用户名: 密码: 验证码:
贵州典型矿山的水环境地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开采引起的重金属排放是一个全球性的环境问题。随着国民经济的发展,这一问题显得越来越突出,但相关的研究却非常滞后。矿山环境的特点与区域地质特征密切相关,比如碳酸盐岩地区与花岗岩地区由于地表化学特征不同,矿山有害物质的环境影响就会呈现不同的特点。贵州省碳酸盐岩广泛出露,地表水基本上都呈弱碱性,矿山物质的环境影响必然有与其他地区不同的特点。矿山水在污染物的产生、迁移、沉淀过程中扮演了重要的角色,因此矿山水中重金属的地球化学特征是研究矿山污染对水环境影响的关键课题。
     本研究的目的是通过对碳酸盐岩地区典型矿山周围水环境的研究,认识矿山物质的扩散迁移规律,了解矿山来源的有害物质(包括铅锌矿释放的铅锌、汞矿释放的汞、金矿释放的砷、锑)对周边环境潜在的危害,对比不同类型重金属(As、Sb与Pb、Zn、Hg)的地球化学迁移特征,为有关环境的治理以及资源开发的可持续发展提供科学决策依据。通过对三个典型矿山(杉树林铅锌矿、万山汞矿、丫他金矿)尾矿堆及其周围水环境的研究,认识到以下特征:
     1 本文所研究的三个矿区的水环境均受到矿山有害物质的强烈影响。杉树林矿区的尾矿堆附近河水中Pb为6780μg/L,Zn为324μg/L,沉积物中Pb为4553μg/g,Zn为7971μg/g。万山矿区的尾渣堆渗滤水含Hg平均1200ng/L。丫他矿区的下游河水中As、Sb为618μg/L和206μg/L,沉积物中As、Sb为532μg/g和122μg/g。
     2 由于广泛存在的碳酸盐岩的影响,加上矿区使用石灰处理选冶废水,大部分的矿山水呈碱性或弱碱性。碱性或弱碱性环境促进了呈阳离子形式存在的Pb、Zn、Hg等重金属被颗粒物吸附,而呈氧阴离子形式存在的As、Sb则易呈溶解态存在。这一不同特点对不同矿山的环境控制和治理有指示作用。
     3 矿山有害物质在下游河流中的扩散迁移主要与悬浮物及其他水流的稀释作用有关。呈阳离子形式存在的Pb、Zn、Hg等重金属的迁移主要受悬浮物的影响,而呈氧阴离子形式存在的As、Sb主要受其他水流的稀释作用影响。杉树林地区水浑浊、悬浮物多,且水流湍急,Pb、Zn主要呈吸附态,能够随颗粒物迁移很远,并导致沉积物中Pb、Zn在很长距离内居高不下,这一途径对环境的影
Heavy metals contamination caused in mine exploitation has become a global environment concern. This problem is getting worse with the development of economy, and has been scarcely addressed. The mine environment shows a close relation to the region geologic setting. For instance, outcrops such as carbonate and granite, could result in different impacts of mine substance. In Guizhou province, the extensively distributed carbonate makes the surface water slightly alkaline, and would consequently lead to distinct impacts on mine environment. Mine water acts as essential media for heavy metals generation, migration and precipitation, thus the geochemical characteristic of heavy metals in mine water is a key to the understanding of mine impacts on the surrounding environmentThe objective of this study was to conduct case studies on mine water environment in carbonate area, so as to understand the knowledge of mine substance dififusion and migration. This study primarily addresses the environmental impact of toxic substance from Pb-Zn mine, Hg mine and Au-mine, as well as the contrast of distinct migration characteristic of heavy metals. This research would help to remedy the mine environment and provide fundamental evidences for sustainable development of the society. The mine tailings of three mines (Shanshulin Pb-Zn mine, Wanshan Hg mine, and Yata Au mine) and their downstream environment have been investigated in detail, and primary conclusions are listed below:1. The aqueous environment of three mines were all seriously affected by the substance from the mine tailings. In the vicinity of the mine tailing dump of shanshulin Pb-Zn mine, the water contains 6780 μg/g of Pb, and 7971 μg/g of Zn. The leachate of Wanshan calcines dump contains 1200 ng/L of Hg. In Yata mine area, the As and Sb concentrations are 618 μg/1 and 206 μg/L in the downstream water, and 532 μg/g and 122 μg/g in the sediment.2. The mine waters in the study area are alkaline or slightly alkaline, owing to the carbonates as well as liming in the preliminary treatment of mine drainage. The
    alkalinity of surface water enhances the sorption of cationic heavy metals- Pb, Zn and Hg, whereas on the other hand, it prompts the dissolution of anionic heavy metals- As and Sb. It could be implied that in carbonate areas, different means should be applied to the remedy of cationic and anionic heavy metals contamination,3. the diffusion and migration of mine toxic substances correlate mainly with suspended solids as well as dilution by other streams. The cationic heavy metals, such as Pb, Zn, and Hg, migrate mostly along with suspended solids, whereas the anionic heavy metals such as As and Sb, migrate predominately as dissolved ions and would be attenuated primarily by dilution process. In Shanshulin Pb-Zn mine area, the stream water is quite turbid and contains a quantity of suspended solids, so Pb and Zn were mostly sorbed and is able to migrate along with suspended solid over a long distance, giving rise to a high level of Pb and Zn in sediment The impact of particulate heavy metals on environment is more important than that of dissolved heavy metals. In Wanshan area, despite the mine water is very dear and contains much less suspended solids, Hg was still found to be controlled by the sorption on suspended solids. In Yata area, the As and Sb in water, similarly as SO42*, show conservative behavior and attenuate only when diluted by other streams.4. During the oxidation of sulflde minerals, SO42' is.released along with heavy metal ions, therefore sulfur concentration and sulfur isotope are closely correlated with heavy metals in mine waters. Obvious difference of sulfur concentration and sulfur isotopic value between mine source and other sources makes sulfur isotope an appropriate Variable for tracing the migration of mine-source heavy metals.5. According to the characteristics of the heavy metals migration in mine waters, it was concluded that the environmental threats of Pb, Zn and Hg in the mine tailing could be mitigated via the control of suspended solids (e.g. construction of tailing dams etc.), whereas innovative ideas would be imperatively expected for the control of As and Sb migration.
