用户名: 密码: 验证码:
智能金属结构熔焊成型技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能结构在军事、航空航天、汽车和医学等领域得到了广阔应用,使其越来越成为研究热点。智能结构在复合材料零件的设计与制造中已取得了令人瞩目的成果,但由于金属结构制备和传感器埋入等技术尚未解决,金属智能结构的设计与制造一直没有突破性进展。本文采用一种将光纤传感器在熔焊成型过程中埋入金属结构内部的方法来实现智能金属结构的制造。
     熔焊成型金属零件由全焊缝组成,其致密度高,满足金属零件的强度和性能要求,而且以焊丝作为熔焊成型的材料,成本低。本文针对GTAW熔焊成型技术的特点和光纤智能金属结构的制造要求,对熔焊成型工艺,熔焊热过程进行了研究。实现了熔焊过程的实时控制,并采用电弧钎焊技术,将保护后的FBG传感器在熔焊成型过程中埋入金属结构中,本文完成的主要工作如下:
     (1)建立了智能金属结构熔焊快速成型系统,该系统能够实时获取焊枪在成型过程中的位置,根据熔焊成型的要求对焊接工艺参数进行自动调整。成型过程中,能够实现焊机的起弧、熄弧以及送丝机的送丝、停丝的自动控制。同时还可以对光纤传感器的进行保护。
     (2)在分析金属熔焊成型过程的基础上,对影响熔焊成型的因素进行分析,将焊接电流,焊接速度,送丝速度作为可控的影响因素。采用二次回归旋转设计,建立了焊接电流、焊接速度、送丝速度这三个因素与成型零件几何尺寸的关系模型,并分析了这三个参数对零件几何尺寸的影响。对一般的金属结构件进行解构,得到了单道多层、单层多道和倾角三种基本结构,采用实验与建模相结合的方法,找到了相关的控制参数,实现了基本结构的可控成型。
     (3)采用有限元方法模拟了熔焊成型热过程,得到了熔焊成型中的温度分布情况,分析了采用不同的成型轨迹对温度场分布的影响。对得到的金属结构进行金相分析,得到了在金属结构不同位置的金相组织。发现在熔焊金属结构表面组织为快冷的针状马氏体、贝氏体混合组织,而在金属结构内部为类似于正火组织的等轴晶组织,也是因为该原因,在金属结构表面的硬度要高于金属结构内部的硬度。通过拉伸试验可知,采用熔焊成型方法制备的金属结构力学性能达到或者超过焊丝熔敷金属的力学性能,并且在沿焊缝方向可以承受更大的载荷。
     (4)研究了焊接电压与焊接电流、电弧长度之间的关系,得出了在焊接电压、焊接电流和电弧长度三者之间的函数关系。设计了基于焊接电压反馈的熔焊快速成型尺寸模糊控制系统。该系统通过采集焊接电压来间接测量焊缝高度,并以此焊接电压作为反馈量,通过模糊控制器来实时调整焊接参数以达到控制焊缝尺寸的目的。试验结果表明,该系统能够实时调整焊接参数并对焊缝尺寸进行控制。明显提高成型精度。
     (5)提出了一种分段成型-铣削的金属成型技术,将热加工与冷加工结合起来,克服了熔焊直接成型零件尺寸精度不高,表面粗糙度大的缺点,与传统的去除成型技术相比又具有较少的加工余量,使用该方法进行了多种金属零件的制备。获得了较满意的结果。
     (6)采用实验和模拟的方法分析了光纤传感器在埋入金属结构过程中的受热与受力情况,确定埋入位置应与熔池距离为5mm。将电镀后的光纤传感器采用感应钎焊的方法封装入一金属块中达到保护的目的,将该金属块在熔焊成型中埋入金属结构,得到了能够感知外部温度变化的金属结构。
Smart material structure has the potential to be used in many fields, including military affairs, aviation and spaceflight, automobile and medicine, so smart material structure is a research hotspot and a trend of development. Now there are many achievements in design and manufacture of composite material parts. However, there are difficulties of sensor embedding and metal structure forming. In this paper, a method is presented for manufacturing the smart metal structure, which is based on the welding prototyping technology.
