进以多元融合分析为特征的新一代GIS的发展。
Spatial analysis is the core function of geographic information science as well as the basic for ensuring better progress in geographic information system application. As the development of observation technologies including Internet of things, air survey, satellite remote sensing, and so on, the geographic data have become more and more rich. Lots of high-dimension and multi-factor intensive GIS spatial data have appeared. At the same time, the corresponding calculating regulations of GIS spatial data lag behind. It results in the problem that existing analyzing methods can't analyze effectively the above data. Most of existing spatial data analyzing methods have deficiencies in self-adaptive expression of multi-dimension objects, unified analysis of spatial data and construction of multi-dimension unified analyzing framework. The multi-dimension expression structure and unified calculating structure of geometric algebra (GA) are introduced to innovate upon the expression and calculation methods from underlying theory, and to define calculating and analyzing regulations oriented to multi-dimension and multi-factor complex data. It is an effective way of breaking the bottle neck in current GIS application and overcoming the drawbacks of conventional GIS analyzing methods.
     This thesis researches the GA-based GIS spatial calculating model which is founded on early studies of our research group on GA-based GIS theory, methods and applications. This paper researches the multi-dimension expression features of GA and the expression models of geographic space, studies the construction of GIS calculating space based on GA, and then explores the build of GA-based GIS spatial calculating methods and models. In this thesis, the constructing methods and calculating strategies of GA-based GIS algorithms are studied systematically, and finally the above theories are validated by system realizing and cases demonstrating. The main research achievements are as follow:
     1. The embedding model from geographic space into GA space is designed by using the multi-dimension expression features of GA and the GA-based GIS calculation space is constructed. The build of calculation structure of GIS basic objects and multi-factor syncretic objects is realized using blade and multivector. The corresponding multivector calculating regulations and operators and algorithms library aimed at different characters of different GA models are defined, and are expanded to multivector. On the basic of reversibility of geometric product, the general strategies of solving problems in GA framework are structured and the general process of GIS spatial calculating from spatial definition to objects expression to problem formulation to GA solution are designed.
     2. On the basic of direct computability of geometric objects and unity of calculating regulations in GA space, the multi-dimension unified analyzing framework is structured, and the algorithm models are constructed which is founded on the analysis of conventional methods. It designs the corresponding dimension-embedding and algorithm solving strategies for multi-dimension vectors, high-dimension field and internet data. The synthetic expression of multivector and multi-dimension features is proposed. The computing regulations and models of multi-dimension data are provided in the paper and then the cases are demonstrated. The construction and expressing methods of multi-dimension unified field space are designed. It realizes the unified calculation of field feature parameters using differential operation and feature space projection of GA and further builds the unified analyzing methods of multi-dimension field data. The unified expression structures and expanding methods of nodes, edges and routes in GIS internet are constructed by using the dimensional computation of GA. And then embedding methods of different kinds of route constraints are designed to realize the solution of optimal path in node-type and mixed type constraints internet.
     3. The GA-based GIS computation engine are designed which provides the basic theories of the implementations of GA algorithms. The data structures of storage class and calculating class are constructed in GA space and GIS space, and then the operation interface and the data flow of the computation engine are accomplished. The code and system implementation is developed in the three-tier architecture which includes computation space, operator library and algorithm solving. The process templates of GIS computation are formulated to realize the particular GIS applications, and finally an embedded plug-in mechanism for GIS algorithms is proposed.
     4. At last, the GA-based multidimensional space computation system is implemented with the execution of integrated modeling instance and dynamic calculation instance, which can verify the main conclusions of the thesis. In the system we realize the unified expression and integrated analysis of the multidimensional vector data, the three dimensional field data and multi-constrained network data. Under the condition of multicomponent geography scene, the GIS analysis algorithms including computation of the dynamic space relationship, structural analysis of the pollution status and planning of the optimal path are designed which consider the distribution of pollutants. All the case studies suggest that GA-based GIS computational model is qualified the computation of multicomponent, multidimensional and dynamic geographic scene.
