用户名: 密码: 验证码:
Au/TS-1催化氢氧直接合成过氧化氢及与氧化反应的集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢(H_2O_2)是一种重要的绿色氧化剂,在造纸、纺织、化工、环保等行业有着广泛的用途。传统的H_2O_2生产工艺(蒽醌法)步骤繁多,能耗较大,并且产生大量废水,这些缺点导致H_2O_2生产成本增加,限制了其应用。因此,开发一种简洁高效的H_2O_2合成工艺具有十分重要的工业意义。利用氢气和氧气直接合成过氧化氢是最为理想的H_2O_2合成工艺。基于负载型贵金属钯或钯合金催化剂的路线已经持续研究了近百年,并有望投入工业化生产。最近的文献表明,负载型的金催化剂在催化氢气和氧气合成H_2O_2反应中同样具有较好的催化性能。文献中常用的载体有TiO_2、Al_2O_3、SiO_2、Fe_2O_3、活性炭等。
     钛硅分子筛TS-1作为一种新型的催化材料,在以H_2O_2为氧化剂的催化氧化反应中表现出优异的性能。其中,在丙烯环氧化、环己酮氨氧化、苯酚羟基化等反应中有着很好的工业前景。然而,H_2O_2成本较高,并且在存储、运输过程中存在危险等缺点制约了了TS-1/H_2O_2催化氧化体系的工业进程。本文以TS-1为载体,制备了Au/TS-1双功能催化剂,考察了金催化剂在直接合成过氧化氢反应中的性能,并对其进行了详细表征。在此基础上,以Au/TS-1为催化剂,把氢氧直接合成H_2O_2和氧化脱硫及1-丁烯的环氧化反应进行集成。论文主要结果如下:
     1.采用不同方法、不同载体制备了一系列金催化剂,用于催化H_2/O_2直接合成H_2O_2。结果表明,纳米金粒子粒径、载体的特性会影响催化剂的活性。采用不同方法制备的Au/TS-1催化剂中,Au晶粒较小的催化剂活性较高;以尿素沉积法制备的不同载体负载的金催化剂的活性顺序为Au/TiO_2>Au/TS-1>Au/Al_2O_3>Au/Fe_2O_3>Au/SiO_2。
     2.重点考察了Au/TS-1催化剂的制备条件及反应条件对氢氧直接合成H_2O_2的影响。结果表明,当催化剂中的Au物种以Au~(3+)和Au~+存时不能催化氢氧直接合成H_2O_2,金属态Au~0是催化剂的活性金物种。在催化剂的制备过程中,提高沉淀剂尿素的用量,能够提高制备液的pH值,使制备的催化剂金粒子粒径减小,催化剂的活性和稳定性提高。使用甲醇作为反应介质能够增加H_2和O_2的溶解度,H_2O_2合成速率高于以水作为反应介质。在甲醇中加入适量的水,能够提高H_2O_2的合成速率,水/醇体积比为3∶2的混合溶剂作为反应介质时,H_2O_2的合成浓度最高,为11.42 mmol/L。
     3.以双功能催化剂Au/TS-1催化氢氧原位合成的H_2O_2进行小分子硫化物的氧化脱硫反应。结果表明,小分子的甲基硫醚最容易被氧化,而2-甲基噻吩由于空间位阻的影响,较难氧化。随着反应时间的延长,硫化物的氧化脱除率能够不断提高,反应6 h后,268 ppm的噻吩能被完全氧化脱除。提高反应温度能够促进硫化物的氧化,最佳反应温度为40℃,反应2 h噻吩的脱除率由常温时的73.0%增加到40℃时的88.3%。以Au/TS-1为催化剂,氢氧原位合成的H_2O_2氧化硫化物的反应机理与TS-1/H_2O_2反应体系相似,噻吩类硫被氧化为亚砜、砜、二氧化硫和硫酸。
     4.以双功能催化剂Au/TS-1催化氢氧原位合成的H_2O_2进行1-丁烯的环氧化反应。结果表明,提高反应温度能够促进1-丁烯的环氧化,但是1,2-环氧丁烷(BO)的选择性降低。随着反应时间的延长,BO的生成量持续增加,并且BO的生成速率基本保持不变。反应时间从30 min增加到180 min时,BO的生成量从0.28g/g_(Au)增加到1.65g/g_(Au),生成速率则维持在0.54~0.60g/(g_(Au)h)。提高催化剂中的钛含量也能够促进BO的生成,当Si/Ti比由64降低到8时,BO的生成速率从0.45 g/(g_(Au)h)增加为0.87g/(g_(Au) h)。在常温条件下进行集成反应,BO的选择性为100%,没有副产物甲基醚或二醇生成。
Hydrogen peroxide is an important green oxidizing agent.It is used in many industrial areas,such as textile industry,papermaking,chemical industry and environmental protection. The current industrial production of H_2O_2 involves a circular reaction pathway by the sequential hydrogenation and oxidation of alkyl-anthraquinone.However,this process has several obvious drawbacks,including complex operation steps,high cost and safety issue in transportation and storage.Consequently,alternative routes for H_2O_2 synthesis are highly desirable.The direct synthesis of H_2O_2 from O_2 and H_2 over a precious metal catalyst is an attractive alternative,which has been investigated for almost one century.Recently,supported gold nanoparticles proved to be a potential catalyst for direct H_2O_2 formation from H_2 and O_2. Familiar supports for gold catalyst are TiO_2,Al_2O_3,SiO_2,Fe_2O_3,active carbon,et al.