引文
陈士杰。黔西滇东北铅锌矿床成因探讨。贵州地质,1986,(3).
    储雪蕾.北京地区地表水的硫同位素组成与环境地球化学。第四纪研究,2000,20(1):87-97.
    丁振华,郑宝山,Finkelman,R.B., Belkin,H.E.,陈朝刚,周代兴,周运书.黔西南高砷煤的分布及地球化学特征研究。地球化学,2000,29(5):490-494.
    丁振华,Finkelman, R. B., Belkin, H.E.,郑宝山,金志升,周运书,周代兴。贵州燃煤型砷中毒地区煤的矿物组成。煤田地质与勘探,2003,31(1):14-16.
    贵州省年鉴编辑部。贵州年鉴.贵州年鉴出版社,1999,贵阳。
    贵州省统计局。贵州省统计年鉴。中国统计出版社,1999,贵阳。
    韩贵琳,刘丛强。贵州乌江水系的水文地球化学研究。中国岩溶,2000,19(1):35-43.
    何立贤,曾若兰,林立青。贵州金矿地质。地质出版社,1993,北京,pp66-68.
    何孟常,王子健,汤鸿霄(1999)乐安江沉积物重金属污染及生态风险评价。环境科学,20(1):7-10.
    何孟常,季海冰,赵承易,谢军,吴宪明,李志峰。锑矿区土壤和植物中重金属污染初探。北京师范大学学报(自然科学版),2002,38(3):417-420.
    何孟常,万红艳。环境中锑的分布、存在形态及毒性和生物有效性。化学进展,2004,16(1):131-135.
    洪业汤,朱泳煊,张鸿斌,朴河春,姜洪波,曾毅强.刘广深。燃煤过程硫同位素分馏效应及其环境意义。环境科学学报,1993,13(2):240-243.
    洪业汤,张鸿斌,朱泳煊,朴河春。姜洪波,刘德平。中国大气降水的硫同位素组成特征。自然科学进展-国家重点实验室通讯,1994,4(6):741-745.
    花永丰,崔敏中。贵州万山汞矿。地质出版社,1995,北京。
    黄廷林,周孝德,沈晋.渭河沉积物中重金属释放的动态实验研究。水利学报,1994,(11):52-58.
    焦小宝,宋智春,杨宏伟等。黄河水中无机固体粒子与铜离子作用离子交换率与pH关系研究。内蒙古师范大学学报(自然科学汉文版),1998,27(1):42-45.
    金相灿。黄河中游悬浮物对铅、铜、锌、镉的吸附。中国环境科学,1983,3(4):10-17.
    栾兆坤,汤鸿宵。硫酸铁氧化物的表征及其对重金属吸附作用的研究。环境科学学报,1994,14(2):129-136.
    马振东,闭向阳,张凌,蒋敬业,向武,董勇,张丽春,乔胜英。长江中游鄂东南铜矿集区铜等重金属元素水环境地球化学特征。地球化学,32(1):55-61.
    毛健全,张启厚,毛德明,顾尚义。水城断陷构造演化及铅锌矿研究。贵州科技出版社,1998,贵阳。
    潘家勇,张乾,劭树勋,张忠。万山汞矿卤素元素地球化学特征及其地质意义。矿物学报,1999,19(1):90-97.
    仇广乐,冯新斌,王少锋。贵州省万山汞矿区地表水中不同形态汞的空闻分布特点。地球与环境,2004,32(3-4):77-82.
    孙丽娜,孙铁珩,金成洙。卧龙泉河流域土壤重金属污染的地球化学研究。水土保持研究,2004,11(3):191-195.
    王凯雄。水化学。化学工业出版社,2001,北京。
    王雷,张美云,罗振东。呼和浩特盆地富砷地下水的分布、特征及防治对策,内蒙古民族大学学报(自然科学版),2003,31(1):14-16.
    吴攀,刘丛强,杨元根,张国平。矿山环境中(重)金属的释放迁移地球化学及环境效应。矿物学报,2001,21(2):213-218.
    吴攀。碳酸盐岩地区矿山环境地球化学研究。中国科学院地球化学研究所博士论文,2002,贵阳。
    吴耀国(1999)污染的孝妇河对其流域裂隙水化学环境的影响。环境科学学报,19(2):137-141.