     The studies in this thesis show that the GA-based GIS spatial computation methods can meet the analyzing need of multi-dimension, multi-factor and structure complex GIS spatial data. With the support of designed GA operators and algorithms library, simple, intuitive and expandable GIS spatial solution templates can be constructed. The unified analyzing and algebraic solving of GIS problems in complicated and dynamic scenes are realized by the design of GIS computation engine based on GA. The GA-based GIS spatial computing methods are expected to provide complicated GIS spatial computing problems with a complete calculating framework and solving model and promote the development of a new generation of GIS which is characterized by multi-element synthetic analysis.
引文
[1]Molenaar M. Formal Data Structure for Three Dimensional Vector Maps[J]. Special Issue ACM SIGGRAPH Computer Graphics.1990,21(6),29(3): 257-265.
    [2]Egenhofer M F, Franzosa R. Point Set Topological Spatial Relations[J]. International Journal of Geographical Information Systems.1991,5(2):161-174.
    [3]Nicolas S, Renato P. Delaunay Triangulation of Arbitrarily Shaped Planar Domains [J]. Computer Aided Geometric Design,1991,8:421-437.
    [4]李德仁,李清泉.一种3DGIS混合数据结构的研究[J].测绘学报.1997,26(2):128-133.
    [5]龚建雅.GIS中面向对象时空数据模型[J].测绘学报,1997,26(4):289-298.
    [6]Brown I M, A Generic System for Integrated Modelling of Multi-Dimensional Spatial Data[J]. Physics, Chemistry of Earth.1998,23(3):285-287.
    [7]程朋根,王承瑞,甘卫军,等.基于多层DEM与Q TPV的混合数据模型及其在地质建模中的应用[J].吉林大学学报(地球科学版).2005,35(6):806-811.
    [8]吴立新,陈学习,车德福,等.一种基于GTP的地下真3D集成表达的实体模型[J].武汉大学信息科学版.2007,32(4):331-334.
    [9]Pilout M, Tempfli K, Molenaar M. A Tet rahedron-Based 3D Vector Data Model for Geoinformation[J]. Advanced Geograp hic Data Modelling, 1994(40):129-140.
    [10]朱良峰,潘信,吴信才,等.地质断层三维可视化模型的构建方法与实现技术[J].软件学报.2008,19(8):2004-2017.
    [11]郑坤,贠新莉,刘修国,等.基于规则库的三维空间数据模型[J].地球科学(中国地质大学学报).2010,35(3):369-374.
    [12]艾廷华,李精忠.尺度空间中GIS数据表达的生命期模型[J].武汉大学学报(信息科学版).2010,35(7):757-781.
    [13]Moleannar M. A topology for 3D vector maps[J].ITC Journal,1992,(1):25-33.
    [14]Shi W Z. A Hybrid Model for 3D GIS[J]. Geoinformatics,1996.
    [15]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报.1998,27(4):325-329.
    [16]陈军,郭薇.基于剖分的三维拓扑ER模型研究[J].测绘学报.1998,27(4):308-317.
    [17]孙敏,陈军.基于几何元素的三维景观实体建模研究[J].武汉测绘科技大学学报,2000,25(3):233-237
    [18]Samet H. The quadtree and other related hierarchical data structures[J]. ACM Computing Surveys,1984,16(2):87-260.
    [19]Fekete G. Rendering and managing spherical data with Sphere Quadtrees[C]//In Proceedings of IEEE Visualization'90. San Francisco, CA,1990:176-186.
    [20]Ottoson P, Hauska H. Ellipsoidal quadtrees for indexing of global geographical data[J]. International Journal of Geographical Information Science,2002,16(3): 213-226.
    [21]Goodchild M F. Combining space and time:new potential for temporal GIS[G] //In A.K. Knowles, editor, Placing History:How Maps, Spatial Data, and GIS Are Changing Historical Scholarship. Redlands, CA:ESRI Press,2008:179-198.
