用户名: 密码: 验证码:
纳米金催化剂的合成及其在二醇氧化制内酯反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内酯杂环化合物由于其具有高沸点、高溶解性、高电导率和稳定性能好的特点,可用作溶剂、萃取剂、吸收剂以及一些聚合物的单体,广泛地应用于石油化工、纺织、香料、农药和医药等领域。本论文采用纳米Au作为催化剂,空气为氧化剂,在较温和的条件下通过二元醇的一步氧化来制备内酯,为内酯类化合物的合成提供了一条绿色、清洁并且高效的途径。
     当Au以纳米尺寸分散时,在很多反应如低温CO氧化、醇氧化、水气转换、选择性加氢等反应中表现出高的催化活性,并且由于其具有低温活性和高选择性的特点,近年来越来越受到人们的重视。本论文通过对催化剂上Au的颗粒大小、Au的电子状态和载体效应的研究来揭示Au催化剂的活性位和催化机理。
     本文中制得的纳米Au催化剂在催化一系列二醇如1,4-丁二醇、1,5-戊二醇、邻苯二甲醇等的氧化制备γ-丁内酯、6-戊内酯和苯酞中表现出很高的催化活性。通过对负载型Au催化剂的合成条件和催化剂组成的优化,催化剂载体的形貌和晶型的调变,以及复合载体的合成,得到了具有高催化活性、高选择性和稳定性的催化二元醇氧化制备内酯的Au催化剂,同时也对催化剂的活性中心、载体效应以及反应机理进行了探讨,得到的主要结果如下:
     1.制备条件和催化剂组成对Au/TiO2催化剂的性质及其在催化空气氧化二醇制备内酯反应中的影响研究
     以商业二氧化钛P25为载体,尿素为沉淀剂,采用均匀沉积沉淀法(HDP)合成了具有纳米尺寸的Au/TiO2催化剂,其中Au的平均粒径约5 nm。采用该方法合成的催化剂中Au与载体间有较强的相互作用,在催化空气氧化1,4-丁二醇和1,5-戊二醇生成γ-丁内酯和6-戊内酯反应中表现出较好的催化性能。研究发现,焙烧温度和Au负载量对催化活性均有较大影响,573-673 K焙烧,Au负载量为3-8%的催化剂表现出较好的催化活性。对催化剂进行表征后发现,高温焙烧的催化剂上Au颗粒较大,而低温焙烧的催化剂上Au未完全转变成金属态,仍有氧化态的Au物种(Au3+)存在。负载量大于8%的催化剂,表面Au物种趋向饱和,Au颗粒部分团聚,催化活性下降。据此推测分散在载体表面的0价的小粒径的Au为催化的活性物种。
     2.不同氧化物负载的Au催化剂(Au/MOx)的性质及其在催化空气氧化二醇制备内酯反应中的催化性能研究
     合成了包括过渡金属和主族金属氧化物为载体的纳米Au催化剂,大部分催化剂在催化空气氧化1,4-丁二醇制备γ-丁内酯反应中都表现出较好的催化活性。
     过渡金属氧化物负载的Au催化剂中,Au/TiO2、Au/MnOx、Au/Fe2O3、Au/Co3O4、Au/ZnO、Au/CeO2以及Au/ZrO2在l,4-丁二醇氧化反应中表现出较高的活性和选择性,反应8小时后转化率和选择性都可达90%。其中,TiO2和MnOx负载的Au催化剂在反应4小时即可达80%的转化率,是1,4-丁二醇氧化制备Y-丁内酯的优良催化剂。Au/NiO活性相对较差,在该载体上的Au颗粒较大(-16nm),且由XPS表征可发现该催化剂表面Au含量较低,因此活性较低。
     主族金属氧化物中Au/SnO2的活性甚至超过了一些过渡金属氧化物负载的Au催化剂,反应4小时后1,4-丁二醇已转化82%,反应8小时后转化率可达99%。由于Mg(OH)2呈碱性,会促进γ-丁内酯水解,Au/Mg(OH)2催化的1,4-丁二醇氧化中γ-丁内酯选择性较差。而通常被认为是惰性载体的Al2O3则表现出较好的活性,反应4小时和8小时后的转化率分别为58%和99%。
     对于上述活性载体负载的Au催化剂,Au颗粒的平均粒径在4-7 nm,载体粒径为10-30 nm,表面Au含量均高于体相Au含量,Au颗粒很好地分散在载体表面。经ICP测试,大部分Au都能够沉淀于载体上,Au颗粒与载体之间形成相互作用。BET测试给出的催化剂孔道信息表明,即使载体的比表面积很小,若Au能较好地分散,也能得到高的催化活性。
     由以上结果可以推测,Au颗粒必须足够小才能得到较高催化活性,但催化活性不仅与Au颗粒大小有关,载体的种类对催化活性也有较大影响,载体的比表面积并非催化活性的决定性因素,Au-载体间的相互作用对催化活性影响较大。
     3. Au/FeOx催化剂的载体效应及其在催化二醇氧化制备内酯反应中的催化性能研究
     采用商业纳米氧化铁γ-Fe2O3、α-Fe2O3和Fe3O4作为Au催化剂的载体,发现Au在Fe3O4上分散最好,平均粒径为4.7 nm,其次是Au/α-Fe2O3 (5.5 nm)和Au/γ-Fe2O3(6.7nm)。该系列纳米氧化铁负载的Au催化剂在催化1,4-丁二醇氧化中的TOF值顺序为:Au/Fe3O4>Au/α-Fe2O3> Au/γ-Fe2O3。尽管Au/Fe3O4有较高的初始活性,但由于Fe3O4易被氧化,在高温高压氧化性条件下反应一段时间后被氧化成Au/γ-Fe2O3,导致最终的1,4-丁二醇转化率和内酯得率下降。在不同的气氛(空气、Ar、H2)下处理的Au/Fe3O4催化剂中,Au/Fe3O4-H2上Au的平均粒径最小(2.7 nm),然而却表现出与Au/Fe3O4-Ar接近的催化性能,由此可以推测,在不同铁的氧化物上负载的Au催化剂中,催化活性的差异主要不是由于粒径效应,而是载体效应所引起的。
     采用水热法合成的FeOx-NF在不同温度下焙烧表现出不同的晶型和形貌。室温下干燥的样品主要以Fe3O4存在,经焙烧后氧化成γ-Fe2O3,当焙烧温度高于573 K时γ-Fe2O3向α-Fe2O3转变,氧化铁形貌也由颗粒和片状的混合形态向纳米片状转变。使用这些氧化铁作为Au催化剂的载体,得到的催化剂上Au均匀地分散在载体表面,平均粒径约为5 nm。Au/FeOx-NF在催化空气选择性氧化1,4-丁二醇和1,5-戊二醇反应中表现出很高的催化活性,转化率和选择性均高于商业氧化铁负载的Au催化剂。在1,4-丁二醇氧化反应中,γ-Fe2O3负载的Au催化剂得到了很高的TOF值(Au/FeOx-573的TOF值为624 h-1)。Au/FeOx-NF在1,5-戊二醇氧化中也得到了>90%的转化率。催化剂表征结果显示,载体对Au的粒径和电子性质有显著影响,Au和载体间存在强相互作用。在y-Fe2O3负载的Au催化剂上电子由载体向Au转移,而α-Fe2O3则对氧化态的Au具有稳定作用,导致表面的Au部分以氧化态(Auδ+)存在。载体效应导致Au物种在颗粒大小和氧化态上有所差异,从而表现出二醇氧化反应的活性差别。该Au/γ-Fe2O3催化剂性质不同于商业γ-Fe2O3负载的Au催化剂,商业γ-Fe2O3负载的Au催化剂相比商业α-Fe2O3和Fe3O4负载的Au催化剂表现出差的催化活性;在Au/FeOx-NF中可能是因为γ-Fe2O3的特殊形貌和合成方法导致Au-Fe2O3相互作用增强,催化活性提高。
     4.AuAIT催化剂的性质及其在催化空气氧化二醇制备内酯反应中的催化性能研究
     在对Au催化剂载体碱性的研究中,我们采用γ-AlOOH和γ-Al2O3作为载体(AlT),载体采用普通的沉淀法制备。从室温到973 K升温处理,载体由γ-AlOOH分解为γ-Al2O3。γ-AlOOH可在573 K以下稳定,当温度达到773 K时,完全转化为γ-Al2O3。由CO2-TPD可知,γ-Al2O3(A1773、A1873、A1973)上只存在大量的弱碱性位和少量中等碱性位,而在γ-AlOOH中,A1573主要为中等碱性位,在A1373中除了中等碱性位还有一定量的强碱性位。用AlT负载的Au催化剂中,γ-Al2O3(A1773、A1873、A1973)上可得到粒径较小的Au颗粒(平均粒径约4 nm),而γ-AlOOH(Al373、Al573)负载的催化剂上Au的平均粒径为5-8 nm。AuAlT催化剂在催化1,4-丁二醇氧化反应中表现出比其他载体负载的Au催化剂更高的催化活性,其中AuAl773在反应1小时即可达到90%的转化率。尽管Au颗粒较大,AuAl373仍表现出较高的催化活性,反应1小时转化率达74%,所有的催化剂在反应8小时后均可达到100%的二醇转化率。由于载体有一定的碱性,而产物内酯在碱性条件下不稳定,容易发生水解,该系列催化剂的选择性较Au/TiO2和Au/FeOx低,且随着时间延长,选择性先升高后降低。由此推论碱性位有利于醇氧化的发生,但会牺牲内酯的选择性。除了用于催化1,4-丁二醇氧化,该催化剂在催化1,5-戊二醇和邻苯二甲醇氧化得到6-戊内酯和苯酞的反应中也表现出很高的活性。
     5.Fe-Al-Ox复合载体的合成及其负载的金催化剂在催化空气氧化1,4-丁二醇制备γ-丁内酯反应中的催化性能研究
     分别采用包覆法、Al2O3上浸渍Fe2O3以及Fe2O3上浸渍Al2O3的方法得到了FeAOx、Fe2O3/Al2O3和Al2O3/Fe2O3的铁铝复合氧化物载体,经表征发现,Fe2O3/Al2O3和Al2O3/Fe2O3中Fe2O3与Al2O3只是简单的混合,Fe2O3与Al2O3未发生明显相互作用,而FeAlOx中Al2O3包裹在Fe2O3表面,TEM未观察到孤立的Fe2O3颗粒。XPS也表明FeAlOx表面富集Al,其表面Fe/Al比(1:18)最低,远低于体相(1:3.4),同时也比其他两种载体要低。FeAlOx负载的Au催化剂上Au颗粒均匀分散在载体表面,平均粒径为3.5 nm, Fe2O3的晶型为γ-Fe2O3, Au与载体间存在相互作用。FeAlOx负载的Au催化剂在1,4-丁二醇氧化反应中表现出很高的催化活性,比机械混合的Au/Fe2O3和Au/Al2O3要高,甚至接近活性最高的Au/Al2O3催化剂,而选择性要高于Au/Al2O3和Au/Fe2O3。该系列Fe-Al-O负载的Au催化剂的活性顺序为Au/FeAlOx> Au/Fe2O3/Al2O3-Au/Fe2O3+ Au/Al2O3> Au/Al2O3/Fe2O3。
     对Au/FeAlOx催化剂的Fe/Al比进行考察后发现,当Fe/Al从1:1变为1:16时,表面Fe/Al比从1:8降低到1:41。当Fe/Al=1:1时,Al2O3的量不足以将所有的Fe203覆盖,由透射电镜图中可以观察到孤立的Fe2O3颗粒,而增加Al含量至Fe/Al=1:4,Al2O3将Fe2O3全部覆盖,继续增加Al含量,Al2O3过多,导致与Fe的作用减弱,不利于催化反应的进行,且由于其碱性较强,对内酯选择性会有不利影响。因此Fe/Al比为1:4的催化剂在1,4-丁二醇氧化反应中表现出最高的催化活性和内酯选择性。
The lactones and their derivatives are widely distributed in nature. The lactone ring exists in the molecules of many bioactive substances and metabolic intermediates. Due to their high boiling point, solubility, conductivity and stability, the lactones are widely used as solvent, extraction agent and also can be used for the synthesis of a variety of polymers. In this dissertation, the nano gold catalysts were used to catalyze the aerobic oxidative dehydrogenation of diols to lactones. The reaction was carried out at low temperature with air as oxidant, which is a clean route in accordance with the demand of green chemistry and sustainable development.