     Since titanium silicalite TS-1 was successfully prepared in 1983,it has exhibited the unique catalytic performance in many selective oxidation reactions involving H_2O_2 as the oxidant.Several reactions exhibit the potential for an industrial process,including propene epoxidation,ammoxidation of cyclohexanone and hydroxylation of phenol et al.However,the high cost and the problem of transportation and storage of commercial H_2O_2 have limited the industrial application of TS-1.
     In this paper,a bifunctional catalyst Au/TS-1 is prepared and employed in the direct synthesis of H_2O_2 from O_2 and H_2.The conditions of catalyst preparation and reaction are systematically studied.On the basis of the direct synthesis of H_2O_2 from O_2 and H_2,oxidative desulfurization and 1-butylene epoxidation are attempted over Au/TS-1 in the presence of O_2 and H_2.The following results have been obtained:
     1.Several supported gold catalysts are prepared by the method of deposition-precipitation with urea(DP urea) and used in the direct syntheis of H_2O_2 using deionized water as reaction medium at room temperature.TiO_2 supported gold catalyst exhibits the highest activity,followed by Au/TS-1,Au/Al_2O_3,Au/Fe_2O_3,and SiO_2. Preparation methods of the Au/TS-1 catalyst influence the catalytic activity in the direct synthesis of hydrogen peroxide.The catalyst,which contains smaller gold particles,.exhibits a higher catalystic activity.
     2.Effects of the preparation condition of Au/TS-1 catalysts and reaction conditions on the direct synthesis of H_2O_2 are systemically investigated.Results show that Au~(3+) and Au~+ are mainly gold species on the Au/TS-1 catalysts dried at 40 and 100℃.These samples can not catalytze the formation of hydrogen peroxide.With increasing of calcination temperature from 200~400℃,the Au~(3+) and Au~+ species are gradually reduced to metallic Au~0,and the catalytic activity increases.Metallic gold species Au~0 is proposed as the active species in the direct synthesis of hydrogen peroxide.With the amount of urea increasing during the preparation process of the Au/TS-1 catalyst,the final pH value of solvent increases,and samller gold nanoparticles are formed.The catalytical activity and the stability of the Au/TS-1 catalyst are also improved.The increase of Ti content in Au/TS-1 can result in the increase of catalytical activity.Instead of deionized water as reaction solvent,methanol is a rather suitable medium for H_2O_2 synthesis.However,a higher catalytic activity can be obtained using a water-methanol mixture as the solvent,and the optimal water/methanol volume ratio is 3:2.
     3.Oxidative desulfurization is investigated over bifunctional Au/TS-1 catalyst in the presence of H_2 and O_2.Results show that methyl sulfide(DMS) can be very seaily oxidized by H_2O_2 generated in situ.For the effect of steric hindrance,the oxidation rate of 2-methyl thiophene is lower than DMS and thiophene.With increasing reaction time,the removal of sulfide can be improved continuously.The temperatrue has a singnificant effect on the removal of thiophene.With increasing reaction temperature,the removal is higher than that at room temperature,and the optimum temperature is 40℃.The mechanism of oxidative desulfurization by in situ generated H_2O_2 over Au/TS-1 is similar with that in the system TS-1/H_2O_2.The sufides are oxidized to sub-sulfone,sulfone,sulfur dioxide and sulfuric acid.