    [22]陈静,龚健雅,向隆刚.全球多尺度空间数据模型研究[J].地理信息世界,2011(4):24-27
    [23]贲进,童晓冲,汪磊,等.利用球面离散格网组织空间数据的关键技术[J].测绘科学技术学报,2010,(5):383-386
    [24]Zheng X.2007. Efficient Fourier Transforms on Hexagonal Arrays[D]. Florida: University of Florida
    [25]刘磊,田茂义,张燕,等.基于SOA的空间数据网格应用研究[J].测绘科学,2008,33(5):220-224.
    [26]Tao Y, Papadias D, Lian X, et al. Multidimensional reverse kNN search[J]. The VLDB Journal,2007,16:293-316.
    [27]Mouratidis L H U K, Mamoulis N. Continuous spatial assignment of moving users[J]. The VLDB Journal.2010,19:141-160.
    [28]Gao Y, Zheng B, Chen G, et al. Continuous visible nearest neighbor query processing in spatial databases[J]. The VLDB Journal.2010. DOI:10.1007/s00778-010-0200-z.
    [29]李青元.三维矢量结构GIS拓扑关系及其动态建立[J].测绘学报,1997,26(3):235-240.
    [30]赵仁亮.基于Voronoi图的空间关系计算研究[D].中南大学.2002,6.
    [31]张锦明.基于检查的拓扑关系自动构建算法[J].测绘工程.2003,12(3):46-49.
    [32]周秋生,王延亮,马俊海.对TIN模型边界生成算法的研究[J].测绘通报,2005,(5):30-32.
    [33]谢顺平,冯学智,鲁伟.基于道路网络分析的Voronoi面域图构建算法[J].测 绘学报.2010,39(1):88-94.
    [34]邓敏,徐锐,李志林,等.空间查询中自然语言空间关系与度量空间关系的转换方法研究:以面目标为例[J].测绘学报,2009,38(6):527-531
    [35]邓敏,徐凯,赵彬彬,等.基于结构化空间关系信息的结点层次匹配方法[J].武汉大学学报(信息科学版),2010,35(8):913-916.
    [36]何建华,刘耀林,俞艳,等.基于模糊贴近度分析的不确定拓扑关系表达模型[J].测绘学报.2008,37(2):212-222.
    [37]陈娟,刘大有,贾海洋,等.基于MBR的拓扑、方位、尺寸结合的定性空间推理[J].计算机研究与发展,2010,47(3):426-433.
    [38]刘新,刘文宝,李成名.三维体目标间拓扑关系与方向关系的混合推理[J].武汉大学学报(信息科学版),2010,35(1):74-78.
    [39]沈敬伟,闾国年,温永宁,等.拓扑和方向空间关系组合描述及其相互约束[J].武汉大学学报(信息科学版),2011,36(11):1305-1308+1323.
    [40]杜冲,司望利,许珺.基于地理语义的空间关系查询和推理[J].地球信息科学学报,2010,12(1):48-55.
    [41]邓敏,黄雪萍,刘慧敏,等.利用自然语言空间关系的空间查询方法研究[J].武汉大学学报(信息科学版),2011,36(9):1089-1093.
    [42]陈军,侯妙乐,赵学胜.球面四元三角网的基本拓扑关系描述和计算[J].测绘学报,2007,36(2):176-180.
    [43]侯妙乐,邢华桥,赵学胜,等.球面四元三角网的复杂拓扑关系计算[J].武汉大学学报(信息科学版),2012,37(4):468-471+481.
    [44]杜晓初,黄茂军.不确定线-面拓扑关系的描述与判别[J].测绘学报,2007,36(3):340-343+350.
    [45]Liu K F, Shi W Z. Computing the fuzzy topological relations of spatial objects based on induced fuzzy topology[J]. International Journal of Geographical Information Science,2006,20(8):857-883.
    [46]Shi W Z, Liu K F. Modeling fuzzy topological relations between uncertain objects in a GIS[J]. Photogrammetric and Remote Sensing,2004,70(8):921-929.