     The welding prototyping parts are made of pure welds; they have the characterics of high strength, high density and low cost. The welding prototyping and its thermal process have been studied in this paper, according to the characteristics of GTAW welding and the requirements of the FBG smart structure. The real-time control of welding process has been realized. At the same time, the metal coated FBG sensor was embedded in the metal structure successuffly during the prototyping process. The main work is listed below:
     1. The welding prototyping system of smart metal structure manufacturing has been established. The position of welding torch can be real-time controlled; the welding parameters can be adjusted quickly according to the requirements of welding prototyping; arc striking, extinguishing and wire feeding can be controlled with the help of computer; the optic fiber sensor can be protected.
     2. Based on the studies of welding prototyping process, the effects of welding parameters has been analysed. There are three controllable factors in the process, which are welding current, welding speed and wire feed rate. The quadratic regression revolution design has been applied and a model based on the relation among these parameters and weld geometry size has been established. The effects of welding parameters on the weld geometry have been analysed. Based on the analysis of general metal components, three kinds of basic structure were obtained, which are single-channel multi-layer, single-layer multi-channel and inclination, respectively. The controling parameters have been obtained by using a combination method of experiment and modeling. The controllable forming on basic structure is achieved.
     3.The temperature distribution of forming process was obtained using the finite element analysis method. And the effects of different forming trajectories on the temperature distribution were discussed. The microstructure of different position for the metal part was obtained using the standard metallography method. Results show, the surface structures was acicular martensite and bainite; the internal structure was the equiaxed grain similar to normalizing organization. Thus, the hardness shows the decreased characteric from the surface layer to the internal layer. The tensile test shows that the mechanical properties of prototyping metal parts in the direction of the welds reach the value of wire deposited metal.
     4. The functional relation have been established based on the study of the the welding voltage, welding current and arc length. A fuzzy control system for the weld size control is established. The weld reinforcement can be indirectly collected by measuring the welding voltage. And the welding voltage was used as the feedback quantity to adjust the welding parameters in time. Results show that the welding parameters can be adjusted and controlled well. Thus the accuracy of the metal structure can be improved obviously.
     5.A sub-forming hybrid milling method for the metal structure manufacturing is presented in this paper, which is based on the thermal (welding) and cold (milling) processing thechnology. The surface accuracy of the metal part was much higher than the direct welding forming; and the machining allowance was decreased. A variety of well forming metal parts was acquired using this method.
     6. According to the experimental and simulation analysis of the FBG sensor embeding process, the distance of the sensor and the weld pool should be more than 5mm. A surface plated FBG sensor was embedded in a piece of metal by induction brazing method. Then the metal block was embedded in the metal structure during the welding prototyping process. A smart metal structure with the function of self temperature sensing is then obtained.
引文
[1]Raja M,G Narayanan S.Simultaneous Optimization of Structure and Control of Smart Tensegrity Structures[J].Journal of Intelligent Material Systems and Structures,2009,20(1),109-117
    [2]Mou C,B Saffari,P Li.Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation[J].Measurement Science &Technology,2009,20(3),1-6
    [3]Shang Z,J Wang Z,M Feng Z.Application of smart material & structure with shape memory alloy[J].Rare Metal Materials and Engineering,2007,36,163-167
    [4]杨大智,智能材料与智能系统[M].天津:天津大学出版社,2000