    徐志方。西江流域的水文地球化学研究。中国科学院地质地球物理研究所博士学位论文,2002,北京。
    杨元根,刘丛强,张国平,吴攀。铅锌矿山开发导致的重金属在环境介质中的积累。矿物岩石地球化学通报,2003,22(4):305-309.
    于文辉。地表水体中微量金属元素分布的水/胶体作用控制机理的实验研究。中国科学院地球化学研究所博士学位论文,2005,贵阳。
    张美云,斯梅P.L.呼和浩特盆地富砷地下水的分布及砷的迁移与释放。中国地方病学杂志,2000,19(6):442-444.
    郑传仑。贵州杉树林铅锌矿床碳酸盐岩浊流沉积与成矿的关系。桂林冶金地质学院学报,1992,12(4):323-334.
    中国环境监测总站。中国土壤元素背景值。中国环境科学出版社,1990,北京。
    中国矿床发现史编委会。中国矿床发现史。中国地质出版社,1996,北京,p68.
    朱笑青,王中刚,陈福。贵州丫他微细浸染型金矿床金的赋存形式与矿床成因的研究。自然科学进展,2000,10(3):248-252.
    Ahmad, J., Goldar, B., and Misra, S. Value of arsenic-free drinking water to rural households in Bangladesh. Journal of Environmental Management, 2005, 74(2): 173-185.
    Akcil, A., and Koldas, S. Acid Miue Drainage (AMD): Causes, treatment case studies. Journal of Cleaner Production, 2005, in press.
    Al, T.A, Blowes, D.W., Jambor, J.L., and Scott, J.D. The geochemistry of mine-waste pore-water afected by the combined disposol of natrojarosite and base metal sulfide tailings at kidd creek, Timmins, Ontario. Canadian Geotechnical Journal, 1994, 31(4): 502-512.
    Alpers, C.N., Hamlin, S.N., and Rye, R.O. Stable isotopes (O, H, S) distinguish sources of acid drainage at Penn Mine, California. In: Lanphere, M.A., Dalrymple, G.B., Turrin, B.D. (Eds.). Abstract of the Eighth International Conference on Geochronology, Cosmochronology, and Isotope Geology,, US Geological Survey Circular, 1994, p4.
    Alpers, C.N., and Blowes, D. Environmental geochemistry of sulfide oxidation. ACS Symposium, 1994, p550.
    Anderson, M.A., Ferguson, J.F., and Gavis, J. Arsenate adsorption on amorphous aluminum hydroxide. J. Colloid Interface Sci., 1976, 54: 391-399.
    Andreae, M.O. Arsenic in rain and the atmospheric mass balance of arsenic. J. Geophys. Res., 1980, 85: 4512-4518.
    Andreae, M.O., Byrd, TJ., and Froelich, O.N. Arsenic, antimony, germanium and tin in the Tejo estuary, Portugal: modelling of a polluted estuary. Environ. Sci. Technol., 1983, 17: 731-737.
    Ashley, P.M., Craw, D., Graham, B.P., and Chappell, D.A. Environmental mobility of antimony around mesothermal stibnite deposits, News South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 2003,77:1-14.
    Audry, S., Blanc, G., and Schafer, J. The impact of sulphide oxidation on dissolved metal (Cd, Zn, Cu, Cr, Co, Ni, U) inputs into the Lot-Garonne fluvial system (France). Applied Geochemistry, 2005, 20:919-931.
    Azcue, J.M., and Nriagu, J.O. Impact of abandoned mine railings on the arsenic concentrations in Moira Lake, Ontario. J. Geochem. Explor., 1995, 52: 81-89.
    Bargagli R, Iosco FP, Barghigiani C. Assessment of mercury dispersal in an abandoned mining area by soil and lichen analysis. Water Air Soil Pollut., 1987, 36: 1059-71.
    Bednar, A.J., Garbarino, J.R., Ranville, J.F., and Wildeman, T.R. Effects of iron on arsenic speciation and redox chemistry in acid mine water. J. Geochem. Explor., 2005, 85: 55-62.
    Bhumbla, D. K. and Keefer, R. F. Arsenic mobilization and bioavailability in soils. In Arsenic in the Environment(ed. J. O. Nriagu), pp51-82. John Wiley & Sons, Inc., 1994, New York.
    Biester, H., Gosar, M., and Muller, G. Mercury speciation in tailings of the Idrija mercury mine. J. Geochem. Explor., 1999, 65: 195-204.
    Bigham, J.M., Schwertmann, U., Traina, S.J. Winland, R.L. and Wolf, M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimi1a Acta, 1996, 60: 2111-2121.
    Bilinski, H., Kozar, S., Plavsic, M., Kwokal, Z., and Branica, M. Trace metal adsorption on inorganic solid phases under esturary conditions. Marine Chem., 1991, 32(2-4): 225-233.
    Black, A., Craw, D., Youngson, J.H., and Karubaba, J. Natural recovery rates of a river system impacted by mine tailing discharge: Shag River, East Otago, New Zealand. Journal of Geochemical Exploration, 2004, 84: 21-34.
    Bowell, R.J., 1994. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl. Geochem., 9: 279-286.
    Brodie, G.A., Britt, C.R., Tomaszewski, T.M. and Taylor, H.N. Use of passive anoxic limestone drains to enhance performance of acid drainage treatment wetlends. In Proc. 1991 National meeting of the American Society for surface mining and reclamation, 1991, 211-228. Princeton, W.V., American Society for Surface Mining and Reclamation.