    [47]Berry JK. Fundamental operations in computer-assisted map analysis[J]. International Journal of Geographical Information Systems,1987,1:119-136.
    [48]Dangermond J. A classification of software components commonly used in geographic information systems[C]//In Peuquet DJ, O'Callaghan J (Eds). Design and implementation of computer-based geographic information systems. Amherst, NY:International Geographical Union, Commission on Geographical Data Sensing and Processing,1983.70-91.
    [49]Maguire DJ, Dangermond J. The functionality of GIS[G]//In Maguire DJ, Goodchild MF, Rhind DW (Eds). Geographical Information Systems:Principles and Applications 1:319-335. Harlow, UK:Longman Scientific & Technical.
    [50]Rhind DW, Green NPA. Design of a geographical information system for a heterogeneous scientific community[J]. International Journal of Geographical Information Systems,1988,2(2):171-190.
    [51]Tomlin CD. Geographic information systems and cartographic modeling[M]. Englewood Cliffs, NJ:Prentice Hall; 1988.
    [52]Takeyama M, Couclelis H. Map dynamics:Integrating cellular automata and GIS through geo-algebra[J]. International Journal of Geographical Information Science 1997,11(1):73-91.
    [53]Ritter GX, Wilson JN. Handbook of computer vision algorithms in image algebra[M].2nd ed.Boca Raton:CRC Press,2001.
    [54]Couclelis H. From cellular automata to urban models:new principles for model development and implementation[J]. Environment and Planning B,1997,24: 165-174.
    [55]Guting R H. GRAL:An extensible relational database system for geometric applications[J]. The VLDB Journal,1989,89:33-44.
    [56]Guting R H, Schneider M. Realm-based spatial data types:the ROSE algebra[J]. The VLDB Journal,1995,4(2):243-286.
    [57]Oosterom P Van, Stoter J, Quak W, et al. The balance between geometry and topology[G]//D.E. Richardson, P. Oosterom. Advances in Spatial Data Handling. Springer Berlin Heidelberg,2002:209-224.
    [58]Goodchild M F. Spatial Thinking and the GIS User Interface[J]. Procedia-Social and Behavioral Sciences,2011,21:3-9.
    [59]Grassmann H. Die Ausdehnungslehre. Vollstaendig und in strenger Form begruendet[M]. Verlag von Th. Chr. Fr. Enslin, Berlin,1862.
    [60]Clifford W K. Applications of Grassmann's Extensive Algebra[J]. American Journal of Mathematics,1878,1:350-358.
    [61]Clifford W K. On the classification of geometric algebras[C]//Tucker R (ed.) Mathematical Papers. Macmillan, London,1882,397-401.
    [62]Hestenes D. Multivector calculus[J]. Journal of Mathematical Analysis and Applications,1968,24(2):313-325.
    [63]Hestenes D. Multivector functions[J]. Journal of Mathematical Analysis and Applications,1968,24(3):467-473.
    [64]Hestenes D. Old wine in new bottles:A new algebraic framework for computational geometry[C]//Bayro-Corrochano E, Sobczyk G (eds), Geometric Algebra with Applications in Science and Engineering. Birkhauser,2001.
    [65]Li H. Invariant Algebras and Geometric Reasoning[M]. Singapore:World Scientific,2008.
    [66]Li H, Hestenes D, Rockwood A. Generalized homogeneous coordinates for computational geometry[C]//Sommer G (ed) Geometric Computing with Clifford Algebra. Springer,2001,27-59.
    [67]Lasenby J, Bayro-Corrochano E, Lasenby A, et al. A new methodology for computing invariants in computer vision[C]//Proceedings of ICPR 96,1996.
    [68]Lasenby J, Fitzgerald W J, Lasenby A, et al. New geometric methods for computer vision:An application to structure and motion estimation. International[J]. Journal of Computer Vision,1998,3(26):191-213.