     The nano gold is a catalyst with high performance in the low temperature CO oxidation, oxidation of alcohols, water-gas shift reaction and selective hydrogenation ofα,β-unsaturated aldehydes or ketones. Due to their low temperature activity and high selectivity, the gold catalysts are becoming more and more important. The gold particle size, gold electronic state and support effect was studied in this dissertation to investigate the active sites of gold catalyst and the reaction mechanism.
     Gold catalysts prepared in this dissertation showed high activity in the oxidative dehydrogenation of a series of diols such as 1,4-butanediol,1,5-pentanediol and 1,2-benzenedimethanol to y-butyrolactone,δ-valerolactone and phthalanone. The preparation conditions of the catalysts, support compositions, support morphology and support crystal phase were optimized, and finally multi-component oxide support were prepared to give catalysts with high activity, selectivity and stability. At the same time, the active sites of the gold catalysts, as well as the support effect were discussed and the following results were obtained.
     1. Influence of the preparation conditions and catalyst compositions on the catalytic performance of Au/TiO2 catalysts in the oxidative dehydrogenation of diols to lactones
     The commercial Degussa P25 was utilized as support, and the gold catalysts were prepared by the homogeneous deposition-precipitation method (HDP) using urea as precipitation agent. Nano sized gold particles were obtained with average particle size of about 5 nm. There was interaction between gold and the support. The catalysts showed high activity in the oxidation of 1,4-butanediol and 1,5-pentanediol to the corresponding lactones. Calcination temperature had significant effect on the catalytic activity of the catalysts, and it was found that the catalyst with 3-8% gold loading calcined at 573-673 K gave high activity. From the characterization results it can be found that when calcined at high temperature, gold particles tended to aggregate and form large particles, but when the calcination temperature was below 573 K, gold species were not completely reduced, and there were still some oxidized gold (Au3+). For catalysts with gold loading higher than 8%, gold particles tended to aggregate and catalytic activity dropped. From the above results it can be concluded that the surface metallic gold species with small particle size were the active species.
     2. Properties and catalytic performance of gold catalysts on different oxide support (Au/MOx)
     The transition metal oxides and main group metal oxides were used as support for gold catalysts, and most of them showed high activity in the oxidative dehydrogenation of 1,4-butanediol to y-butyrolactone.
     Among the transition metal oxide supported gold catalysts, Au/TiO2, Au/MnOx, Au/Fe2O3, Au/Co3O4, Au/ZnO, Au/CeO2 and Au/ZrO2 were highly active with both diol conversion and lactone selectivity above 90% after 8 hours'reaction, especially Au/TiO2 and Au/MnOx, whose conversion were above 80% after 4 hours'reaction. Due to its large gold particle size and low surface gold content, Au/NiO showed much lower activity.
     Activity of Au/SnO2 was even superior to some of the transition metal oxide supported gold catalysts, with conversion of 82% after 4 hours'reaction and 99% after 8 hours'reaction. When catalyzed by Au/Mg(OH)2, the formed y-butyrolactone would be hydrolyzed due to the basicity of Mg(OH)2. Although A12O3 was always considered as inert in gold catalysis, Au/Al2O3 showed high activity with 4 hour and 8 hour conversion of 58% and 99%, respectively.
     For the above gold catalysts on active support, the average gold particle size was in the range of 4-7 nm, and the support particle diameter was about 10-30 nm. The surface gold content was higher than that in bulk, and gold particles were highly dispersed on the surface of the support. Most of the gold can be deposited onto the support to form gold-support interaction. From the BET results it can be inferred that although surface area of some support oxides were low, gold catalysts with high activity can still be obtained on them.
     From the above results, it can be concluded that gold particle size must be small enough to give high activity. However, the gold particle size was not the decisive factor and the type of the support was also important. Pore properties were not as important as support effect, and there was interaction between gold species and the support.
     3. Support effect of Au/FeOx catalysts and their catalytic performance in the oxidative dehydrogenation of diols
     The commercial nano iron oxidesγ-Fe2O3,α-Fe2O3 and Fe3O4 were utilized as support for gold catalysts, and it was found that the smallest gold particles were obtained on Fe3O4 with average gold diameter of 4.7 nm, and then the Au/α-Fe2O3 (5.5 nm), and the largest gold particles were got on Au/γ-Fe2O3 (6.7 nm). TOF values of the catalysts were in the order:Au/Fe3O4> Au/α-Fe2O3> Au/γ-Fe2O3. Although Au/Fe3O4 had the highest initial activity, Fe3O4 would be oxidized toγ-Fe2O3 during the reaction with high temperature and oxidative atmosphere, leading to the loss in activity and final lactone yield. For Au/Fe3O4 catalysts treated under different atmospheres, Au/Fe3O4-H2 had the smallest gold particle size (2.7 nm), but its catalytic behavior was similar to that of Au/Fe3O4-Ar. Therefore it was inferred that the different activity of the Au/FeOx with different crystal phase was due to the variation in support properties other than the gold particle size.
     FeOx-NF was synthesized by a hydrothermal method, and showed different crystal phase and morphology when calcined at different temperatures. The room temperature treated sample was in the form of Fe3O4, and it was oxidized toγ-Fe2O3 when calcined at 573 K in air. Further increase in calcination temperature led to the crystal transformation fromγ-Fe2O3 toα-Fe2O3, and the simultaneous transformation of iron oxide particles to nano flakes. The FeOx-NF supported gold catalysts were more active than those supported on commercial iron oxides. When FeOx-NF in the. form ofγ-Fe2O3 was used as support for gold catalysts, it showed high TOF value (624 h-1 for Au/FeOx-573). According to the characterization results, the gold particles were evenly distributed on the support with average particle size about 5 nm, and the support had significant influence on the gold particle size distributions and electronic properties. There was strong gold-support interaction, and on Au/γ-Fe2O3, electrons were transferred from the support to gold, leading to the formation of negatively charged gold (Auδ-). On contrary,α-Fe2O3 can stabilize the oxidized gold species. Support was responsible for the variation in gold particle size and oxidation state, and thus the differences in catalytic activity. In contrast to commercial iron oxide supported gold catalysts, the Au/γ-Fe2O3 showed higher activity than Au/α-Fe2O3, and this may be due to the morphology change and support synthetic method utilized in this dissertation.
     4. Catalytic properties of AuAlT catalysts in the oxidative dehydrogenation of diols to lactones
     γ-AlOOH andγ-Al2O3 (AIT) were utilized as support for gold catalysts to investigate the influence of support basicity. The support was prepared by a simple deposition method, and by elevating pretreating temperature from room temperature to 973 K, AIT dehydroxylated fromγ-AlOOH toγ-Al2O3.γ-AlOOH was stable below 573 K, and then transformed toγ-Al2O3 at 773 K. According to the CO2-TPD results, there were mainly weak basic sites onγ-Al2O3 (A1773, A1873 and A1973), while forγ-AlOOH, there were medium basic sites on A1573 and strong basic sites on A1373. Small gold particle size can be obtained onγ-Al2O3 with average diameter about 4nm. Larger gold particles were got on y-AlOOH (A1373, A1573), and the average gold diameter was 5-8nm. Catalytic activity of AuAlT catalysts was higher than that of other oxide supported gold catalysts (Au/TiO2 and Au/FeOx). Conversion of AuA1773 reached 90% after 1 hour's reaction. Although with larger gold particle size, AuA1373 still showed high activity with 74% conversion after 1 hour's reaction. Conversion of all the catalysts can achieve 100% after 8 hours' reaction. Due to the basicity of the support, the y-butyrolactone product would be hydrolyzed, which led to the drop in lactone selectivity as compared to Au/TiO2 and Au/FeOx. Selectivity of AuAlT increased firstly and then dropped with the prolonging of reaction time. Therefore, it was concluded that basicity was beneficial to the oxidation of alcohols; however, it was detrimental to the lactone selectivity. AuAlT can also be used for the oxidation of other diols, for example,1,5-pentanediol and 1,2-benzedimethanol.