    Callister, S.M., and Winfrey, M.R. Microbial methylation of mercury in Upper Wisconsin river sediment. Water Air Soil Pollut, 1986, 29: 1873-87.
    Carrillo, A., and Drever, J.I.. Environmental assessment of the potential for arsenic leaching into groundwater from mine waste in Baja California Sur, Mexico. Geofi's. Int., 1997, 37(1): 35-39.
    Carrillo-Chavez, A., Morton-Bermea, O., Gonzalez-Partida, E., Rivas-Solorzano, H., Oesler, G., Garcia-Meza, V., Hernandez, E., Morales, P., and Cienfuegos, E. Enviormental geochemistry of the Guanajuato Mining District, Mexico. Ore Geology Reviews, 2003, 23: 277-297.
    Casiot, C., Bruneel, O., Personne, J.-C,, Leblanc, M., and Elbaz-Poulichet, F. Arsenic oxidation and bioaccumulation by the acidophillc protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). The Science of the Total Environment, 2004, 320: 259-267.
    Casiot, C., Lebrun, S., Morin, G., Bruneel, O.,Personne, J.C., and Elbaz-Poulichet, F. Sorption and redox process controlling arsenic fate and transport in a stream impacted by acid mine drainage. The Science of the Total Environment, 2005, 347(1-3): 122-130.
    Chapman, B.M., Jones, D.R., Jung, R.F., 1983. Processes controlling metal ion attenuation in acid mine drainage streams. Geochim. Cosmochim. Acta, 47: 1957-1973.
    Cram, J.C. Diversion well treatment of acid water, Lick Creek, Tioga County, PA. M.S. thesis, Pennsylvania State Univ., University Park, Pa., 1996.
    Cravotta Ⅲ, C.A., and Trahan, M.K. Limestone drains to inercase pH and remove disslolved metals from acidic mine drainage. Appl. Geochem., 1999, 14: 581-606.
    Das B K. Environmental polution of Udaisagar lake and impact of phosphate mine, Udaipur, Rajasthan. India. Environ. Geol., 1999, 38(3): 244-248.
    Das, H.K., Mitra, A.K., Sengupta, P. K., Hossain, A., Islam, F., and Rabbani, G. H. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International, 2004, 30(3): 383-387.
    Davis, R. A., Welty, A. T., Borrego, J., Morales, J.A, Pendon, J. G., and Ryan, J. G. Rio Tinto estuary (Spain): 5000 years of pollution. Environ. Geol., 2000, 29(10): 1107-16.
    Denimal, S., Bertrand, C., Mudry, J., Paquette, Y., Hochart, M., and Steinmann, M. Evolution of the aqueous geochemistry of mine pit lakes-Blanzy-Montceau-les-Mines coal basin (Massif Central, France): origin of sulfate contents;effects of stratification on water quality. Applied Geochemistry, 2005, 20: 825-839.
    Dzombak, D.A., and Moral, F.M.M. Surface complexation modeling-hydrous ferric oxide. John Wiley, 1990, New York.
    Edraki, M., Golding, S.D., Baublys, S.D., and Laerence, M.G. Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Applied Geochemistry, 2005, 20: 789-805.
    Elberling, B., Nicholson, R.V., and Scharer, J.M. A combined kinetic and diffusion- model for pyrite oxidation in tailings- A change in controls with mine. J. Hydrology, 1994, 157(1-4): 47-60.
    Elberling, B. Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Regions Science and Technology, 2005, 41: 121-133.
    Evangelou V. P. Pyrite Oxidation and Its Control. CRC Press, 1995.
    Feng, X., Qiu, G., Wang, S., Shang, L. Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan, Southwestern China. Journal de Physique IV, 2003, 107: 455-458.
    Ferrara R. Mercury mines in Europe: assessment of emissions and environmental contamination. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W, editors, Mercury contaminated sites. Springer-Verlag, 1999, p. 51-72.
    Filella, M., Belzile, N., and Chen, Y.-W. Antimony in the enviroment: a review focused on natural waters II. Relavant solution chemistry. Earth-Science Reviews, 2002, 59: 265-285.
    Fitzgerald, W.F., and Clarkson, T.W. Mercury and monomethyimercury: present and future concern. Environ. Health Perspect, 1991, 96: 159-166.
    Frau, F., and Ardau, C. Geochemical controls on arsenic distribution in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining. Applied Geochemistry, 2003, 18: 1373-1386.
    Froelich, P.N., Kaul, L.W., Byrd, J.T., Andreae, M.O., Roe, K.K. Arsenic., barium, germanium, tin, dimethyl-sul- fide and nutrient biogeochemsitry in Charlotte Harbour, Florida, a phosphorus-enriched estuary. Estuar. Coast. Shelf Sci., 1985, 20:239-264.
    Frost, R.R., and Grifin, R.A. Bffect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. J., 1977, 41: 53-57.
    Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., and Ikeda, H. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 2003, 18: 1267-1278.
    Fuller, C.C., and Harvey, J.W. Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environ. Sci. Technol., 2000, 34: 1150-1155.
    Gao, Y., and Bradshaw, A.D. The containment of toxic wastes: II. Metal movement in leachate and drainage at Parc lead-zinc mine, north Wales. Environmental Pollution, 1995, 90(3): 379-382.