    [5]Trease B,Kota S.Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors[C].ASME International Design Engineering Technical Conference/Computers and Information in Engineering Conference,Philadelphia,PA,SEP 10-13,2006
    [6]Li Y L,Zhang H,Feng Y.A plating method for metal coating of fiber Bragg rating[J].Chinese Optics Letters,2009,3(2),115-117
    [7]Koncar V,Cochrane C,Lewandowski M.Electro-conductive sensors and heating elements based on conductive polymer composites[J].International Journal of Clothing Science and Technology,2009,23(2-3),82-92
    [8]Liu S C.Sensors,smart structures technology and steel structures[J].Smart Structures and Systems,2008,4(5),517-530
    [9]Grigorie T L,Botez R M.Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modeling[J].Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,2009,223(G6),655-668
    [10]Khidir E A,Mohamed N A,Nor M J M.A new c,oncept of a linear smart actuator[J].Sensors and Actuators a-Physical,2007,135(1),244-249
    [11]Kuhnen K.Compensation of Parameter-dependent Complex Hysteretic Actuator Nonlinearities In Smart Material Systems[J].Journal of Intelligent Material Systems and Structures,2008,19(12),1411-1424
    [12]Marinova D G,Stavroulakis G E.Robust control design of a smart building structure[J].Journal of Theoretical and Applied Mechanics,2007,45(1),73-90
    [13]陈勇,熊克等.飞行器智能结构系统研究进展与关键问题[J]。航空学报,2004,1,21-25
    [14]骆英 陶宝祺.土木工程智能结构中传感器原理与应用[J]。江苏理工大学学报,2000,9.9-13
    [15]Chen Y,Wickramasinghe V.Development of smart structure systems for helicopter vibration and noise control[J].Transactions of the Canadian Society for Mechanical Engineering,2007,31(1),39-56
    [16]Nambu S,Enoki M.Smart stress-memory patch for fatigue damage of structure[J].Materials Transactions,2007,48(6),1244-1248
    [17]Denoyer Keith K,Erwin R Scott,Ninneman R Rory.Advanced smart structures flight experiments for precision spacecraft[J].Acta Astronautica,2000,47(2),389-397
    [18]刘玉廷,杨保林。智能结构在作战飞机上的应用[J].航空兵器,2003,1,45-46
    [19]孙庆鸿,李普等.智能结构声控制研究的新进展[J].东南大学学报,2002,5,392-396
    [20]黄尚廉,陶宝祺等.智能结构系统--梦想、现实与未来[J].中国机械工程,2000,2,32-35
    [21]Shuping Yi,Fei Liu,Jin Zhang,et al.Study of the key technologies of LOM for functional metal parts[J].Journal of Materials Processing Technology,2004,150(1-2),175-181.
    [22]刘光富,李爱平.快速成形与快速制模技术[M].上海:同济大学出版社,2004,29-30.
    [23]王运赣.快速模具制造及其应用[M].武汉,华中科技大学出版社,2003.
    [24]Detlef Kochan,Chua Chee Kai,Du Zhaohui.Rapid prototyping issues in the 21st Century[J].Computers in Industry,1999,39(1),3-10.
    [25]D.T.Pham,R.S.Gault.A comparison of rapid prototyping technologies[J].International Journal of Machine Tools and Manufacture,1998,38,1257-1287.
    [26]R.C.Cofer,Benjamin F.Harding.Rapid System Prototyping Technical References[J].Rapid System Prototyping with FPGAs,2006,249-270.
    [27]Hongbo Lan,Yucheng Ding.Price quotation methodology for stereolithography parts based on STL model[J].Computers & Industrial Engineering,2007,52(2),241-256.
    [28]Lamont Wood.Rapid automated prototyping,an introduction,Industrial Press Inc,1993.
    [29]Yong-Ak Song,Sehyung Park.Experimental investigations into rapid prototyping of composites by novel hybrid deposition process[J].Journal of Materials Processing Technology,2006,171(1),35-40
    [30]钟敏霖,宁国庆等.激光熔覆快速制造金属零件研究和发展[J].激光技术,2002,26(5),388-391.
    [31]易树干.复杂形面金属功能零件分层快速制造的关键技术研究,[博士学位论文].重庆,重庆大学,2001.
    [32]J.Duck,F.Niebling,T.Neeβe,A.Otto.Infiltration as post-processing of laser sintered metal parts[J].Powder Technology,2004,145,62-68.
    [33]Zhang Jiangfeng,HuangYinhui,et al.Study on selective lasersintering of metallic powders[J].Transactions of Nanjing University of Aeronautics & Astronautics,2002,6,77-83.
    [34]Brian ODonnchadh,Anthony Yansey.A note on rapid metal composite tooling by selective laser sintering[J].Journal of Materials Processing Technology,2004,153-154(10),28-34.
    [35]Shuping Yi,Fei Liu,Jin Zhang,Shiquan Xiong.Study of the key technologies of LOM for functional metal parts[J].Journal of Materials Processing Technology,2004,150(1-2), 175-181.
    [36]何耀.基于RP的刀切型LOM系统研究与开发:[硕士学位论文].西安,西安交通大学,2002.
    [37]朱东波.基于RP技术的板料成形模具快速制造系统研究,[博士学位论文].西安,西安交通大学,2001.
    [38]贾振元,邹国林等.FDM工艺出丝模型及补偿方法的研究[J].中国机械工程,2002,13(23),1997-2000.
    [39]谭永生.FDM快速成型技术及其应用[J].航空制造技术,2000,(1),26-27.
    [40]翁锦榕,陈志群.FDM快速原型制造系统在企业中的作用[J].中国机械工程,1998,9(5),23-24.