     5. Synthesis of multi-component Fe-Al-O oxides and their application as support for gold catalysts in the oxidative dehydrogenation of 1,4-butanediol to y-butyrolactone
     The multi-component Fe-Al-O oxides were prepared by encapsulation (FeAlOx) and impregnation methods (Fe2O3/Al2O3 and Al2O3/Fe2O3). According to the characterization results, it was found that when prepared by the impregnation method, there was no interaction between Fe2O3 and Al2O3, and the support was the simple mixture of Fe2O3 and Al2O3. For FeAlOx, Fe2O3 was encapsulated by Al2O3, and there were no isolated Fe2O3 particles observed, indicating that interaction was formed between Fe2O3 and Al2O3. It was also confirmed by the XPS results that FeAlOx surface was enriched with Al, due to its low surface Fe/Al ratio (1:18), which was far lower than that of the bulk (1:3.4) and the other two support prepared by the impregnation method. Crystal phase of FeAlOx wasγ-Fe2O3 andγ-Al2O3. Gold can be highly dispersed on the support surface with average diameter of 3.5 nm, and gold-support interaction was observed. Au/FeAlOx showed high activity in the oxidative dehydrogenation of 1,4-butanediol, and its catalytic activity was better than that of the mixture of Au/Fe2O3 and Au/Al2O3, very close to that of the most active Au/Al2O3 catalyst. In addition, its selectivity was higher than that of Au/Al2O3 and Au/Fe2O3. For Fe-Al-O supported gold catalysts, the activity was in the order: Au/FeAlOx> Au/Fe2O3/Al2O3-Au/Fe2O3+Au/Al2O3> Au/Al2O3/Fe2O3.
     By adjusting the Fe/Al molar ratio of Au/FeAlOx catalysts from 1:1 to 1:16, the surface Fe/Al ratio changed from 1:8 to 1:41. When Fe/Al was 1:1, the amount of Al2O3 was not enough to encapsulate all the Fe2O3 particles and it can be seen from the TEM images that there were some isolated Fe2O3 particles. Increasing Al content to Fe/Al ratio of 1:4, Al2O3 can cover all the Fe2O3, however, further increase in Al content would lead to the weakening of the Fe-Al interaction and the stronger support basicity, which was not beneficial to the reaction. The optimized Fe/Al was found to be 1:4.
引文
[1]M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J. Catal.,1989,115(2):301-309.
    [2]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, [alpha]-Fe2O3, and Co3O4 [J]. J. Catal.,1993,144(1):175-192.
    [3]D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev. Low-remperature water-gas shift reaction over Au/[alpha]-Fe2O3 [J]. J. Catal.,1996,158(1):354-355.
    [4]D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, R. Giovanoli. Low-temperature water-gas shift reaction on Au/[alpha]-Fe2O3 catalyst [J]. Appl. Catal. A,1996,134(2): 275-283.
    [5]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G J. Hutchings. Oxidation of glycerol using supported gold catalysts [J]. Top. Catal.,2004, 27(1-4):131-136.
    [6]C. Bianchi, F. Porta, L. Prati, M. Rossi. Selective liquid phase oxidation using gold catalysts [J]. Top. Catal.,2000,13(3):231-236.
    [7]S. Biella, M. Rossi. Gas phase oxidation of alcohols to aldehydes or ketones catalyzed by supported gold [J]. Chem. Commun.,2003,378-379.
    [8]T. Hayashi, K. Tanaka, M. Haruta. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen [J]. J. Catal.,1998, 178(2):566-575.
    [9]M. D. Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature,2005,437(7062):1132-1135.
    [10]C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to a,(3-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support [J]. J. Catal.,2005,236(1): 80-90.
    [11]J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru. Selective hydrogenation of acetylene over Au/Al2O3 catalyst [J]. J. Phys. Chem. B,2000,104(47):11153-11156.
    [12]T. V. Choudhary, C. Sivadinarayana, A. K. Datye, D. Kumar, D. W. Goodman. Acetylene hydrogenation on Au-based catalysts [J]. Catal. Lett.,2003,86(1):1-8.
    [13]R. S. Yolles, B. J. Wood, H. Wise. Hydrogenation of alkenes on gold [J]. J. Catal., 1971,21(1):66-69.
    [14]G. C. Bond, P. Sermon. Gold catalysts for olefin hydrogenation--transmutation of catalytic properties [J]. Gold Bull.,1973,6(4):102-105.
    [15]A. G. Sault, R. J. Madix, C. T. Campbell. Adsorption of oxygen and hydrogen on Au(110)-(1×2) [J]. Surf. Sci.,1986,169(2-3):347-356.
    [16]N. Saliba, D. H. Parker, B. E. Koel. Adsorption of oxygen on Au(111) by exposure to ozone [J]. Surf. Sci.,1998,410(2-3):270-282.
    [17]J. Wang, B. E. Koel. IRAS studies of NO2, N2O3, and N2O4 adsorbed on Au(111) surfaces and reactions with coadsorbed H2O [J]. J. Phys. Chem. A,1998,102(44): 8573-8579.
    [18]B. Hammer, J. K. Norskov. Why gold is the noblest of all the metals [J]. Nature, 1995,376(6537):238-240.
    [19]P. Buffat, J. P. Borel. Size effect on the melting temperature of gold particles [J]. Phys. Rev. A,1976,13(6):2287-2298.
    [20]R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Appl. Catal. A,2005,291(1-2):62-72.
    [21]M. Khoudiakov, M. C. Gupta, S. Deevi. Au/Fe2O3 nanocatalysts for CO oxidation:A comparative study of deposition-precipitation and coprecipitation techniques [J]. Appl. Catal. A,2005,291(1-2):151-161.
    [22]M. Haruta. Catalysis of gold nanoparticles deposited on metal oxide [J]. Cattech, 2002,6(3):102-115.
    [23]R. Zanella, S. Giorgio, C.-H. Shin, C. R. Henry, C. Louis. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea [J]. J. Catal.,2004,222(2):357-367.
    [24]J. Radnik, L. Wilde, M. Schneider, M. M. Pohl, D. Herein. Influence of the precipitation agent in the deposition-precipitation on the formation and properties of Au nanoparticles supported on Al2O3 [J]. J. Phys. Chem. B,2006,110(47): 23688-23693.
    [25]F. Moreau, G. C. Bond, A. O. Taylor. Gold on titania catalysts for the oxidation of carbon monoxide:Control of pH during preparation with various gold contents [J]. J. Catal.,2005,231(1):105-114.
    [26]S. Ivanova, V. Pitchon, C. Petit. Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials [J]. J. Mol. Catal. A,2006,256(1-2):278-283.
    [27]S. Ivanova, C. Petit, V. Pitchon. A new preparation method for the formation of gold nanoparticles on an oxide support [J]. Appl. Catal. A,2004,267(1-2):191-201.
    [28]L. Delannoy, N. ElHassan, A. Musi, N. N. LeTo, J. M. Krafft, C. Louis. Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method [J]. J. Phys. Chem. B,2006,110(45):22471-22478.
    [29]G. M. Veith, A. R. Lupini, S. J. Pennycook, G. W. Ownby, N. J. Dudney. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering [J]. J. Catal., 2005,231(1):151-158.
    [30]G. M. Veith, A. R. Lupini, S. J. Pennycook, A. Villa, L. Prati, N. J. Dudney. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon [J]. Catal. Today,2007,122(3-4):248-253.
    [31]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth. Support effect in high activity gold catalysts for CO oxidation [J]. J. Am. Chem. Soc.,2006,128(3):917-924.
    [32]Z. Y. Zhong, J. Y. Lin, S. P. Teh, J. Teo, F. M. Dautzenberg. A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures [J]. Adv. Funct. Mater.,2007,17(8):1402-1408.
    [33]N. Zheng, G. D. Stucky. A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. J. Am. Chem. Soc.,2006,128(44):14278-14280.
    [34]T. Kobayashi, M. Haruta, S. Tsubota, H. Sano, B. Delmon. Thin films of supported gold catalysts for CO detection [J]. Sens. Actuator B-Chem.,1990,1(1-6): 222-225.
    [35]M. Okumura, K. Tanaka, A. Ueda, M. Haruta. The reactivities of dimethylgold(Ⅲ)β-diketone on the surface of TiO2:A novel preparation method for Au catalysts[J]. Solid State Ion.,1997,95(1-2):143-149.
    [36]R. Zanella, S. Giorgio, C. R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles supported on TiO2 [J]. J. Phys. Chem. B,2002, 106(31):7634-7642.
    [37]S.-H. Wu, X.-C. Zheng, S.-R. Wang, D.-Z. Han, W.-P. Huang, S.-M. Zhang. TiO2 supported nano-Au catalysts prepared via solvated metal atom impregnation for low-temperature CO oxidation [J]. Catal. Lett.,2004,97(1):17-23.
    [38]W. L. Huang, C. H. Chen, M. H. Huang. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates [J]. J. Phys. Chem. C,2007,111(6):2533-2538.
    [39]R. J. H. Grisel, J. J. Slyconish, B. E. Nieuwenhuys. Oxidation reactions over multi-component catalysts:Low-temperature CO Oxidation and the total oxidation of CH4 [J]. Top. Catal.,2001,16-17(1):425-431.
    [40]A. Ueda, M. Haruta. Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3 [J]. Appl. Catal. B,1998,18(1-2): 115-121.
    [41]N. Phonthammachai, Z. Ziyi, G. Jun, H. Y. Fan, T. J. White. Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidation [J]. Gold Bull.,2008, 41(1):42-50.
    [42]J. Gong, R. Ojifinni, T. Kim, J. Stiehl, S. McClure, J. White, C. Mullins. Low temperature CO oxidation on Au(111) and the role of adsorbed water [J]. Top. Catal., 2007,44(1):57-63.
    [43]M. Manzoli, G. Avgouropoulos, T. Tabakova, J. Papavasiliou, T. Ioannides, F. Boccuzzi. Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts [J]. Catal. Today,2008,138(3-4):239-243.
    [44]M. Haruta. Size-and support-dependency in the catalysis of gold [J]. Catal. Today,1997,36(1):153-166.
    [45]J. J. Spivey. Catalysis in the development of clean energy technologies [J]. Catal. Today,2005,100(1-2):171-180.
    [46]D. J. Suh, C. Kwak, J. H. Kim, S. M. Kwon, T. J. Park. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts [J]. J. Power Sources,2005,142(1-2):70-74.
    [47]C. Mohr, H. Hofmeister, P. Claus. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein [J]. J. Catal.,2003,213(1):86-94.