    Gault, A.G., Cooke, D.R., Townsend, A.T., Charnock, J.M., and Polya, D.A. Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. The Science of the Total Environment, 2005, 345:219-228.
    Gemici, U., and Oyman, T. The influence of the abandoned Kalecik Hg mine on water and stream sediments (Karaburun, Izmir, Turkey). The Science of the Total Environment, 2003, 312: 155-166.
    Goldberg, S., and Glaubig, R. A. Anion sorption on a calcareous, montmorillonitic soft-arsenic. Soil Sci. Soc. Am. J., 1988, 52: 1297-1300.
    Gosar, M., Pirc, S., Bidvoc, M., 1997. Mercury in the Idrija river sediments as a reflection of mining and smelting activities of the Idrija mercury mine. J. Geochem. Explor., 58:125-131.
    Gray, N.F. Field assessment of acid mine drainage contamination in surface and groundwater. Environ. Geol., 1996, 27(4): 358-361.
    Gray, N.F. Environmental impact of acid mine drainage: a management problem. Environ. Geol., 1997, 30(1/2): 62-71.
    Gray, N.F. Acid mine drainage composition and the implications for its impact on lotic systems. Water Research, 1998, 32(7): 2122-2134.
    Gray, J.E., Theodorakos, P.M., Bailey, E.A., and Turner, R.R. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci. Total Environ., 2000, 260: 21-33.
    Gray, J.E. An overview of mercury transport, cycling, and environmental effects of mercury mining. Materials Geoenvir., 2001, 48: 2-7.
    Gray, J.E, Crock, J.G., and Fey, D.L. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl. Geochem., 2002, 17: 1069-1079.
    Gupta, S.K., and Chen, K.Y. Arsenic removal by adsorption. Journal Water Pollution Control Fed., 1978, 50: 493-506.
    Haefner, R.J. A sulfur-isotope mixing model to trace leachate from pressurized fluidized bed combustion byproducts in an abandoned-coal-mine setting. Fuel, 2001, 80(6): 829-836.
    Hasegawa, H., Sohrin, Y., Seki, K., Sato, M., Norisuye, K., Naito, K., and Matsui, M. Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae. Chemosphere, 2001, 43: 265-272.
    He, M., and Yang, J. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. The Science of the Total Environment, 1999, 243/244: 149-155.
    Hedin, R.S., Watzlaf, G.R., Nairn, R.W. Passive treatment of acid mine drainage with limestone. J. Environ. Qual., 1994, 23: 1338-1345.
    Herbert R B. Precipitation of Fe oxyhydroxides and jarosite from acidic groundwater. GFF., 1995, 117(2): 81-85.
    Higueras, P., Oyarzun, R., Oyarzun, J., Maxturana, H., Lillo, J., and Morata, D. Environmental assessment of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 2004, 19:1855-1864.
    Hines, M.E., Horvat, M., Faganeli, J., Bonzongo, J-C.J., Barkay, T., Major, E.B., Scott, K.J., Bailey, E.A., Warwick, J.J., and Lyons, W.B. Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environ. Res. Section A, 2000, 83: 129-139.
    Hingston, F.J., Posner, A.M., and Quirk, J.P. Competitive adsorption of nesatively charged ligands on oxide surfaces. In: Discussions of the Faraday Society, No. 52. The Faraday Society, 1971, London, pp. 334-342.
    Holmstrom, H., Ljungberg, J., and Ohlander, B. Role of carbonates in mitigation of metal release from mining waste. Evidence from humidity cells tests. Environmental Geology, 1999, 37(4): 267-280.
    Hood T. A. The kinetics of pyrite oxidation in marine systems. Ph.D. thesis, 1991, University of Miami.Horvat, M., Covelli, S., Faganelli, J., Logar, M., Mandic, V., Rajar, R., Sirca, A., and Zagar, D. Mercury in contaminated coastal environments;a case study: the Gulf of Trieste. The Science of the Total Environment, 1999, 237/238: 43-56.
    Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Lojen, S., Jacimovic, R., Falnoga, I., Qu, L., Fageneli, J., Drobne, D., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci. Total Environ., 304, 231-256.
    Huang, Y., Fairchild, I.J. Partitioning of Sr~(2+) and Mg~(2+) into calcite under karst- analogue experimental conditions. Geochim. Cosmochim. Acts, 2001, 65(1): 47-62.
    Johnson, C.A. The regulation of trace element concentrations in river and estuarine waters contaminated with acid mine drainage: the adsorption of Cu and Zn on amorphous Fe oxyhydroxides. Geochim. Cosmochim. Acta, 1986, 50: 2433-2438.
    Johnson, D.B., and Hallberg, K.B. Acid mine drainage remediation options: a review. The Science of the Total Environment, 2005, 338: 3-14.
    Jones C.A., Inskeep W.P., and Neuman D.R. Arsenic transport in contaminated mine railings following liming. J. Environ. Qual., 1997, 26: 433-439.
    Kim, C.S., Rytuba, J.J., Brown, G.E., Jr. Geological and anthropogenic factors influencing mercury speciation in mine waste: an EXAFS spectroscopy study. Appl. Geochem., 2003, 19: 379-393.
    Knoller, K., Fauville, A., Mayer, B., Strauch, G., Friese K., and Veizer, J. Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany. Chemical Geology, 2004, 204: 303-323.
    Korte N. E. Naturally occurring arsenic in groundwaters of the Midwestem United States. Env. Geol. and Water Sci., 1991, 18: 137-141.