    [41]江开勇,刘又午,颜永年.熔融沉积制造的热学模型和工艺控制研究[J].中国机械工程,1999,10(6),636--638.
    [42]徐国贤,颜永年等.直接金属沉积成形工艺的RP软件研究[J].新技术新工艺.热加工技术,2003,(2),31-34.
    [43]J.C.Ferreira.Rapid tooling of die DMLS Inserts'for shoot-squeeze moulding(DISA)system[J].Journal of Materials Processing Technology,2004,155-156(30),1111-1117.
    [44]Jirathearanat Suwat,Vazquez Victor,Rodriguez Ciro A.,Altan Taylan.Virtual processing application of rapid prototyping for visualization of metal forming processes[J].Journal of Materials Processing Technology,2000,98(1),116-124.
    [45]Male A.T.,Chen Y.W.,Pan C.,Zhang Y.M.Rapid prototyping of sheet metal components by plasma-jet forming[J].Journal of Materials Processing Technology,2003,135(2-3),340-346.
    [46]杨伟东,颜永年等.基于RP的直接制造金属型方法探讨[J].河北工业大学学报,2002,31(1),5-9.
    [47]邵娟,霍文国.浅析金属粉末选择性激光烧结快速成型技术[J].冶金丛刊,2007,168(2),33-35.
    [48]邓琦林.激光熔覆成形金属零件的实验研究[J].航空精密制造技术,2000,36(5),9-12.
    [49]邓琦林.激光熔覆成形金属零件的精度分析[J].航空精密制造技术,2000,36(4),13-17
    [50]Kussmaul K.,Schoch F.w.,Luckow H..High QualityLarge ConPonents' Shape Welded by a SAW Process[J].Welding Journal,1983,62(9),17-24
    [51]H.E.Beardsle and R.Kovacevic,New rapid prototyping technical based on 3D welding.Society of Manufacturing Engineering.1999 SME
    [52]史耀武.成型焊接快速零件制造技术的发展[J].中国机械工程,1994,6,1-2
    [53]Mcaninch MD,Conrardy C C.Shape Melting-a U-nique Near-net Shape Manufacturing Process.Welding Review International,1991,2,33-40
    [54]Irving B.How Those Million-Dollar Research Projects are Improving the State of the Art of welding,Welding Journal,1993,6,61-65
    [55]Spencer,J.D.;Dickens,P.M.;Wykes,C.M..Rapid prototyping of metal parts by three-dimensional welding.Proceedings of the Institution of Mechanical Engineers,Part B,Journal of Engineering Manufacture,1998,212(B3),,175-182
    [56]Jandric Z,Kmecko I S,Kovacevic R.Dynamic modeling of GTAW for rapid prototyping with welding-based deposition[J].Technical Paper-Society of Manufacturing Engineers.AD,2002,AD02-242
    [57]Jandric,Z.;Wang,Y.Z.;Kovacevic,R.,Optimization of Welding Parameters for GTAW Based Rapid Manufacturing.ASM Proceedings of the International Conference,Trends in Welding Research,2002,,392-397
    [58]Jandric,Z.;Labudovic,M.;Kovacevic,R.Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition.International Journal of Machine Tools and Manufacture,2004,44(7-8):785-796
    [59]Jandric,Z.;Kovacevic,R..Heat management in solid free-form fabrication based on deposition by welding.Proceedings of the Institution of Mechanical Engineers,Part B,Journal of Engineering Manufacture,2004,218(11),,1525-1540
    [60]Wu,Y.;Kovacevic,R.Mechanically assisted droplet transfer process in gas metal arc welding.Proceedings of the Institution of Mechanical Engineers,Part B,Journal of Engineering Manufacture,2002,216(4).,555-564
    [61]Beardsley,H.;Kovacevic,R..Controlling Heat Input and Metal Transfer for 3D Welding-Based Rapid Prototyping.ASM Proceedings of the International Conference,Trends in Welding Research,1998,,1062-1067