    [48]M. Okumura, T. Akita, M. Haruta. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today,2002,74(3-4): 265-269.
    [49]M. Conte, A. F. Carley, G. Attard, A. A. Herzing, C. J. Kiely, G. J. Hutchings. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal.,2008,257(1):190-198.
    [50]M. Okumura, Y. Kitagawa, K. Yamagcuhi, T. Akita, S. Tsubota, M. Haruta. Direct production of hydrogen peroxide from H2 and O2 over highly dispersed Au catalysts [J]. Chem. Lett.,2003,32(9):822-823.
    [51]P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J. Hutchings. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst [J]. Chem. Commun.,2002, (18):2058-2059.
    [52]V. R. Choudhary, A. Dhar, P. Jana, R. Jha, B. S. Uphade. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst [J]. Green Chem.,2005, 7(11):768-770.
    [53]A. M. Farhan, R. M. Daadosh, A. M. Awwad. Viscosity B coefficients and partial molar volumes of tetrabutylammonium bromide in gamma-butyrolactone plus water at different temperatures [J]. J. Chem. Eng. Data,2008,53(3):667-669.
    [54]H. Berndt, I. Pitsch, S. Evert, K. Struve, M. M. Pohl, J. Radnik, A. Martin. Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid [J]. Appl. Catal. A,2003,244(1):169-179.
    [55]W. C. Ketchie, Y.-L. Fang, M. S. Wong, M. Murayama, R. J. Davis. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol [J]. J. Catal.,2007,250(1):94-101.
    [56]F. Porta, L. Prati. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:An insight into reaction selectivity [J]. J. Catal.,2004,224(2): 397-403.
    [57]S. Biella, L. Prati, M. Rossi. Selective oxidation of D-glucose on gold catalyst [J]. J. Catal.,2002,206(2):242-247.
    [58]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer. Gold catalysts:Nanoporous gold foams [J]. Angew. Chem. Int. Ed.,2006, 45(48):8241-8244.
    [59]C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding. Low temperature CO oxidation over unsupported nanoporous gold [J]. J. Am. Chem. Soc.,2007,129(1): 42-43.
    [60]W. Hou, N. A. Dehm, R. W. J. Scott. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts [J]. J. Catal.,2008,253(1): 22-27.
    [61]A. Q. Wang, C. M. Chang, C. Y. Mou. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation [J]. J. Phys. Chem. B,2005,109(40):18860-18867.
    [62]H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi, T. Tsukuda. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation:Application to aerobic homocoupling of phenylboronic acid in water [J]. Langmuir,2004,20(26): 11293-11296.
    [63]H. Wu, Z. Liu, X. Wang, B. Zhao, J. Zhang, C. Li. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer [J]. J. Colloid Interf. Sci.,2006,302(1):142-148.
    [64]J. Ni, W. J. Yu, L. He, H. Sun, Y Cao, H. Y. He, K. N. Fan. A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions [J]. Green Chem.,2009,11(6):756-759.
    [65]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature [J]. Science,327(5963):319-322.
    [66]M. Haruta. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications [J]. Gold Bull.,2004,37(1-2):27-36.
    [67]K. Tanaka, T. Hayashi, M. Haruta. [J]. J. Jpn. Inst. Metals,1996,60(7):545-550.
    [68]F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta. Au/TiO2 nanosized samples:A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J]. J. Catal.,2001,202(2):256-267.
    [69]M. Valden, X. Lai, D. W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties [J]. Science,1998,281(5383): 1647-1650.
    [70]H. G. Boyen, G. Kastle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmuller, C. Hartmann, M. Moller, G Schmid, M. G. Gamier, P. Oelhafen. Oxidation-resistant gold-55 clusters [J]. Science,2002,297(5586):1533-1536.
    [71]N. Lopez, J. K. Norskov. Catalytic CO oxidation by a gold nanoparticle:A density functional study [J]. J. Am. Chem. Soc.,2002,124(38):11262-11263.
    [72]J. Guzman, B. C. Gates. Catalysis by supported gold:Correlation between catalytic activity for CO oxidation and oxidation states of gold [J]. J. Am. Chem. Soc., 2004,126(9):2672-2673.
    [73]J. C. Fierro-Gonzalez, B. C. Gates. Mononuclear Au-Ⅲ and Au-Ⅰ complexes bonded to zeolite NaY:Catalysts for CO oxidation at 298 K [J]. J. Phys. Chem. B, 2004,108(44):16999-17002.
    [74]G J. Hutchings, M. S. Hall, A. F. Carley, P. Landon, B. E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J. A. Moulijn, A. Overweg, J. C. Fierro-Gonzalez, J. Guzman, B. C. Gates. Role of gold cations-in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold [J]. J. Catal.,2006,242(1):71-81.
    [75]Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J]. Science,2003,301(5635): 935-938.
    [76]D. Boyd, S. Golunski, G. R. Hearne, T. Magadzu, K. Mallick, M. C. Raphulu, A. Venugopal, M. S. Scurrell. Reductive routes to stabilized nanogold and relation to catalysis by supported gold [J]. Appl. Catal. A,2005,292:76-81.
    [77]C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J]. Appl. Catal. A,2003,243(1):15-24..
    [78]N. Weiher, A. M. Beesley, N. Tsapatsaris, L. Delannoy, C. Louis, J. A. vanBokhoven, S. L. M. Schroeder. Activation of oxygen by metallic gold in Au/TiO2 catalysts [J].J. Am. Chem. Soc.,2007,129(8):2240-2241.
    [79]N.Weiher, E. Bus, L. Delannoy, C. Louis, D. E. Ramaker, J. T. Miller, J. A. v. Bokhoven. Structure and oxidation state of gold on different supports under various CO oxidation conditions [J].J. Catal.,2006,240(2):100-107.
    [80]V. Schwartz, D. R. Mullins, W. Yan, B. Chen, S. Dai, S. H. Overbury. XAS study of Au supported on TiO2:Influence of oxidation state and particle size on catalytic activity [J].J. Phys. Chem. B,2004,108(40):15782-15790.
    [81]J. H. Yang, J. D. Henao, M. C. Raphulu, Y. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, H. H. Kung. Activation of Au/TiO2 catalyst for CO oxidation [J]. J. Phys. Chem. B,2005,109(20):10319-10326.
    [82]S. Laursen, S. Linic. Oxidation catalysis by oxide-supported Au nanostructures: The role of supports and the effect of external conditions [J]. Phys. Rev. Lett.,2006, 97(2):026101.
    [83]M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm. CO oxidation over supported gold catalysts--"Inert" and "Active" support materials and their role for the oxygen supply during reaction [J]. J. Catal.,2001, 197(1):113-122.
    [84]F. Moreau, G. C. Bond. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component [J]. Catal. Today,2006,114(4):362-368.
    [85]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria [J]. J. Catal.,2005,229(1):154-162.
    [86]D. Wang, Z. Hao, D. Cheng, X. Shi, C. Hu. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts [J]. J. Mol. Catal. A, 2003,200(1-2):229-238.
    [87]D. A. H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, M. Haruta. The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2 [J]. J. Catal.,1998,177(1):1-10.
    [88]W. F. Yan, S. Brown, Z. W. Pan, S. M. Mahurin, S. H. Overbury, S. Dai. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate [J]. Angew. Chem. Int. Ed.,2006,45(22):3614-3618.
    [89]W. Yan, B. Chen, S. M. Mahurin, V. Schwartz, D. R. Mullins, A. R. Lupini, S. J. Pennycook, S. Dai, S. H. Overbury. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO [J]. J. Phys. Chem. B,2005,109(21):10676-10685.
    [90]G Glaspell, H. M. A. Hassan, A. Elzatahry, L. Fuoco, N. R. E. Radwan, M. S. El-Shall. Nanocatalysis on tailored shape supports:Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts [J]. J. Phys. Chem. B,2006,110(43): 21387-21393.
    [91]R. Si, M. Flytzani-Stephanopoulos. Shape and crystal-plane effects of nanoscale ceria on the activity of Au/CeO2 catalysts for the water-gas shift reaction [J]. Angew. Chem. Int. Ed.,2008,47(2008):2884.
    [92]X. Zhang, H. Wang, B.-Q. Xu. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation [J]. J. Phys. Chem. B,2005,109(19):9678-9683.
    [93]V. Idakiev, T. Tabakova, A. Naydenov, Z. Y. Yuan, B. L. Su. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction [J]. Appl. Catal. B,2006,63(3-4):178-186.
    [94]W. Yan, S. M. Mahurin, Z. Pan, S. H. Overbury,. S. Dai. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals [J]. J. Am. Chem. Soc., 2005,127(30):10480-10481.
    [95]B. K. Min, W. T. Wallace, D. W. Goodman. Support effects on the nucleation, growth, and morphology of gold nano-clusters [J]. Surf. Sci.,2006,600(2):L7-L11.
    [96]Y. F. Han, Z. Zhong, K. Ramesh, F. Chen, L. Chen. Effects of different types of gamma-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures [J]. J. Phys. Chem. C,2007,111(7):3163-3170.
    [97]N. M. Gupta, A. K. Tripathi. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and polycrystalline gold catalysts as a function of reduction treatment [J]. J. Catal.,1999,187(2):343-347.
    [98]G C. Bond, D. T. Thompson. Gold-catalysed oxidation of carbon monoxide [J]. Gold Bull.,2000,33(2):41-51.
    [99]H. H. Kung, M. C. Kung, C. K. Costello. Supported Au catalysts for low temperature CO oxidation [J]. J. Catal.,2003,216(1-2):425-432.
    [100]R. Zanella, C. Louis. Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples [J]. Catal. Today,2005, 107-108:768-777.
    [101]H. Wang, H. Zhu, Z. Qin, F. Liang, G. Wang, J. Wang. Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream [J]. J. Catal.,2009,264(2):154-162.
    [102]T. V. Choudhary, D. W. Goodman. Oxidation catalysis by supported gold nano-clusters [J]. Top. Catal.,2002,21(1):25-34.
    [103]F. Moreau, G C. Bond. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide [J]. Appl. Catal. A,2006,302(1):110-117.
    [104]A. Karpenko, R. Leppelt, J. Cai, V. Plzak, A. Chuvilin, U. Kaiser, R. J. Behm. Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation:A combined TEM, XRD, XPS, DRIFTS, and activity study [J]. J. Catal.,2007,250(1):139-150.