     4.Using bifunctional Au/TS-1 as catalyst,epoxidation of 1-butylene is investigated in the presence of H_2 and O_2.The result shows that high temparature is disadvantageous to the synthesis of hydrogen peroxide,but favor the 1-butylene epoxidation.A highest formation rate of 1,2-butylene oxide(BO) is obtained at 40℃.With increasing reaction time,the amount of BO increases and the fomation rate keep at about 0.54~0.6 g/(g_(Au) h).Increasing the Ti content of Au/TS-1 can also improve the formation of BO.The selectivity of BO is 100% when the integration is performed at room temperature.
引文
[1]Thenard L J,Ann.Chim.Phys.1818,8:306.
    [2]胡长诚.过氧化氢.化工百科全书(第六卷).北京:化学工业出版社,1994,641-659.
    [3]Campos-Martin J M,Blanco-Brieva G,Fierro J L G.Hydrogen peroxide synthesis:an outlook beyond the anthraquinone process.Angewandte Chemie,International Edition,2006,45(42):6962-6984.
    [4]Strukul G,in:Strukul G(Ed.),Catalytic Oxidations with Hydrogen Peroxide as Oxidant,Kluwer Academic Publishers,Oordrecht,1992,p.1-11.
    [5]周莺.过氧化氢的生产及应用.化学工业与工程技术,1999,20(3):15-19.
    [6]刘建业.过氧化氢的应用和国内行业发展现状.牙膏行业,2004,3:41-42.
    [7]胡长诚.国外过氧化氢在化学合成中应用研究进展.化学推进剂与高分子材料,2003,1(6):1-4.
    [8]朱向学,李贤伦,刘淑文.葸醌氢化加氢法生产过氧化氢研究进展.化工科技,2001,9(6):55-62.
    [9]钱东,王洪恩,闫早学等.蒽醌法生产过氧化氢研究进展.无机盐工业,2005,37(8):12-14.
    [10]刘建勋,王亚权.蒽醌法生产过氧化氢溶剂的研究进展.化学工业与工程,2005,22(1):44-48.
    [11]Riedl H - J,Pfleiderer G.Production of hydrogen peroxide.US Patent,US2158525,1939.
    [12]Harris C R.Production of hydrogen peroxide by the partial oxidation of alcohols.US Patent,US2879111,1949.
    [13]Rust F F,Porter L M,Vaughan W E.Process for the production of hydrogen peroxide.US Patent,US2871102,1959.
    [14]Rust F F.Manufacture of hydrogen peroxide.US Patent,US2871104,1959.
    [15]Cochran R N,Candela L M.Recovery of hydrogen peroxide.US Patent,US4897085,1990.
    [16]CochranR N,Candela L M.Production of hydrogen peroxide.US Patent,US4897252,1990.
    [17]Albal R S,Cochran R N,Candela L M.Production of hydrogen peroxide.US Patent,US4897266,1990.
    [18]Albal R S,Cochran R N.Production of hydrogen peroxide.US Patent,US4994625,1991.
    [19]Cochran R N,Candela L M.Production of hydrogen peroxide.US Patent,US5039508,1991.
    [20]Albal R S,Cochran R N,Woinsky A P.Production of hydrogen peroxide.US Patent,US5041680,1991.
    [21]Leyshon D W,Jones R J,Cochran R N.Manufacture of hydrogen peroxide by liquid-phase oxidation of methylbenzyl alcohol with molecular oxygen.US Patent,US5254326,1993.
    [22]Oelgado-Oyague J A,Oe-Frutos M P,Padilla-Polo A.Production process of hydrogen peroxide by oxidation of secondary alcohols with molecular oxygen in liquid phase.European Patent,EP0839760,1998.
    [23]Oe-Frutos M P,Padilla-Polo A,Campos-Martin,J M.Continuous production of propylene oxide and other alkene oxides.European Patent,EP1074548,2002.
    [24]Padilla-Polo A. PhD thesis, University of Alcala de Henares(Spain), 1997.
    [25]Kollar J. Epoxidation process. US Patent, US3351635, 1967.
    [26]Foller P C, Bombard R T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. Journal of Applied Electrochemistry, 1995, 25(7): 613-627.
    [27]Henricson K. On site manufacture of bleaching chemicals at pulp mill for bleaching cellulose pulp. PCT International Patent, W09321106, 1993.