    [62]Beardsley,Heather E.;Kovacevic,Radovan.New rapid prototyping technique based on 3-D welding.Technical Paper-Society of Manufacturing Engineers,PE99-126,,PE,1999,PE99-126-1-PE99-126-6
    [63]Yu Ming Zhang;Li,P.;Chen,Y.;Male,A.T.Automated system for welding-based rapid prototyping.Mechatronics,2002,12(1),37-53
    [64]Zhang,YuMing;Chert,Yiwei;Li,Pengjiu;Male,Alan T.Weld deposition-based rapid prototyping,A preliminary study.Journal of Materials Processing Technology,2003,135(2-3),347-357
    [65]Yang,S.;Han,M.;Wang,Q.Development of a welding system for 3D steel rapid prototyping process.China Welding(English Edition),2001,10(1),50-56
    [66]许超,时红霞等.基于微束等离子弧三维焊接的直接金属成形系统设计.机床与液压,2003,4:54-56
    [67]Ouyang,J.H.;Wang,H.;Kovacevic,R.Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding,Process control and microstructure.Materials and Manufacturing Processes,2002,17(1),103-124
    [68]Wang,Huijun;Jiang,Wenhui;Ouyang,Jiahu;Kovacevic,Radovan.Rapid prototyping of 4043 Al-alloy parts by VP-GTAW.Journal of Materials Processing Technology,2004,148(1),93-102
    [69]Choi,D.-S.;Lee,S.H.;Shin,B.S.Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology.Journal of Materials Processing Technology,2001,113(1-3),273-279
    [70]D Hu,H Mei and R Kovacevic.Improving solid freeform fabrication by laser-based additive manufacturing.Proc Instn Mech Engrs Vol 216 Part B,J Engineering Manufacture,2002,B14001,,1253-126
    [71]SA GVOLDEN G,PRAN K,VINES L,et al.Fiber optic system for ship hull monitoring [A].Optical Fiber Sensors Conference Technical Digest[C].Portland,IEEE Laser and Electro-OpticsSociety,2002,435-438.
    [72]HJELME D R,BJERKANL,N EEGARD S,et al.Application of Bragg grating sensors in the characterization of scaled marine vehicle models,[J].Appl.Opt.,1997,36(1),328-336.
    [73]FERNANDEZA F,BERGHMAN S F,B RICHARD B,et al.Multiplexed fiber Bragg grating sensors for in-core thermometry innuclear reactors[A].Proceedings of SPIE[C].Boston,The International Society of Optical Engineering,2000,40-49.
    [74]万里冰等.埋光纤光栅传感器智能土木结构应变监测[J].力学与实践,2003,4
    [75]唐风等,机敏结构中光纤传感器的集成方法[J].传感技术学报,1996,3,59-61
    [76]杨建良,向清,黄德修等.智能复合材料内光纤的埋置技术[J].纤维复合材料,1998,1
    [77]黄智伟.光纤智能结构/蒙皮[J].传感器世界,2000,4,21-24
    [78]Li,Xiaochun.Embedded sensors in layered manufacturing.,Dissertation Abstracts International,[D],Volume,62-10,Section,B,page;4745.;Adviser,Fritz Prinz,Stanford University.2001
    [79]陈祝年.焊接工程师手册[M].北京,中国机械出版社,2002
    [80]胡晓冬,赵万华.等离子弧焊直接金属成形技术的工艺研究[J].机械科学与技术,2005,24(5),540-542
    [81]姜同川.《正交试验设计》[M].山东科技技术出版社,.1985.22-56
    [82]盛永莉.正交试验设计及其应用[J].济南大学学报,1997,(7),47-50
    [83]郝行舟,李春生.正交试验设计方法在试验设汁中的应用[J].河南交通科技,1999,(12),32-34
    [84]汪仁管等译.试验设计与分析[M].北京:中国统计出版社,1998.
    [85]施光燕,董加礼.面向21世纪课程教材-最优化方法[M].北京:高等教育出版社,1999
    [86]袁志发,周静芋.试验设计与分析[M].北京,高等教育出版社,2000.
    [87]徐仲安,王天保,李常英等.正交试验设计法简介[J].科技情报开发与经济,2002,(12),29-32
    [88]汪建华编著.焊接数值模拟技术及其应用[M].上海,上海交通大学出版社,2003年.
    [89]余淑荣,熊进辉,樊丁,陈剑虹.ANSYS在激光焊接温度场数值模拟中的应用[J].焊接技术,2006,35(5),6-9.
    [90]吉玲,卢振洋.TIG焊产生咬边影响机理的仿真计算[J].电焊机,2006,6(2),17-22.
    [91]陈家权,肖顺湖,吴刚,杨新彦.焊接过程数值模拟热源模式的比较[J].焊接技术,2006,35(1),9-11.