    [105]M. M. Schubert, V. Plzak, J. Garche, R. J. Behm. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas [J]. Catal. Lett.,2001,76(3-4):143-150.
    [106]W. F. Yan, B. Chen, S. M. Mahurin, S. Dai, S. H. Overbury. Brookite-supported highly stable gold catalytic system for CO oxidation [J]. Chem. Commun.,2004, (17): 1918-1919.
    [107]L. Prati, F. Porta. Oxidation of alcohols and sugars using Au/C catalysts:Part 1. Alcohols [J]. Appl. Catal. A,2005,291(1-2):199-203.
    [108]D. I. Enache, D. W. Knight, G. J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts [J]. Catal. Lett.,2005,103(1-2): 43-52.
    [109]P. Haider, A. Baiker. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium [J]. J. Catal.,2007,248(2):175-187.
    [110]C. Marsden, E. Taarning, D. Hansen, L. Johansen, S. K. Klitgaard, K. Egeblad, C. H. Christensen. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts [J]. Green Chem.,2008,10(2):168-170.
    [111]B. Jorgensen, S. Egholm Christiansen, M. L. Dahl Thomsen, C. H. Christensen. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts:Efficient routes to acetic acid and ethyl acetate [J].J. Catal.,2007,251(2):332-337.
    [112]S. Biella, G. L. Castiglioni, C. Fumagalli, L. Prati, M. Rossi. Application of gold catalysts to selective liquid phase oxidation [J]. Catal. Today,2002,72(1-2):43-49.
    [113]M. Comotti, C. D. Pina, E. Falletta, M. Rossi. Is the biochemical route always advantageous? The case of glucose oxidation [J]. J. Catal.,2006,244(1):122-125.
    [114]T. Mallat, A. Baiker. Oxidation of alcohols with molecular oxygen on solid catalysts [J]. Chem. Rev.2004,104(6):3037-3058.
    [115]A. Abad, P. Concepcion, A. Corma, H. Garcia. A collaborative effect between gold and a support induces the selective oxidation of alcohols [J]. Angew. Chem. Int. Ed.,2005,44(26):4066-4069.
    [116]A. Abad, A. Corma, H. Garcia. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols:The molecular reaction mechanism [J]. Chem.-Eur. J,2008,14(1):212-222.
    [117]M. Conte, H. Miyamura, S. Kobayashi, V. Chechik. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts [J]. J. Am. Chem. Soc.,2009,131(20):7189-7196.
    [118]H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water [J]. J. Am. Chem. Soc.,2005,127(26):9374-9375.
    [119]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G. J. Hutchings. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide [J]. Chem. Commun.,2002, (7):696-697.
    [120]M. Takato, N. Akifumi, M. Tomoo, J. Koichiro, K. Kiyotomi. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst [J]. Adv. Synth. Catal.,2009,351(11-12):1890-1896.
    [121]T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda. Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions [J]. Green Chem.,2009,11(6): 793-797.
    [122]J. Yang, Y. J. Guan, T. Verhoeven, R. van Santen, C. Li, E. J. M. Hensen. Basic metal carbonate supported gold nanoparticles:Enhanced performance in aerobic alcohol oxidation [J]. Green Chem.,2009,11(3):322-325.
    [123]J. W. Kim, J. K. Kim, H. S. Kim, K. K. Koo. Characterization of liquid inclusion of RDX crystals with a cooling crystallization [J]. Cryst. Growth Des.,2009, 9(6):2700-2706.
    [124]Y. Shigematsu, M. Ue, J. Yamaki. Thermal behavior of charged graphite and LixCoO2 in electrolytes containing alkyl phosphate for lithium-ion cells [J].J. Electrochem. Soc.,2009,156(3):A176-A180.
    [125]A. C. Albertsson, I. K. Varma. Recent developments in ring opening polymerization of lactones for biomedical applications [J]. Biomacromolecules,2003, 4(6):1466-1486.
    [126]K. Shiro. Enzymatic ring-opening polymerization of lactones by lipase catalyst: mechanistic aspects [J]. Macromolecular Symposia,2006,240(1):178-185.
    [127]M. Kataoka, K. Honda, K. Sakamoto, S. Shimizu. Microbial enzymes involved in lactone compound metabolism and their biotechnological applications [J]. Appl. Microbiol. Biotechnol.,2007,75(2):257-266.
    [128]Y.-S. Yoon, H. Khil Shin, B.-S. Kwak. Ring conversion of [gamma]-butyrolactone into N-methyl-2-pyrrolidone over modified zeolites [J]. Catal. Commun.,2002,3(8):349-355.
    [129]J. M. Yi, K. W. Tang, B. Y. Ren, H. Y. Xiong. Synthesis of cyclopropylamine with phase transfer catalysis [J]. J. Cent. South Univ. Technol.,2000,7(2):81-83.
    [130]赵玉艳,冯丽娟,刘帅,郑素莲,李春虎,侯影飞,于英民.γ-丁内酯在流化床催化裂化柴油氧化萃取脱硫中的应用研究[J].现代化工,2008,28(51):53-56.
    [131]Y. Su, C. X. Chen, Y. G Li, J. D. Li. PVDF membrane formation via thermally induced phase separation [J]. J. Macromol. Sci. Part A-Pure Appl. Chem.,2007,44(1): 99-104.
    [132]J. C. Chu, Y. C. Lin, M. H. Yang. Flexibility improvement of epoxy resin by using gamma-butyrolactone [J]. Polym.-Plast. Technol. Eng.,1997,36(3):473-488.
    [133]N. Takami, M. Sekino, T. Ohsaki, M. Kanda, M. Yamamoto. New thin lithium-ion batteries using a liquid electrolyte with thermal stability [J].J. Power Sources,2001,97-98:677-680.
    [134]L. Liu, Z. Q. Ning, S. Shan, K. Zhang, T. Deng, X. P. Lu, Y. Y. Cheng. Phthalide lactones from ligusticum Chuanxiong inhibit lipopolysaccharide-induced TNF-alpha production and TNF-alpha-mediated NF-kappa B activation [J]. Planta Med.,2005, 71(9):808-813.
    [135]F. Zeng, H. Lee, C. Allen. Epidermal growth factor-conjugated poly(ethylene glycol)-copolymer micelles for targeted delivery of chemotherapeutics [J]. Bioconjugate Chem.,2006,17(2):399-409.
    [136]钱伯章,朱建芳.γ-丁内酯的生产技术与市场分析[J].化工中间体,2006,(9):10-14.
    [137]J. H. Schlander, T. Turek. Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and y-butyrolactone over copper/zinc oxide catalysts [J]. Ind. Eng. Chem. Res,1999,38(4):1264-1270.
    [138]Y. Zhang, K. Yu, G. Li, D. Peng, Q. Zhang, F. Xu, W. Bai, S. Ouyang, Z. Zhu. Synthesis and field emission of patterned SnO2 nanoflowers [J]. Mate. Lett.,2006, 60(25-26):3109-3112.
    [139]D. Zhang, H. Yin, R. Zhang, J. Xue, T. Jiang. Gas phase hydrogenation of maleic anhydride to y-butyrolactone by Cu-Zn-Ce catalyst in the presence of n-butanol [J]. Catal. Lett.,2008,122(1):176-182.
    [140]J. Yang, H.-Y. Zheng, Y.-L. Zhu, G.-W. Zhao, C.-H. Zhang, B.-T. Teng, H.-W. Xiang, Y. Li. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing y-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation [J]. Catal. Commun.,2004,5(9):505-510.
    [141]T. M. Hansen, G. J. Florence, P. Lugo-Mas, J. Chen, J. N. Abrams, C. J. Forsyth. Highly chemoselective oxidation of 1,5-diols to δ-lactones with TEMPO/BAIB [J]. Tetrahedron Lett.,2003,44(1):57-59.
    [142]E. J. Corey, A. Palani. A method for the selective oxidation of 1,4-diols to lactols [J]. Tetrahedron Lett,1995,36(20):3485-3488.
    [143]N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, K. Inui. Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst [J]. J. Mol. Catal. A,2004, 212(1-2):197-203.
    [144]B. Q. Xu, J. M. Wei, Y. T. Yu, Y. Li, J. L. Li, Q. M. Zhu. Size limit of support particles in an oxide-supported metal catalyst:Nanocomposite Ni/ZrO2 for utilization of natural gas [J]. J. Phys. Chem. B,2003,107(22):5203-5207.
    [145]郑洪岩,杨骏,朱玉雷.1,4-丁二醇常压气相脱氢制γ-丁内酯[J].应用化学,2004,21(4):343-347.
    [146]曾毅,王公应.1,4-丁二醇脱氢制备γ-丁内酯的催化剂及工艺的研究[J].化学工业与工程技术,2004,25(5):5-7.
    [147]王海京,冯薇荪.1,4-丁二醇脱氢制备γ-丁内酯催化剂及工艺的研究[J].石油炼制与化工,1999,30(5):35-38.
    [148]N. Yamamoto, S. Sato, R. Takahashi, K. Inui. Synthesis of homoallyl alcohol from 1,4-butanediol over ZrO2 catalyst [J]. Catal. Commun.,2005,6(7):480-484.
    [149]A. Igarashi, S. Sato, R. Takahashi, T. Sodesawa, M. Kobune. Dehydration of 1,4-butanediol over lanthanide oxides [J]. Catal. Commun.,2007,8(5):807-810.
    [150]S. Murahashi, T. Naota, K. Ito, Y. Maeda, H. Taki. Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones [J].J. Org. Chem.,1987,52(19):4319-4327.
    [151]T. Suzuki, K. Morita, M. Tsuchida, K. Hiroi. Mild and chemoselective synthesis of lactones from diols using a novel metal-ligand bifunctional catalyst [J]. Org. Lett., 2002,4(14):2361-2363.
    [152]J. Zhao, J. F. Hartwig. Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols to lactones [J]. Organometallics,2005,24(10):2441-2446.
    [153]Y. Ishii, K. Suzuki, T. Ikariya, M. Saburi, S. Yoshikawa. Regio-and stereoselective dehydrogenation of α,ω-diols catalyzed by a rhodium hydride complex [J]. J. Org. Chem.,1986,51(14):2822-2824.