    Korte N. E. and Fernando Q. A review of arsenic(Ⅲ) in groundwater. Critical Rev. in Env. Control, 1991, 21: 1-39.
    Kurkjian, R., Dunlap, C., and Flegal, A.R. Long-range downstream effect of urban runoff and acid mine drainage in the Debed River, Armenia: insights from lead isotope modeling. Applied Geochemistry, 2004, 19: 1567-1580.
    Larocque, A.C.L., Rasmussen, P.E. An overview of trace metals in the environment, from mobilization to remediation. Environ. Geol., 1998, 33 (2/3): 85-91.
    Larsen, T.S., Kristensen, J.A., Asmund, G., and Bjerregaard, P. Lead and zinc in sediments and biota from Maarmorilik, West Greenland: an assessment of the environmental impact of mining wastes on an Arctic fjord system. Environmental Pollution, 2001, 114: 275-283.
    Leblanc, M., Achard, B., Othman, D.B., Luck, J.M., Bertrand-Sarfati, J., and Personne, J. Ch. Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Applied Geochemistry, 1996, 11: 541-554.
    Ledin, M., and Pedersen, K. The environmental impact of mine wastes-role of microorganisms and their significance in treatment of mine wastes. Earth Sci. Rev., 1996, 41: 67-108.
    Lengke, M.F., and Tempel, R.N. Kinetic rates of amorphous As2S3 oxidation at 25 to 40℃ and initial pH of 7.3 to 9.4. Geochim. Cosmochim. Acta, 2001, 65:2241-2255.
    Lengke, M.F., and Tempel, R.N. Reaction rates of natural orpiment oxidation at 25-40℃ and pH 6.8-8.2 and comparison with amorphous As_2S_3 oxidation. Geochim. Cosmochim. Acta, 2002a, 66: 3281-3291.
    Lengke, M.F., and Tempel, R.N. Arsenic sulfide Oxidation at acid pH values, Transactions of the Society of Mining, Metallurgy and Exploration, 2002b, 312:116-119.
    Lengke, M.F., and Tempel, R.N. Natural realgar and amorphous AsS oxidation kinetics. Geochim. Cosmochim. Acta, 2003, 67: 859-871.
    Li X D, and Thornton I. (1993) Arsonic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England. Environ. Geochem. Health, 15(2-3):135-144.
    Lin, Z.X. Leacheate chemistry and precipitates mineralogy of Rudolfsgruvan mine waste rock dump in central Sweden. War. Sci. Technol., 1996, 33(6): 163-171.
    Lin, Z., and Herbert Jr., R.B, Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden. Environ. Geol., 1997, 33: 1-12.
    Loredo, J. Ordonez, A., and Pendas, F. Soil pollution related to historic mercury mining in northern Spain and treatment technologies. Environ. Sci. Pollut. Res., Spec. Issue, 2002, 3:79.
    Loredo, J., Alvarez, R., and Ordonez, A. Release of toxic metals metals and metalloids from Los Rueldos mercury mine (Asturies, Spain). The Science of the Total Environment, 2005, 340: 247-260.
    Maher, W.A. Arsenic in coastal waters of South Australia. Water Research, 1985, 19: 933-34.
    Martin, A.J., and Pederson, T.F. Seasonal and interannual mobility of arsenic in a lake impacted by metal mining. Environ. Sci. Technol., 2002, 36: 1516-1523.
    McKibben, M.A., and Barnes, H.L. Oxidation of pyrite in low temperature acidic solutions: rate laws and surface texture. Geochim. Cosmochim. Acta, 1986, 50: 1509-1520.
    Meek, F. A. Jr. Evaluation of acid prevention techniques used in surface mining. In Acid Mine Drainage Control and Treatment (eds. J. G. Skousen and P. F. Ziemkiewicz), 1995, pp. 87-93. West Virginia University and the National Mine Land Reclamation Center.
    Mok, W., and Wai, C.M. Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho. Environ. Sci. Technol., 1990, 24: 102-108.
    Moncur, M.C., Ptacek, C.J., Blowes, D.W., and Jambor, J.L. Release, transport and attenuation of metals from an old tailings impoundment. Applied Geochemistry, 2005, 20: 639-659.
    Moses, C.O., and Herman, J.S. Pyrite oxidation at circemneutral pH. Geochimica et Cosmochimica Acta, 1991, 55: 471-482.
    Munk, L., Faure, G., Pride, D.E., and Bisham, J.M. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage;Snake River Summit County, Colorado. Appl. Geochem., 2002, 17: 421-430.
    Navarro, M., Sanchez, M., Lopez, H., and Lopez, M.C. Arsenic contamination levels in waters, soils, and sludges in southeast Spain. Bull. Environ. Contam. Toxicol., 1993, 50: 356-362.
    Neal, C., Whitehead, P.G., Jeffery, H., and Neal, M. The water quality of the River Carnon, west Cornwall, November 1992 to March 1994: the impacts of Wheal Jane discharges. The Science of the Total Environment, 2005, 338: 23-29.
    Nelson, C. H., and Lamothe, P.J. Heavy metals anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries, 1993, 16(3A): 496-511.
    Nicholson, R.V., Gillham, R.W., and Reardon, E.J. Pyrite oxidtion in carbonate- buffered solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 1990, 54:395-402.