    [92]赵明,武传松,陈茂爱.焊接热过程数值分析中相变潜热的三种解决方案[J].焊接学 报,2006,27(9),55-58.
    [93]Fenggui Lu,Shun Yao,Songnian Lou,Yongbing Li.Modeling and finite element analysis on GTAW arc and weld pool[J].Computational Materials Science,2004,29(3),371-378.
    [94]S.C.Chu,S.S.Lian.Numerical analysis of temperature distribution of plasma arc with molten pool in plasma arc melting[J].Computational Materials Science,2004,30(3-4),441-447.
    [95]李冬林,于有生,温家伶等.堆焊温度场的三维动态模拟[J].武汉理工大学学报(交通科学与工程版),2002,26(5),671-673.
    [96]孟庆国,方洪渊等.多道焊温度场数值模拟极其分布规律的研究[J].机械工程学报,2005,41(1),124-128.
    [97]吴言高,李午申,邹宏军等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3),89-92
    [98]M.Sunar,B.S.Yilbas,K.Boran.Thermal and stress analysis of a sheet metal in welding[J].Journal of Materials Processing Technology,2006,172(1),123-129.
    [99]M.M.Mahapatra,G.L.Datta,B.Pradhan,N.R.Mandal.Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements[J].International Journal of Pressure Vessels and Piping,2006,83(10),721-729.
    [100]S.W.Wen,P.Hilton,D.C.J.Farrugia.Finite element modelling of a submerged arc welding process[J].Journal of Materials Processing Technology,2001,119(1-3),203-209.
    [101]H.W.Zhang,Z.Zhang,J.T.Chert.3D modeling of material flow in friction stir welding under different process parameters[J].Journal of Materials Processing Technology,2007,183(1),62-70
    [102]谭真,郭广文.工程合金热物性[M].北京,冶金工业出版社,1996
    [103]宋思利,高进强,徐兆军.焊接过程自动控制的研究状况及发展前景[J].山东机械,1999,2,5-7.
    [104]黄石生,覃敬腾,宋永伦.TIG焊熔宽的自整定PID闭环控制系统[J].焊接学报,1994,15(2),122-129.
    [105]张甲英,蒋力培,张相洪.MIG焊熔宽模糊控制系统[J].焊接学报,1999,20(1),61-66.
    [106]赵举东,杨虹.脉沖MIG/MAG焊接熔滴过渡的自适应模糊控制[J].电子与自动化,1997,(1),14-18.
    [107]张华,潘际銮,廖宝剑.焊接温度场的实吋检测及熔透闭环控制[J].焊接学报,1998,19(3),176-183.
    [108]Hsing-Chia Kuo,Li-Jen Wu.An image tracking system for welded seams using fuzzy logic [J].Journal of Materials Processing Technology,2002,120(1-3),169-185.
    [109]Yu Xue,I.S.Kim,J.S.Son,et al.Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process[J].Journal of Materials Processing Technology,2005,164-165(15),1134-1139.
    [110]Chiung-Hsin Tsai,Kuang-Hua Hou,Han-Tung Chuang.Fuzzy control of pulsed GTA welds by using real-time root bead image feedback[J].Journal of Materials Processing Technology,2006,176(1-3),158-167.
    [111]S Murakami,F Takemoto,H Fujimura,et al.Weld-line tracking control of arc welding robot using fuzzy logic controller[J].Fuzzy Sets and Systems,1989,32(2),221-237.
    [112]廖帮全,赵启大,冯德军等.光纤耦合模理论及其在光纤布拉格光栅上的应用[J].光学学报,2002,22(11),1340-1344.
    [113]廖帮全,冯德军,赵启大等.光纤布拉格光栅电流传感的理论和实验研究[J].光学学报,2002,22(9),1092-1095.
    [114]Kersey A D,Davis M A,Patrick H Jet al.Fiber grating sensors.[J],J.Lightwave Technol.,1997,15(8),1442-1463.
    [115]严钦元,方景礼.塑料电镀[M].重庆,重庆出版社,1987.
    [116]廖延彪.光纤光学[M].北京,清华大学出版社,2000.
    [117]胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装[J].光电子.激光,2006,17(3),311-313.
    [118]谢剑锋.智能结构光纤光栅保护方法及温度传感性能研究[D].南昌大学,2007.
    [119]何建波,吴肖安,黄辉等.电镀镍磷合金研究现状及前景[J].浙江工业大学学报,1999,27(1),62-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700