    [154]S. Ait-Mohand, J. Muzart. Palladium-catalyzed oxidative cyclization of 1,4-and 1,5-diols in 1,2-dichloroethane [J]. J. Mol. Catal. A,1998,129(2-3):135-139.
    [155]H. B. Ji, L. F. Wang, Y. B. She. Intramolecular cyclization of diols into lactone using solid catalyst [J]. Acta Chim. Sin.,2005,63(16):1520-1524.
    [156]K. Ebitani, H.-B. Ji, T. Mizugaki, K. Kaneda. Highly active trimetallic Ru/CeO2/CoO(OH) catalyst for oxidation of alcohols in the presence of molecular oxygen [J]. J. Mol. Catal. A,2004,212(1-2):161-170.
    [157]M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang, J. Park. Palladium nanoparticles entrapped in aluminum hydroxide:Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation [J]. Org. Lett.,2005,7(6):1077-1079.
    [158]T. Baba, K. Kameta, S. Nishiyama, S. Tsuruya, M. Masai. Liquid-phase oxidative lactonization of butane-1,4-diol into y-butyrolactone with oxygen over palladium supported on KL zeolite [J]. Bull. Chem. Soc. Jpn.,1990,63(1):255-257.
    [159]Y. Ishii, T. Yoshida, K. Yamawaki, M. Ogawa. Lactone synthesis of α,ω-diols with hydrogen peroxide catalyzed by heteropoly acids combined with cetylpyridinium chloride [J]. J. Org. Chem.,1988,53(23):5549-5552.
    [160]F. F. Bamoharram, M. M. Heravi, M. Roshani, A. Gharib, M. Jahangir. A catalytic method for synthesis of y-butyrolactone, ε-caprolactone and 2-cumaranone in the presence of Preyssler's anion, [NaP5W30O110]14-, as a green and reusable catalyst [J]. J. Mol. Catal. A,2006,252(1-2):90-95.
    [161]S. S. Lim, G. I. Park, J. S. Choi, I. K. Song, W. Y. Lee. Heterogeneous liquid-phase lactonization of 1,4-butanediol using H3+xPMo12-xVxO40 (x=0-3) catalysts immobilized on polyaniline [J]. Catal. Today,2002,74(3-4):299-307.
    [162]陈学刚,沈伟.Cu/ZnO/Al2O3催化剂上1,4-丁二醇脱氢合成Y-丁内酯[J].催化学报,2000,21(3):259-263.
    [163]林衍华,骆有寿.液相合成γ-丁内酯新型催化剂[J].应用化学,1997,14(4):105-107.
    [164]B. Berthon, A. Forestiere, G. Leleu, B. Sillion. Preparation d'esters par deshydrogenation d'alcools primaires en phase liquide catalysee par l'oxyde de cuivre-observations preliminaires [J]. Tetrahedron Lett.,1981,22(41):4073-4076.
    [165]林衍华,骆有寿.液相合成γ-丁内酯用新型催化剂的开发[J].催化学报,1998,19(6):510-513.
    [166]T.-j. Chen, P. Shen. Defect clustering and ordering in Zn-doped TiO2 upon solution annealing [J]. J. Phys. Chem. C,2009,113(1):328-332.
    [167]K. Yamawaki, H. Nishihara, T. Yoshida, T. Ura, H. Yamada, Y. Ishii, M. Ogawa. Ketonization of secondary hydroxy groups of alcohols and diols with hydrogen peroxide under the influence of tricetylpyridinium-12-tungstophosphate [J]. Synth. Commun.,1988,18(8):869-875.
    [168]T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda. Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions [J]. Green Chem.,2009,11(6): 793-797.
    [169]J. Huang, W.-L. Dai, H. Li, K. Fan. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to y-butyrolactone [J]. J. Catal.,2007, 252(1):69-76.
    [1]R. Zanella, S. Giorgio, C. R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles supported on TiO2 [J].J. Phys. Chem. B,2002, 106(31):7634-7642.
    [2]S. Lei, K. Tang, Z. Fang, J. Sheng. One-step synthesis of colloidal Mn3O4 and γ-Fe2O3 nanoparticles at room temperature [J].J. Nanopart. Res.,2007,9(5):833-840.
    [3]K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda. Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic γ-Fe2O3 nanocrystallites as an efficient oxidation catalyst by molecular oxygen [J]. Chem. Mater.,2007,19(6):1249-1256.
    [4]M. A. Karakassides, D. Gournis, A. B. Bourlinos, P. N. Trikalitis, T. Bakas. Magnetic Fe2O3-Al2O3 composites prepared by a modified wet impregnation method [J].J. Mate. Chem,2003,13(4):871-876.
    [1]A. Wolf, F. Schuth. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts [J]. Appl. Catal. A,2002,226(1-2):1-13.
    [2]R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Appl. Catal. A,2005,291(1-2):62-72.
    [3]N. Dimitratos, A. Villa, C. L. Bianchi, L. Prati, M. Makkee. Gold on titania:Effect of preparation method in the liquid phase oxidation [J]. Appl. Catal. A,2006,311: 185-192.
    [4]R. Zanella, S. Giorgio, C.-H. Shin, C. R. Henry, C. Louis. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea [J]. J. Catal.,2004,222(2):357-367.
    [5]T. Akita, K. Tanaka, S. Tsubota, M. Haruta. Analytical high-resolution TEM study of supported gold catalysts:Orientation relationship between Au particles and TiO2 supports [J]. J. Electron Microsc.,2000,49(5):657-662.
    [6]M. Date, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, M. Haruta. Performance of Au/TiO2 catalyst under ambient conditions [J]. Catal. Today,2002, 72(1-2):89-94.
    [7]F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta. Au/TiO2 nanosized samples:A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J]. J. Catal.,2001,202(2):256-267.
    [8]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4 [J]. J. Catal.,1993,144(1):175-192.
    [9]A. Abad, P. Concepci6n, A. Corma, H. Garcia. A collaborative effect between gold and a support induces the selective oxidation of alcohols [J]. Angew. Chem. Int. Ed., 2005,44(26):4066-4069.
    [10]田志高,胡伟武,卢胜兰.1,4-丁二醇催化脱氢制备γ-丁内酯的新工艺研究[J].襄樊学院学报,2003,24(5):42-44.
    [1]M. A. Bollinger, M. A. Vannice. A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts [J]. Appl. Catal. B,1996,8(4): 417-443.
    [2]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth. Support effect in high activity gold catalysts for CO oxidation [J]. J. Am. Chem. Soc.,2006,128(3):917-924.
    [3]B. E. Solsona, T. Garcia, C. Jones, S. H. Taylor, A. F. Carley, G J. Hutchings. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide [J]. Appl. Catal. A,2006,312:67-76.
    [4]L. C. Wang, Q. Liu, X. S. Huang, Y. M. Liu, Y. Cao, K. N. Fan. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation [J]. Appl. Catal. B, 2009,88(1-2):204-212.
    [5]V. R. Choudhary, V. P. Patil, P. Jana, B. S. Uphade. Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gases [J]. Appl. Catal. A,2008,350(2):186-190.
    [6]V. Idakiev, T. Tabakova, A. Naydenov, Z. Y. Yuan, B. L. Su. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction [J]. Appl. Catal. B,2006,63(3-4):178-186.
    [7]D. Widmann, R. Leppelt, R. J. Behm. Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation [J]. J. Catal., 2007,251(2):437-442.
    [8]C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J]. Appl. Catal. A,2003,243(1):15-24.
    [9]D. Wang, Z. Hao, D. Cheng, X. Shi, C. Hu. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts [J]. J. Mol. Catal. A, 2003,200(1-2):229-238.
    [10]M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm. CO oxidation over supported gold catalysts--"Inert" and "Active" support materials and their role for the oxygen supply during reaction [J]. J. Catal.,2001, 197(1):113-122.
    [11]F. Moreau, G. C. Bond. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component [J]. Catal. Today,2006,114(4):362-368.
    [12]M. M. Schubert, V. Plzak, J. Garche, R. J. Behm. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas [J]. Catal. Lett.,2001,76(3-4):143-150.
    [13]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: Transition metal oxides and ceria [J]. J. Catal.,2005,229(1):154-162.
    [14]D. Niakolas, C. Andronikou, C. Papadopoulou, H. Matralis. Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOX by hydrocarbons [J]. Catal. Today,2006,112(1-4):184-187.
    [15]T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction [J]. Appl. Catal. A, 2000,202(1):91-97.
    [16]N. S. Patil, B. S. Uphade, D. G McCulloh, S. K. Bhargava, V. R. Choudhary. Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition-precipitation [J]. Catal. Commun.,2004,5(11):681-685.
    [17]D. I. Enache, D. W. Knight, G. J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts [J]. Catal. Lett.,2005(1-2),103: 43-52.
    [18]S.-Y. Lai, Y. Qiu, S. Wang. Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene [J]. J. Catal., 2006,237(2):303-313.
    [1]X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals [J]. Adv. Funct. Mater.,2006, 16(14):1805-1813.
    [2]L. Li, Y. Chu, Y. Liu, L. Dong. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres [J].J. Phys. Chem. C,2007,111(5): 2123-2127.
    [3]T. Belin, N. Guigue-Millot, T. Caillot, D. Aymes, J. C. Niepce. Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters [J]. J. Solid State Chem.,2002,163(2):459-465.
    [4]A. Basinska, K. Pawelczyk. Surface of Ru/Fe2O3 catalysts used in water-gas shift reaction studied by Auger Electron Spectrometry [J]. React. Kinet. Catal. Lett.,2006, 89(2):325-331.
    [5]F.-W. Chang, L. S. Roselin, T.-C. Ou. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe2O3 catalysts [J]. Appl. Catal. A,2008,334(1-2): 147-155.
    [6]D. I. Enache, D. W. Knight, G J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts [J]. Catal. Lett.,2005,103(1-2): 43-52.
    [7]C. Milone, R. Ingoglia, G Neri, A. Pistone, S. Galvagno. Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol [J]. Appl. Catal. A,2001,211(2): 251-257.
    [8]S. Scir, S. Minic, C. Crisafulli, S. Galvagno. Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3 [J]. Catal. Commun., 2001,2(6-7):229-232.
    [9]Z. Zhong, J. Ho, J. Teo, S. Shen, A. Gedanken. Synthesis of porous alpha-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO [J]. Chem. Mater.,2007,19(19):4776-4782.