    Noller, B.N., Woods, P.H., and Ross, B.J. Case studies of wetland and filtration of mine waste-water in and naturally-occurring systems in Northern Australia. Wat. Sci. Technol., 1994, 29(4): 257-265.
    Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W. Negative pH and extremely acidic mine waters from Iron Mountain California. Environ. Sci. Technol., 2000, 34: 254-258.
    Odor, L., Wanty, R.B., Horvath, L, and Fugedi, U. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary. Journal of Geochemical Exploration, 1998, 65: 47-60.
    Ohmoto, H, and Rye, R.O. Geochemistry of hydrothermal ore deposits. 2nd. edition, by Barnes H.L., New York, Wiley, 1979.
    Olias, M., Nieto, J.M., Sarmiento A.M., Ceron, J.C., and Canovas, C.R.Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River(South West Spain), The Science of the Total Environment, 2004, 33: 267-281.
    Ostlund, P., Torssander, P., Morth, C-M., and Claesson, S. Lead and sulphur isotope dilution during dispersion from the Falun mining area. Journal of Geochemical Exploration, 1995, 52: 91-95.
    Pain, D.J., Sanchez, A., and Meharg, A.A. The Donana ecological disater: Contamination of a world heritage estuarine marsh ecosystem with acidified pyrite mine waste. Soience of The Total Environment, 1998, 222(1-2): 45-54.
    Paquette, J., and Reeder, R.J. Relationship between surface structure, growth mechanism and trace element incorporation in calcite. Geochim. Cosmochim. Acta, 1995, 59: 735-749.
    Pierce, M.L., Moore, C.B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 1982, 16: 1247-1253.
    Pirrie, D., Camm, G.S., Sear, L.G., and Hughes, S.H. Mineralogical and geochemiscal signature of mine waste contamination, Treslllian river, Fal estuary, Cornwall, UK. Environ. Geol., 1997, 29(1-2): 58-65.
    Qiu, G., Feng, X., Wang, S., and Shang, L. Mercury and methylmercury in riparian soil, sedimentsk mine- waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry, 2005, 20: 627-638.
    Rahn, D.H. A method to mitigate acid mine drainage in the Shamokin area, Pennsylvania (USA). Environ. Geol. Wat. Sci., 1993, 19(1): 47-53.
    Ranville, M., Rough, D., and Flegal, A.R. Metal attenuation at the abandoned Spenceville copper mine. Applied Geochemistry, 2004, 19: 803-815.
    Rose, S., end Ghazi, A. M. Release of sorbed sulfate from iron oxyhydroxides precipitated from acid mine drainage associated with coal mining. Environ. Sci. Technol., 1997, 31: 2136-2140.
    Ruiz, F., GonzalezRegalado, M. L., Borrego, J., Morales, J.A., Pendon, J.G., and Munoz, J.M. Stratigraphic sequence, elemental concentrations and heavy metal pollution in Holocene sediments from the Tinto-Odiel estury, southwestern Spain. Environ. Geol., 1998, 34(4): 270-278.
    Rytuba, J. J. Mercury mine drainage and processes that control its environmental impact. Sci. Total Environ., 2000, 260: 57-71.
    Sainz, A., Grande, J. A., de la Torre, M. L., and Sanchez-Rodas, D. Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. J. Environ. Manag, 2002, 64(4): 345-53.
    Sainz, A., Grande, J. A., and de al Torre, M. L. Characterisation of heavy metal discharge into the Ria of Huelva. Environment International, 2004, 30: 557-566.
    Senchez, J., Marino, N., Vaguero, M. C., Ansorena, L, and Legorburu I. Metal pollution by old lead-Zinc mines in Urttmea fiver valley (Basque Country, Spain). Soil, biota and sediment, Water, Air & Soil Pollut., 1998, 107: 303-319.
    Scudlark, J. R., and Church, T. M. The atmospheric deposition of arsenic and essociation with acid precipitation. Atmos. Environ., 1988, 22: 937-943.
    Seal, R. R., end Wandless, G. A. Stable isotope characteristics of waters draining massive sulfide deposits in the eastern United States. In: Wanty R. B., Marsh, S. P. Gough, L. P. (Eds.), Fourth International Symposium on Environmental Geochemistry. US Geological Survey Open-file Report 97-496, 1997.
    Seal, R. R. Stable-isotope geochemistry of mine waters and related solids. In: Jambor, J. L., Blowes, D. W., Ritchie, A.L.M. (Eds.), Environmental Aspects of Mine Waters. Mineralogical Association of Canada Short Course, 2003, vol. 31, pp. 11-50.
    Seyler, P., Martin, J.-M. Arsenic and selenium in a pristine river-estuarine system: the Krka, Yugoslavia. Mar. Chem., 1991, 34: 137-151.
    Siegel, S. M., Siegel, B. Z., Barghigiani, C., Aratani, K., Penny, P., and Penny, D. A contribution to the environmental biology of mercury accumulation in plants. Water Air Soil Pollut, 1987, 33: 65-72.
    Simon, M., Martin, F., Ortiz, I., Garcia, I., Fernandez, J., Fernandez, E., Dorronsoro, C. and Aguilar, J. Soil pollution by oxidation of tailings from toxic spill of s pyrite mine. Sci. Total Environ., 2001, 279(1-3): 63-74.
    Smedley, P. L., end Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17: 517-568.