    [69]Perwass C. Applications of Geometric Algebra in Computer VisionfD]. PhD thesis, Cambridge University,2000.
    [70]Perwass C, Lasenby J. A Geometric Analysis of the Trifocal Tensor[C]// Gimel'farb Klette G, Reinhard, Kakarala R (eds), IVCNZ.157-162.
    [71]Zealand. The University of Auckland,1998,157-162.
    [72]Perwass C, Lasenby J. A Unified Description of Multiple View Geometry[C]// Sommer G[ed], Geometric Computing with Clifford Algebra. Springer,2001.
    [73]Cameron J, Lasenby J. Oriented conformal geometric algebra[C]//Proceedings of ICCA7,2005.
    [74]Wareham R, Cameron J, and Lasenby J. Applications of conformal geometric algebra in computer vision and graphics[J]. Lecture Notes in Computer Science, 3519:329-349,2005.
    [75]Dorst L. Honing geometric algebra for its use in the computer sciences[C]// Sommer G (ed) Geometric Computing with Clifford Algebra. Springer,2001.
    [76]Dorst L, Fontijne D.3D euclidean geometry through conformal geometric algebra (a GAViewer tutorial)[Z]. available at http://www.science.uva.nl/ga, 2003.
    [77]Dorst L, Mann S. Geometric Algebra:A computational framework for geometrical applications:Part I Algebra[J]. IEEE Computer Graphics and Applications,2002,22(3):24-31.
    [78]Mann S, Dorst L. Geometric algebra:a computational framework for geometrical applications:Part II Applications [J]. Computer Graphics and Application,2002, 22(4):58-67.
    [79]Mann S, Dorst L, Bouma T. The making of GABLE, a geometric algebra learning environment in Matlab[Z].2001,491-511.
    [80]Zaharia M D, Dorst L. Modeling and visualization of 3D polygonal mesh surfaces using geometric algebra[J]. Computers & Graphics,2003, 29(5):802-810.
    [81]Fontijne D, Dorst L. Modeling 3D euclidean geometry[J]. IEEE Computer Graphics and Applications,2003,23(2):68-78.
    [82]Bayro-Corrochano E, Banarer V. A geometric approach for the theory and applications of 3D projective invariants[J]. Journal of Mathematical Imaging and Vision,2001,16:131-154.
    [83]Bayro-Corrochano E. Geometric neural computing[J]. IEEE Transactions on Neural Networks,2001,12(5):968-986.
    [84]Bayro-Corrochano E, Vallejo R, Arana-Daniel N. Geometric prepro-cessing, geometric feedforward neural networks and Clifford support vector machines for visual learning[J]. Neurocomputing,2005,67:54-105.
    [85]Rosenhahn B. Pose Estimation Revisited[D]. PhD thesis, Christian Albrechts Universitat zu Kiel,2003.
    [86]Rosenhahn B, Sommer G. Pose estimation in conformal geometric algebra[J]. Journal of Mathematical Imaging and Vision,2005,22:27-70.
    [87]Sommer G, Rosenhahn B, Perwass C. The twist representation of free-form objects[C]//Klette R, Kozera R, Noakes L, et al. (eds.). Geometric Properties from Incomplete Data, Springer.2006:3-22.
    [88]Perwass C, Forstner W. Uncertain geometry with circles, spheres and conics[C]// Klette R, Kozera R, Noakes L, et al. (eds), Geometric Properties from Incomplete Data, volume 31 of Computational Imaging and Vision. Springer,2006,23-41.
    [89]Perwass C, Sommer G. The inversion camera model[C]//Symposium fur Mustererkennung, DAGM 2006, Berlin,12.-14.09.2006. Springer, Berlin, Heidelberg,2006.
    [90]Buchholz S, Hitzer E M S, Tachibana K. Optimal learning rates for Clifford neurons[C]//International Conference on Artificial Neural Networks, Porto, Portugal,2007,9-13.