    [10]S. T. Daniells, A. R. Overweg, M. Makkee, J. A. Moulijn. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts:A combined Mossbauer, FT-IR, and TAP reactor study [J]. J. Catal.,2005,230(1):52-65.
    [11]D. Boyd, S. Golunski, G. R. Hearne, T. Magadzu, K. Mallick, M. C. Raphulu, A. Venugopal, M. S. Scurrell. Reductive routes to stabilized nanogold and relation to catalysis by supported gold [J]. Appl. Catal. A,2005,292:76-81.
    [12]D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, R. Giovanoli. Low-temperature water-gas shift reaction on Au/a-Fe2O3 catalyst [J]. Appl. Catal. A, 1996,134(2):275-283.
    [13]C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno. A comparative study on the selective hydrogenation of α,β-unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts [J]. Catal. Today,2007,122(3-4): 341-351.
    [14]C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support [J]. J. Catal.,2005,236(1): 80-90.
    [15]C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts [J]. J. Catal.,2004,222(2):348-356.
    [16]K. Y. Ho, K. L. Yeung. Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction [J]. Gold Bull.,2007,40(1):15-30.
    [17]J. Li, J. Chen, W. Song, J. Liu, W. Shen. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction [J]. Appl. Catal. A,2008,334(1-2):321-329.
    [18]W. Yan, B. Chen, S. M. Mahurin, S. Dai, S. H. Overbury. Brookite-supported highly stable gold catalytic system for CO oxidation [J]. Chem. Commun.,2004, 1918-1919.
    [19]K. S. A. Halim, M. H. Khedr, M. I. Nasr, A. M. El-Mansy. Factors affecting CO oxidation over nanosized Fe2O3 [J]. Mater. Res. Bull.,2007,42(4):731-741.
    [20]L. A. Boot, A. J. van Dillen, J. W. Geus, F. R. van Buren. Iron-based dehydrogenation catalysts supported on zirconia. I. preparation and characterization [J]. J. Catal.,1996,163(1):186-194.
    [21]F. Shi, M. K. Tse, M.-M. Pohl, J. Radnik, A. Brukner, S. Zhang, M. Beller. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide [J]. J. Mol. Catal. A,2008,292(1-2):28-35.
    [22]K. Gil'manov, A. Lamberov, E. Dement'eva, E. Shatokhina, A. Ivanova, A. Gubaidullina. Effect of heat-treatment conditions on the formation of polyferrite phases from an iron-oxide-based dehydrogenation catalyst [J]. Inorg. Mater.,2008, 44(1):89-94.
    [23]T. Cheng, Z. Y. Fang, Q. X. Hu, K. D. Han, X. Z. Yang, Y. J. Zhang. Low-temperature CO oxidation over CuO/Fe2O3 catalysts [J]. Catal. Commun.,2007, 8(7):1167-1171.
    [24]F. Moreau, G. C. Bond. Influence of the surface area of the support on the activity of gold catalysts for CO oxidation [J]. Catal. Today,2007,122(3-4):215-221.
    [25]J. Hua, Q. Zheng, Y. Zheng, K. Wei, X. Lin. Influence of modifying additives on the catalytic activity and stability of Au/Fe2O3-MOx catalysts for the WGS reaction [J]. Catal. Lett.,2005,102(1):99-108.
    [26]S. E. Collins, J. M. Cies, E. delRio, M. Lopez-Haro, S. Trasobares, J. J. Calvino, J. M. Pintado, S. Bernal. Hydrogen interaction with a ceria-zirconia supported gold catalyst. Influence of CO co-adsorption and pretreatment conditions [J]. J. Phys. Chem.C,2007,111(39):14371-14379.
    [27]A. M. Visco, F. Neri, G. Neri, A. Donato, C. Milone, S. Galvagno. X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts [J]. Phys. Chem. Chem. Phys.,1999, 1(11):2869-2873.
    [28]W. Liu, X. Yang, L. Xie. Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids [J]. J. Colloid Interf. Sci.,2007,313(2):494-502.
    [29]N. K. Chaki, H. Tsunoyama, Y. Negishi, H. Sakurai, T. Tsukuda. Effect of Ag-doping on the catalytic activity of polymer-stabilized Au clusters in aerobic oxidation of alcohol [J]. J. Phys. Chem. C,2007,111(13):4885-4888.
    [30]H. Tsunoyama, T. Tsukuda. Magic numbers of gold clusters stabilized by PVP [J]. J. Am. Chem. Soc.,2009,131(51):18216-18217.
    [31]P. Claus, A. Bruckner, C. Mohr, H. Hofmeister. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups [J]. J. Am. Chem. Soc.,2000,122(46):11430-11439.
    [32]T. Minato, T. Susaki, S. Shiraki, H. S. Kato, M. Kawai, K.-I. Aika. Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM [J]. Surf. Sci.,2004,566-568(20):1012-1017.
    [33]W. T. Wallace, R. L. Whetten. Coadsorption of CO and O2 on selected gold clusters:Evidence for efficient room-temperature CO2 generation [J]. J. Am. Chem. Soc.,2002,124(25):7499-7505.
    [34]J. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heiz, T. M. Bernhardt, L. Woste. Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures:Model complexes for catalytic CO oxidation [J]. Phys. Chem. Chem. Phys.,2002,4(10):1707-1709.
    [35]W. Huang, H.-J. Zhai, L.-S. Wang. Probing the interactions of O2 with small gold cluster anions (Aun-,n=1-7):Chemisorption vs physisorption [J]. J. Am. Chem. Soc., 132(12):4344-4351.
    [36]C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G Q. Lu, Z. P. Hao, S. Z. Qiao. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene [J]. J. Am. Chem. Soc.,2010,132(8):2608-2613.
    [37]Y. F. Han, Z. Zhong, K. Ramesh, F. Chen, L. Chen. Effects of different types of γ-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures [J]. J. Phys. Chem. C,2007,111(7):3163-3170.
    [1]J. Huang, W.-L. Dai, K. Fan. Support effect of new Au/FeOx catalysts in the oxidative dehydrogenation of a,co-diols to lactones [J]. J. Phys. Chem. C,2008, 112(41):16110-16117.
    [2]K.-I. Shimizu, K. Sugino, K. Sawabe, A. Satsuma. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina [J]. Chem.-Eur. J,2009,15(10):2341-2351.
    [3]M. Trueba, S. P. Trasatti. y-Alumina as a support for catalysts:A review of fundamental aspects [J]. Eur. J. Inorg. Chem.,2005, (17):3393-3403.
    [4]S. M. Morris, P. F. Fulvio, M. Jaroniec. Ordered mesoporous alumina-supported metal oxides [J]. J. Am. Chem. Soc.,2008,130(45):15210-15216.
    [5]S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A. V. Dorsselaer, E. Leize. Preparation of alumina supported gold catalysts:Gold complexes genesis, identification and speciation by mass spectrometry [J]. Appl. Catal. A,2006,298: 203-210.
    [6]G. M. Veith, A. R. Lupini, S. J. Pennycook, G. W. Ownby, N. J. Dudney. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering [J]. J. Catal., 2005,231(1):151-158.
    [7]X.-H. Zou, S.-X. Qi, Z.-H. Suo, L.-D. An, F. Li. Activity and deactivation of Au/Al2O3 catalyst for low-temperature CO oxidation [J]. Catal. Commun.,2007,8(5): 784-788.
    [8]H. Berndt, I. Pitsch, S. Evert, K. Struve, M. M. Pohl, J. Radnik, A. Martin. Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid [J]. Appl. Catal. A,2003,244(1):169-179.
    [9]T. Venkov, H. Klimev, M. A. Centeno, J. A. Odriozola, K. Hadjiivanov. State of gold on an Au/Al2O3 catalyst subjected to different pre-treatments:An FTIR study [J]. Catal. Commun.,2006,7(5):308-313.
    [10]C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang, H. H. Kung. Nature of the active site for CO oxidation on highly active Au/y-Al2O3 [J]. Appl. Catal. A,2002,232(1-2): 159-168.
    [11]C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J]. Appl. Catal. A,2003,243(1):15-24.
    [12]A. C. Gluhoi, B. E. Nieuwenhuys. Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts:Effect of various promoters [J]. Catal. Today, 2007,119(1-4):305-310.
    [13]J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru. Selective hydrogenation of acetylene over Au/Al2O3 catalyst [J]. J. Phys. Chem. B,2000,104(47):11153-11156.
    [14]V. R. Choudhary, P. Jana, S. K. Bhargava. Reduction of oxygen by hydroxylammonium salt or hydroxylamine over supported Au nanoparticles for in situ generation of hydrogen peroxide in aqueous or non-aqueous medium [J]. Catal. Commun.,2007,8(5):811-816.
    [15]L.-X. Xu, C.-H. He, M.-Q. Zhu, S. Fang. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen [J]. Catal. Lett.,2007,114(3): 202-205.
    [16]F. Porta, L. Prati, M. Rossi, S. Coluccia, G. Martra. Metal sols as a useful tool for heterogeneous gold catalyst preparation:Reinvestigation of a liquid phase oxidation [J]. Catal. Today,2000,61(1-4):165-172.
    [17]N. Thielecke, K.-D. Vorlop, U. Prue. Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation [J]. Catal. Today, 2007,122(3-4):266-269.
    [18]M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm. CO oxidation over supported gold catalysts--"Inert" and "Active" support materials and their role for the oxygen supply during reaction [J]. J. Catal.,2001, 197(1):113-122.
    [19]R. J. H. Grisel, B. E. Nieuwenhuys. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts [J]. Catal. Today,2001,64(1-2):69-81.
    [20]S. D. Lin, A. C. Gluhoi, B. E. Nieuwenhuys. Ammonia oxidation over Au/MOx/γ-Al2O3--activity, selectivity and FTIR measurements [J]. Catal. Today,2004, 90(1-2):3-14.
    [21]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene [J]. J. Catal.,2005,232(1): 96-101.
    [22]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: Transition metal oxides and ceria [J]. J. Catal.,2005,229(1):154-162.
    [23]A. C. Gluhoi, M. A. P. Dekkers, B. E. Nieuwenhuys. Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts:Effect of the addition of various oxides [J]. J. Catal.,2003,219(1):197-205.