    Smith, K., Plumlee, G., and Ficklin, W. Predicting water contamination from metal mines and mining wastes. USGS, Workshop 2, 1994.
    Spiker, E. C. Application of stable-isotope techniques to environmental geochemistry. In: Doe, B.R. (Ed.), Proceedings US Geological Survey Workshop on Environmental Geochemistry. US Geological Survey Circular, 1990, pp. 83-85.
    Stromberg, B., and Banwart, S. Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl. Geochem., 1999, 14: 1-16.
    Stumm, W., and Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley Interscience, New York, 1996.
    Suchanek, T. H., Mullen, L. H., Lamphere, B. H., Richerson, P. J., Woodmansee, C. E., Slotton, D.G., Harner, E.J., and Woodward, L.A. Redistrbution of mercury from contaminated lake sediments of Clear Lake, California Water, Air, Soil Pollut., 1998, 104: 77-102.
    Szczepanska. J., and Twardowska, I. Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environ. Geol., 1999, 38(3): 249-258.
    Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K. Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochim. Cosmochim. Acta, 1985, 48: 2669-2678.
    Taylor, B. E., and Wheeler, M. C. Sulfur- and oxygen-isotope geochemistry of acid mine drainage in the western United States. In: Alpers, C. N., Blowes, D. W. (Eds.), Environmental Geochemistry of Sulfide Oxidation. American Chemical Society, Symposium Series 550, 1994, pp. 481-514.
    Temman, M., Jaquette, J., end Vali, H. Mn and Zn incorporation into calcite as a function of chloride aqueous concentration. Geochim. Cosmochim. Acta, 2000, 64: 2417-2430.
    Tempel, R. N., Shevenell, L. A., Lechler, P., and Price, J. Geochemical modelling approach to predicting arsenic concentrations in a mine pit lake. Appl. Geochem., 2000, 15(4): 475-492.
    Tessier, A., Campbell, P.G.C., and Bisson, M. Sequential Extration Procedure for the Speciation of Particulate Trace Metals. Anal. Chem., 1979, 51(7): 844-851.
    Thanabalasingam, P., and Pickering, W. F. Specific sorption of antimony (Ⅲ) by the hydrous oxides of Mn, Fe, and Al. Water, Air, Soil Pollut., 1990, 49: 175-185.
    Thode, H. G., Monster, J., and Dunford, H. B. Sulphur isotope geochemistry. Geochim. Cosmochim. Acta, 1961, 25: 150-174.
    Van-Everdingh, R. O., and Krouse, H. R. Interpretation of isotopic compositions of dissolved sulfates in acid mine drainage. In: Mine Drainage and Surface Mine Reclamation;Volume Ⅰ, Mine Water and Mine Waste, 1988, Bureau of Mines Information Circ. 9183, pp. 147-156.
    Wakao, N., Koyatsu, H., Komai, Y., Shimokawara, H., Sakurai, Y., and Shiota, H. Microbial oxidation of arsenite and occunenco of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiol J., 1988, 6: 11-24.
    Walder, I. F., and Chavez, W. X. Mineralogical and geochemical behavior of mill tailing material produced from lead-zinc skarn mineralization, Hanover, Grant county, New Mexico, USA. Environ. Geol., 1995, 26(1): 1-18.
    Webster, J. G., Swedlund, P. J., and Webster, K.S. Trace metal adsorption onto an acid mine drainage iron(Ⅲ) oxy hydroxy sulfate. Environ. Sci. Technol., 1998, 32: 1361-1368.
    Welch, A. H., Lico, M. S., and Hughes, L, Arsenic in ground water of the Western United States. Ground Water, 1988, 26: 333-347.
    Wilson, N. J., Craw, D., and Hunter, K. Contributions of discharges from a historic antimony mine to metalloid content of river waters, Marlborough, New Zealand, Journal of Geochemical Exploration, 2004, 84: 127-139.
    Wilson, B., Lang, B., and Pyatt, F. B. The dispersion of heavy metals In the vicinity of Britannia Mine, British Columbia, Canada. Ecotoxicology and Environmental Safty, 2005, 60: 269-276.
    Wollast, R. Rate and mechanism of dissolution of carbonates in the system CaCO_3-MgCO_3. In: Stumn, W. (Ed.), Aquatic chemical kinetics. Chap 15, 431-445, John Wiley, 1990.
    Wright, W. G., and Nordstrom, D. K. Oxygen isotopes of dissolved sulfate as a tool to distinguish natural and miningrelated dissolved constituents. In: Tallings and Mine Waste 99, 1999, Rotterdam, Balkema, pp. 671-678.
    USEPA. Method 1631: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. U.S. Environmental Protection Agency, EPA-821-R-96-001, 1996, Washington, D. C.
    Yanagisawa, F., and Sakal, H. Thermal Decomposition of Barium Sulfate-Vanadium Penteoxide-Silica Glass Mixtures for Preparation of Sulfur Dioxide in Sulfur Isotope Ratio Measurements. Anal. Chem., 1983, 55: 985-987.
    Younger, P. L., Coulton, R. H., and Froggatt, E. C. The contribution of science to risk-based decision-making: lessons from the development of full-scale treatment measures for acid mine waters at the Wheal Jane, UK. The Science of the Total Environment, 2004, 338: 137-154.
    Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H. J., Schlosser P., and Ahmed K. M. Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 2004, 19(2): 201-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700