    [91]Buchholz S, Hitzer E M S, Tachibana K. Coordinate independent update formulas for versor Clifford neurons[C]//International Conference on Soft Computing and Intelligent Systems (SCIS) and 9th International Symposium on advanced Intelligent Sys terns (ISIS 2008), Nagoya, Japan,2008.
    [92]Hitzer E. New views of crystal symmetry guided by profound admiration of the extraordinary works of Grassmann and Clifford[C]//Petsche H J, Lewis A, Liesen J (eds), From Past to Future:Grassmann's Work in Context.Birkhauser,2011.
    [93]Ebling J. Clifford Fourier transform on vector fields[J].IEEE Transactions on Visualization and Computer Graphics,2005,11(4):469-479.
    [94]Pham M T, Tachibana K, Hitzer E M S, et al. Classification and clustering of spatial patterns with geometric algebra[C]//AGACSE conference, Leipzig,2008.
    [95]Reich W, Scheuermann G. Analyzing real vector fields with clifford convolution and clifford-fourier transform [M]. Geometric Algebra Computing. Springer London,2010:121-133.
    [96]Etzel K R, McCarthy J M. Interpolation of spatial displacements using the Clifford Algebra of E4[J]. Journal of Mechanical Design, Transactions of the ASME,1999,121(1):39-44.
    [97]Rivera-Rovelo J, Herold-Garcia S, Bayro-Corrochano E. Geometric hand-eye calibration for an endoscopic neurosurgery system[C]//2008 IEEE International Conference on Robotics and Automation,2008,1-9:1418-1423.
    [98]Ebling. J, Scheuermann. G. Template Matching on Vector Fields using Clifford Algebra[C]\\The International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering (IKM 2006), Weimar,2006.
    [99]李延芳,顾耀林.矢量场数据演示的快速Clifford傅立叶变换[J].计算机工程与设计,2007,28(21):5177-5178+5189.
    [100]Brackx F, Schepper N, Sommen F. The Clifford-Fourier Transform[J]. Journal of Fourier Analysis and Applications,2005,11(6):669-681.
    [101]Hitzer EMS, Mawardi B. Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4) [J]. Advances in Applied Clifford Algebras.2008,18(3-4):715-736.
    [102]Hitzer EMS, Sangwine SJ. Quaternion and Clifford Fourier Transforms and Wavelets[M]. New York:Springer,2013.
    [103]Wietzke L, Fleischmann O, Sommer G. Signal Analysis by Generalized Hilbert Transforms on the Unit Sphere[J]. Numerical Analysis and Applied Mathematics, 2008,1048:706-709.
    [104]曹文明,冯浩.仿生模式识别与信号处理的几何代数方法[M],北京,科学出版社,2010.
    [105]Yuan LW, Yu ZY, Luo W, et al. A 3D GIS Spatial Data Model Based on Conformal Geometric Algebra[J]. Sci China Ser D-Earth Sci,2011, 54(1):101~112.DOI 10.1007/s11430-010-4130-9
    [106]Yuan LW, Yu ZY, Luo W, et al. Geometric Algebra for Multidimension-Unified Geographical Information System[J]. Advances in Applied Clifford Algebras, 2013,23(2):497-518
    [107]Hitzer EMS, Nitta T, Kuroe Y. Applications of Clifford's Geometric Algebra[J]. Advances in Applied Clifford Algebras,2013,23(2):377-404
    [108]Ablamowicz R, Fauser B. Mathematics of CLIFFORD:A Maple package for Clifford and Grassmann algebras[J]. Advances in Applied Clifford Algebras, 2005,15(2):157-181.
    [109]Fontijne D. Gaigen 2:a Geometric Algebra Implementation Generator[C]//In 5th International Conference on Generative Programming and Component Engineering,2006,141-150.
    [110]Perwass C. Teaching Geometric Algebra with CLUCalc[C]//In International Symposium on Innovative Teaching of Mathematics with Geometric Algebra, Kyoto, Japan,2003,33-50.