    [28]Zudin V N, Likholobov V A, Ermakov Y I. Catalytic synthesis of hydrogen peroxide from oxygen and water in the presence of carbon monoxide and palladium phosphine complexes. Kinetika i Kataliz, 1979, 20(6): 1599-1600.
    [29] Jacobson S E. Palladium-based catalyst system for preparation of hydrogen peroxide from carbon monoxide, hydrogen, and water. US Petent, US4711772, 1987.
    [30]Bianchi D, Bortolo R, D'Aloisio R, et al. Manufacture of hydrogen peroxide from carbon monoxide. Europe Patent, EP0808796, 1997.
    [31]Bianchi D, Bortolo R, D'Aloisio R, et al. Biphasic synthesis of hydrogen peroxide from carbon monoxide, water, and oxygen catalyzed by palladium complexes with bidentate nitrogen ligands. Angewandte Chemie, International Edition, 1999, 38(5): 706-708.
    [32]Bianchi D, Bortolo R, D'Aloisio R, et al. A novel palladium catalyst for the synthesis of hydrogen peroxide from carbon monoxide, water and oxygen. Journal of Molecular Catalysis A: Chemical, 1999, 150(1-2): 87-94.
    [33]Querci C, D'Aloisio R, Bortolo R, et al. Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen. Journal of Molecular Catalysis A: Chemical, 2001, 176(1-2): 95-100.
    
    [34]Thiel W R. New routes to hydrogen peroxide: alternatives for established processes? Angewandte Chemie, International Edition, 1999, 38(21): 3157-3158.
    [35]Brill W F. Preparation of hydrogen peroxide. US Patent, US4462978, 1984.
    [36]Ma Z L, Jia R L, Liu C J, et al. Production of Hydrogen Peroxide from Carbon Monoxide, Water, and Oxygen over Alumina Supported Amorphous Ni Catalysts. Chemistry Letters, 2002, 9: 884-885.
    
    [37]Ma Z L, Zhang L, Liu C J. Amorphous NiP (B)/Al_2O_3, Catalyst for Synthesis of Hydrogen Peroxide from Carbon Monoxide, Water and Oxygen. Chinese Journal of Catalysis, 24(9): 645-646.
    [38]Ma Z L, Jia R L, Liu C J. Production of hydrogen peroxide from carbon monoxide, water and oxygen over alumina-supported Ni catalysts. Journal of Molecular Catalysis A: Chemical, 2004, 210(1-2): 157-163.
    [39]Ma Z L,Jiang S K,Zhang L,et al.Synthesis of hydrogen peroxide from carbon monoxide,water and oxygen catalyzed by amorphous NiP(B)/Al_2O_3.Applied Catalysis A:General,2006,311:34-42.
    [40]冯伟樑,曹勇,伊楠等.CO/H_2O/O_2直接法制过氧化氢的环境友好纳米Cu/Al_2O_3催化剂.化学学报,2004,62(18):1849-1852.
    [41]Feng W L,Cao Y,Yi N,et al.Direct production of hydrogen peroxide from CO,O_2,and H_2O over a novel alumina-supported Cu catalyst.New Journal of Chemistry,2004,28(12):1431-1433.
    [42]Elbs K,Schonherr O.Formation of persulphuric acid.Zeits.Elektrotechn.u.Electrochemie,1895,1:468-472.
    [43]Otsuka K,Yamanaka C.One step synthesis of hydrogen peroxide through fuel cell reaction.Electrochemical Acta,1990,35(2):319-322.
    [44]Yamanaka I,Hashimoto T,Otsuka K.Direct synthesis of hydrogen peroxide(>1 wt.%) over the cathode prepared from active carbon and vapor-grown-carbon-fiber by a new H2-O2fuel cell system.Chemistry Letters,2002,8:852-853.
    [45]Alcaide F,Brillas E,Cabot P L,et al.Electrogeneration of hydroperoxide ion using an alkaline fuel cell.Journal of the Electrochemical Society,1998,145(10):3444-3449.
    [46]Brillas E,Alcaide F,Cabot P L.A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide.Electrochimical Acta,2002,48(4):331-340.
    [47]Yamanaka I,Onizawa T,Takenaka S,et al.Direct and continuous production of hydrogen peroxide with 93%selectivity using a fuel-cell system.Angewandte Chemie,International Edition,2003,42(31):3653-3655.