    [24]J. Zhang, S. Wei, J. Lin, J. Luo, S. Liu, H. Song, E. Elawad, X. Ding, J. Gao, S. Qi, C. Tang. Template-free preparation of bunches of aligned boehmite nanowires [J]. J. Phys. Chem. B,2006,110(43):21680-21683.
    [25]J. Zhang, S. Liu, J. Lin, H. Song, J. Luo, E. M. Elssfah, E. Ammar, Y. Huang, X. Ding, J. Gao, S. Qi, C. Tang. Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures [J]. J. Phys. Chem. B,2006,110(29):14249-14252.
    [26]X. Y. Chen, Z. J. Zhang, X. L. Li, S. W. Lee. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals [J]. Solid State Commun.,2008,145(7-8):368-373.
    [27]J. Cejka. Organized mesoporous alumina:Synthesis, structure and potential in catalysis [J]. Appl. Catal. A,2003,254(2):327-338.
    [28]K. Okada, T. Nagashima, Y. Kameshima, A. Yasumori, T. Tsukada. Relationship between formation conditions, properties, and crystallite size of boehmite [J]. J. Colloid Interface Sci.,2002,253(2):308-314.
    [29]D. Panias, A. Krestou. Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions [J]. Powder Technol.,2007,175(3): 163-173.
    [30]尾崎萃,田丸谦二,田部浩三,西村重夫.催化剂手册(按元素分类) [M].化学工业出版社,1982.
    [31]W. C. Ketchie, Y.-L. Fang, M. S. Wong, M. Murayama, R. J. Davis. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol [J]. J. Catal.,2007,250(1):94-101.
    [32]H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water [J]. J. Am. Chem. Soc.,2005,127(26):9374-9375.
    [33]D. Yin, L. Qin, J. Liu, C. Li, Y. Jin. Gold nanoparticles deposited on mesoporous alumina for epoxidation of styrene:Effects of the surface basicity of the supports [J]. J. Mol. Catal. A,2005,240(1-2):40-48.
    [34]G. V. Sagar, P. V. R. Rao, C. S. Srikanth, K. V. R. Chary. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2 [J]. J. Phys. Chem. B,2006, 110(28):13881-13888.
    [35]R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Appl. Catal. A,2005,291(1-2):62-72.
    [36]F. Moreau, G C. Bond, A. O. Taylor. Gold on titania catalysts for the oxidation of carbon monoxide:Control of pH during preparation with various gold contents [J].J. Catal.,2005,231(1):105-114.
    [37]田志高,胡伟武,卢胜兰.1,4-丁二醇催化脱氢制备γ-丁内酯的新工艺研究[J]襄樊学院学报,2003,24(5):42-44.
    [38]A. Abad, P. Concepci6n, A. Corma, H. Garcia. A collaborative effect between gold and a support induces the selective oxidation of alcohols [J]. Angew. Chem. Int. Ed.,2005,44(26):4066-4069.
    [39]D. Gavril, A. Georgaka, V. Loukopoulos, G Karaiskakis, B. E. Nieuwenhuys. On the mechanism of selective CO oxidation on nanosized Au/γ-Al2O3 catalysts [J]. Gold Bull.,2006,39(4):192-199.
    [40]H. H. Kung, M. C. Kung, C. K. Costello. Supported Au catalysts for low temperature CO oxidation [J]. J. Catal.,2003,216(1-2):425-432.
    [41]M. Takato, N. Akifumi, M. Tomoo, J. Koichiro, K. Kiyotomi. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst [J]. Adv. Synth. Catal.,2009,351(11-12):1890-1896.
    [42]P. Haider, A. Baiker. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium [J]. J. Catal.,2007,248(2):175-187.
    [43]T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda. Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions [J]. Green Chem.,2009,11(6): 793-797.
    [44]J. Yang, Y. J. Guan, T. Verhoeven, R. van Santen, C. Li, E. J. M. Hensen. Basic metal carbonate supported gold nanoparticles:Enhanced performance in aerobic alcohol oxidation [J]. Green Chem.,2009,11(3):322-325.
    [45]A. Abad, A. Corma, H. Garcia. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols:The molecular reaction mechanism [J]. Chem.-Eur. J,2008,14(1):212-222.
    [1]M. Lippits, A. Gluhoi, B. Nieuwenhuys. A comparative study of the effect of addition of CeOx and Li2O on γ-Al2O3 supported copper, silver and gold catalysts in the preferential oxidation of CO [J]. Top. Catal.,2007,44(1):159-165.
    [2]C. Gennequin, M. Lamallem, R. Cousin, S. Siffert, V. Idakiev, T. Tabakova, A. Aboukais, B. Su. Total oxidation of volatile organic compounds on Au/Ce-Ti-O and Au/Ce-Ti-Zr-O mesoporous catalysts [J]. J. Mater. Sci.,2009,44(24):6654-6662.
    [3]V. Idakiev, T. Tabakova, K. Tenchev, Z. Yuan, T. Ren, A. Vantomme, B. Su. Gold nanoparticles supported on ceria-modified mesoporous-macroporous binary metal oxides as highly active catalysts for low-temperature water-gas shift reaction [J]. J. Mater. Sci.,2009,44(24):6637-6643.
    [4]P. Haider, J.-D. Grunwaldt, R. Seidel, A. Baiker. Gold supported on Cu-Mg-Al and Cu-Ce mixed oxides:An in situ XANES study on the state of Au during aerobic alcohol oxidation [J]. J. Catal.,2007,250(2):313-323.
    [5]I. Dobrosz-Gomez, I. Kocemba, J. M. Rynkowski. Au/Ce1-xZrxO2 as effective catalysts for low-temperature CO oxidation [J]. Appl. Catal. B,2008,83(3-4): 240-255.
    [6]I. Dobrosz-Gomez, I. Kocemba, J. Rynkowski. Carbon monoxide oxidation over Au/Ce1-xZrxO2 catalysts:Effects of moisture content in the reactant gas and catalyst pretreatment [J]. Catal. Lett.,2009,128(3):297-306.
    [7]R. J. H. Grisel, B. E. Nieuwenhuys. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts [J]. Catal. Today,2001,64(1-2):69-81.
    [8]J. Hua, Q. Zheng, Y. Zheng, K. Wei, X. Lin. Influence of modifying additives on the catalytic activity and stability of Au/Fe2O3-MOx catalysts for the WGS reaction [J]. Catal. Lett.,2005,102(1):99-108.
    [9]Z. Ma, S. H. Overbury, S. Dai. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives [J]. J. Mol. Catal. A,2007,273(1-2):186-197.
    [10]F.-W. Chang, H.-Y. Yu, L. S. Roselin, H.-C. Yang, T.-C. Ou. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M=Fe, Co, Zn) composite oxides [J]. Appl. Catal. A,2006,302(2): 157-167.
    [11]V. Rodriguez-Gonzalez, R. Zanella, L. A. Calzada, R. Gomez. Low-temperature CO oxidation and long-term stability of Au/In2O3-TiO2 catalysts [J].J. Phys. Chem. C, 2009,113(20):8911-8917.
    [12]G. Avgouropoulos, M. Manzoli, F. Boccuzzi, T. Tabakova, J. Papavasiliou, T. Ioannides, V. Idakiev. Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction [J]. J. Catal.,2008,256(2): 237-247.
    [13]R. J. H. Grisel, J. J. Slyconish, B. E. Nieuwenhuys. Oxidation reactions over multi-component catalysts:Low-temperature CO oxidation and the total oxidation of CH4 [J]. Top. Catal.,2001,16-17(1):425-431.
    [14]K. Qian, W. Huang, Z. Jiang, H. Sun. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive [J]. J. Catal.,2007,248(1):137-141.
    [15]M. A. Centeno, K. Hadjiivanov, T. Venkov, H. Klimev, J. A. Odriozola. Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts [J].J. Mol. Catal. A, 2006,252(1-2):142-149.
    [16]M. A. Centeno, M. Paulis, M. Montes, J. A. Odriozola. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts [J]. Appl. Catal. A,2002,234(1-2):65-78.
    [17]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene [J]. J. Catal.,2005,232(1): 96-101.
    [18]A. C. Gluhoi, B. E. Nieuwenhuys. Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts:Effect of various promoters [J]. Catal. Today, 2007,119(1-4):305-310.
    [19]S. D. Lin, A. C. Gluhoi, B. E. Nieuwenhuys. Ammonia oxidation over Au/MOx/γ-Al2O3-activity, selectivity and FTIR measurements [J]. Catal. Today,2004, 90(1-2):3-14.
    [20]D. Niakolas, C. Andronikou, C. Papadopoulou, H. Matralis. Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOx by hydrocarbons [J]. Catal. Today,2006,112(1-4):184-187.
    [21]P. Haider, A. Baiker. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium [J]. J. Catal.,2007,248(2):175-187.
    [22]A. Violante, M. Ricciardella, M. Pigna. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands [J]. Water Air Soil Pollut., 2003,145(1):289-306.
    [23]O. R. Harvey, R. D. Rhue. Kinetics and energetics of phosphate sorption in a multi-component Al(Ⅲ)-Fe(Ⅲ) hydr(oxide) sorbent system [J]. J. Colloid Interface Sci.,2008,322(2):384-393.
    [24]W. Yan, S. M. Mahurin, Z. Pan, S. H. Overbury, S. Dai. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals [J]. J. Am. Chem. Soc., 2005,127(30):10480-10481.
    [25]C. M. Wang, K. N. Fan, Z. P. Liu. Insight into the synergetic effect in ternary gold-based catalysts:Ultrastability and high activity of Au on alumina modified titania [J]. J. Phys. Chem. C,2007,111(36):13539-13546.
    [26]M. A. Karakassides, D. Gournis, A. B. Bourlinos, P. N. Trikalitis, T. Bakas. Magnetic Fe2O3-Al2O3 composites prepared by a modified wet impregnation method [J].J. Mate. Chem,2003,13(4):871-876.
    [27]K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda. Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic γ-Fe2O3 nanocrystallites as an efficient oxidation catalyst by molecular oxygen [J]. Chem. Mater.,2007,19(6):1249-1256.
    [28]L. H. Chang, N. Sasirekha, Y. W. Chen, W. J. Wang. Preferential oxidation of CO in H2 stream over Au/MnO2-CeO2 catalysts [J]. Ind. Eng. Chem. Res.,2006,45(14): 4927-4935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700