    [111]Gentile A, Segreto S, Sorbello F. CliffoSor:A parallel embedded architecture for geometric algebra and computer graphics[C]//In Seventh International Workshop on Computer Architecture for Machine Perception (CAMP 2005), Palermo, Italy, 2005,90-95.
    [112]Hildenbrand D, Lange H, Stock F, et al. Efficient inverse kinematics algorithm based on conformal geometric algebra using reconfigurable hardware[C]//In GRAPP conference Madeira,2008.
    [113]Hildenbrand D. Foundations of Geometric Algebra Computing[M]. New York: Springer,2013.
    [114]Schwinn C, Goerlitz A, Hildenbrand D. Geometric algebra computing on the cuda platform[C]\\proceedings of the GraVisMa workshop, Plzen,2010.
    [115]Yuan L, Lii G, Luo W, et al. Geometric algebra method for multidimensionally-unified GIS computation[J]. Chinese Science Bulletin,2012, 57(7):802-811.
    [116]俞肇元,袁林旺,罗文,等.边界约束的非相交球树实体对象多维统一索引[J].软件学报,2012,23(10):2746-2759.
    [117]Dorst L, Mann S. Geometric Algebra:A computational framework for geometrical applications:Part 1 Algebra[J]. IEEE Computer Graphics and Applications,2002,22(3):24-31.
    [118]Dorst L, Fontijne D, Mann S. Geometric algebra for computer science:an object-oriented approach to geometry[M]. San Francisco:Morgan Kaufmann Publishers,2009.
    [119]袁林旺,闾国年,俞肇元,等.基于几何代数的多维统一GIS:理论·算法·应用[M].北京:科学出版社,2012.
    [120]Lopez-Franco C, Arana-Daniel N, Alanis A Y. Visual Servoing on the Sphere Using Conformal Geometric Algebra[J]. Advances in Applied Clifford Algebras, 2012.
    [121]Lasenby A. Recent applications of conformal geometric algebra[C]\\International Workshop on Geometric Invariance and Applications in Engineering, Xi'an, China, May 2004.
    [122]Valkenburg R, Dorst L. Estimating motors from a variety of geometric data in 3D conformal geometric algebra[G]\\Dorst L, Lasenby J (eds.) Guide to Geometric Algebra in Practice. Springer, London,2011.
    [123]Fontijne D, Dorst L. Efficient algorithms for factorization and join of blades[M]. Geometric Algebra Computing. Springer London,2010:457-476.
    [124]Perwass C. Geometric Algebra with Applications in Engineering[M]. Berlin, Heidelberg:Springer-Verlag,2009,4.
    [125]李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报.2005,17(11):2383-2393.
    [126]Egenhofer M F. A model for detailed binary topological relationships [J]. Geomatica,1993,47(3),261-273.
    [127]Cohn A G, Bennett B, Gooday J, et al. Qualitative spatial representation and reasoning with the region connection calculus[J]. Geoinformatica,1997,1(3): 275-316.
    [128]Clementini E, Di Felice P. A model for representing topological relationships between complex geometric features in spatial databases [J]. Information sciences, 1996,90(1):121-136.
    [129]Li Z, Huang P. Quantitative measures for spatial information of maps[J]. International Journal of Geographical Information Science,2002,16(7):699-709.
    [130]Eduardoe R. Operaciones de Computo Grafico en el Espacio Geometrico Conforme 5D usando GPU [D]. Venezuela:Universidad Simon Bolivar,2011.
    [131]Colapinto P. Versor:Spatial Computing with Conformal Geometric Algebra[C]// ISEA 2011, Istanbul-Portal.2011.
    [132]De Kok P M. Visualization of the projective line geometry for geometric algebra[D]. University of Amsterdam,2012.
    [133]Dorst L, Fontijne D, Mann S. Geometric Algebra for Physicists[M]. Burlington, MA, USA, Morgan Kaufmann Publishers, Elsevier Inc,2007.
    [134]Chen K Y,Wu Q L, YangW, et al. Elastic wave field separation numerical modeling scheme based on divergence and curl[J]. Geophysical and Geochemical Exploration,2010,34(1):103-107.
    [135]Marsden J E, Tromba A. Vector calculus[M].5th ed. New York:W. H. Freeman, 2003.
    [136]Ebling J, Scheuermann G. Clifford convolution and pattern matching on vector fields[C]//IEEE Visualization'03, IEEE Computer Society, Los Alamitos,2003: 193-200.
    [137]罗文,袁林旺,俞肇元,等.多维向量场特征参数的几何代数统一计算方法[J].系统工程理论实践,2013,33(9):2390-2396.
    [138]CHENG D K. Field and Wave Electromagnetics [M]. Addison-Wesley Publishing Company. Inc.1983.
    [139]Ma T, Wang S. Structural classification and stability of divergence-free vector fields[J]. Physica D:Nonlinear Phenomena,2002.171(1-2):107-126.
    [140]Hyman J M, Shashkov M. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids[J]. Computers & Mathematics with Applications,1997,33(4):81-104.
    [141]尚可政,王式功,杨德保,等.三角形法计算涡度和散度的一种改进方案[J].高原气象.1999,18(2):250-254.
    [142]Yuan Linwang, Yu Zhaoyuan, Chen Shaofei, et al. CAUSTA:Clifford Algebra based Unified Spatio-Temporal Analysis[J]. Transactions in GIS. 2010,14(sl):59-83.
    [143]Mawardi B, Hitzer E. Clifford Fourier Transformation and Uncertainty Principle for the Clifford Geometric Algebra C13,0[J]. Advances in Applied Clifford Algebra,2006,16 (1):41-61.
    [144]罗文.基于几何代数的时空场数据特征分析与运动表达[D].南京:南京师范大学,2011.
    [145]陆峰.最短路径算法:分类体系与研究进展[J].测绘学报,2001,30(3):269-275.
    [146]Neve H D, Meghem P V. TAMCRA:a tunable accuracy multiple constraints routing algorithm[J]. Computer Communications,2000,23(11):667-678
    [147]卢锡城,白建军,彭伟,等.一种基于分时的LEO卫星网络无环路由算法[J].通讯学报,2005,26(5):9-16.
    [148]Perwass, C:CLUCalc. http://www.clucalc.info/(2006)
    [149]Hildenbrand D. A Tutorial on Geometric Algebra Using CLUCalc [G]// Foundations of Geometric Algebra Computing. Springer Berlin Heidelberg,2013: 71-100.
    [150]Fontijne D, Bouma T, Dorst L. Gaigen:a Geometric Algebra Implementation Generator[C]//D. Fontijne, L. Dorst. Modeling 3D Euclidean Geometry. IEEE Computer Graphics and Applications,2001:68-78.
    [151]Seybold F, Uwe W. Gaalet-a C++expression template library for implementing geometric algebra[C]//6th High-End Visualization Workshop. Obergurgl, Austria: 2010(1):1-10.
    [152]Fontijne D. Gaigen 2.5:Geometric Algebra Implementation Generator[R].2010: 1-112.
    [153]Karssenberg D, De Jong K. Dynamic environmental modelling in GIS: 1.Modelling in three spatial dimensions[J]. International Journal of Geographical Information Science.2005,19 (5):559-579.
    [154]Goodchild M F, Yuan M, Cova T J. Towards a general theory of geographic representation in GIS[J]. International Journal of Geographical Information Science.2007,21(3):239-260.
    [155]巫兆聪,欧阳群东,李芳芳.基于CityGML的遥感信息共享研究[J].武汉大学学报(信息科学版),2010,35(4):423-426.
    [156]孙晓莉,赵俊三.DXF文件到Shape文件无损转换方法的研究[J].科学技术与工程,2011,11(14):3336-3341.
    [157]易琳,袁林旺,罗文,等.顾及V—邻域结构的局部保形插值算法[J].武汉大学学报(信息科学版),2012,37(11):1285-1288+1302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700