    [48]杨明,孙鲲鹏,杜俊岐等.碱性燃料电池型反应器中过氧化氢的合成.北京化工大学学报,2002,29(2):91-93.
    [49]Yamanaka I,Akimoto T,Otsuka K.Gas phase oxidation of benzene to phenol and hydroquinone by using an H_2-O_2 fuel cell system.Electrochimical Acta,1994,39(17):2545-2549.
    [50]Cai R,Song S Q,Ji B F,et al.Phenol cogeneration with electricity by using in situ generated H_2O_2 in a H_2-O_2 PEMFC reactor.Catalysis Today,2005,104(2-4):200-204.
    [51]Zhou J C,Guo H C,Wang X S,et al.Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H_2/O_2 non-equilibrium plasma.Chemical Communications,2005,(12):1631-1633.
    [52]Sanderson W R.Cleaner industrial processes using hydrogen peroxide.Pure and Applied Chemistry,2000,72(7):1289-1304.
    [53]Gelasco A, Bensiek S, Pecoraro V L The [Mn2(2-OHsalpn)2]2-,1-,0 System: An Efficient Functional Model for the Reactivity and Inactivation of the Manganese Catalysts. Inorganic Chemistry. 1998, 37(13): 3301-3309.
    
    [54]Henkel H, Weber W. Manufacture of hydrogen peroxide. US Patent, US1108752, 1914.
    [55]Campbell J S. Production of nonacidic hydrogen peroxide solutions. Britain Patent, GB1056123, 1967.
    [56]Izumi Y, Miyazaki H, Kawahara S. Hydrogen peroxide. Germany Patent, DE2655920, 1977.
    [57]Moseley F, Dyer P N. Hydrogen peroxide from oxygen and hydrogen. US Patent, US4336240, 1982.
    [58]Gosser L W. Catalytic preparation of hydrogen peroxide from hydrogen and oxygen. Europe Patent, EP132294, 1985.
    
    [59]Brill W F. Preparation of hydrogen peroxide. US Patent, US4661337, 1987.
    [60]Gosser L W, Schwartz J T. Hydrogen peroxide manufacture using platinum-palladium catalysts. US Patent, US4832938, 1989.
    [61]Gosser L W. Optimization of hydrogen and bromide ions in hydrogen peroxide preparation. Europe Patent, EP342047, 1989.
    [62]Pralus C, Schirmann J P. Catalytic process for manufacture of hydrogen peroxide from hydrogen and oxygen. Europe Patent, EP364374, 1990.
    [63]Paoli M A. Process and apparatus for the manufacture of hydrogen peroxide from hydrogen and oxygen in the presence of a catalyst. PCT International Patent, WO9204277, 1992.
    [64]Nagashima H, Ishiuchi Y, Hiramatsu Y. Catalytic process for the manufacture of high-concentration hydrogen peroxide from hydrogen and oxygen. Europe Patent, EP504741, 1992.
    [65]Van Weynbergh J, Schoebrechts J P, Colery J C. Process, and palladium and palladium-noble metal heterogeneous catalysts for the direct synthesis of aqueous hydrogen peroxyde from hydrogen and oxygen, and manufacture of the catalysts. PCT International Patent, W09215520, 1992.
    [66]Colery J C, Van Weynbergh J. Heterogeneous catalytic process for the direct synthesis of hydrogen peroxide, catalyst for the process, and manufacture of the catalyst. Europe Patent, EP537836, 1993.
    [67]Thompson M E, Snover J L, Joshi V, et al. Catalytic production of hydrogen peroxide. US Patent, US5480629, 1996.
    [68]Huckins H A. Method and tubular reactor for manufacturing hydrogen peroxide in aqueous medium from hydrogen and oxygen in the presence of a catalyst. PCT International Patent, W09605138, 1996.
    [69]Huckins H A. Manufacture of hydrogen peroxide by direct combination of hydrogen and oxygen. US Patent, US5641467, 1997.
    [70]Huckins H A.Method for producing hydrogen peroxide from hydrogen and oxygen.US Patent,US6042804,2000.
    [71]Rueter M,Zhou B,Paraser S.Processes and compositions for direct catalytic hydrogen peroxide production.US Patent,US2005025697,2005.
    [72]Solsona B E,Edwards J K,autchings G J,et al.Improvements in catalysts for direct reaction of hydrogen and oxygen to form hydrogen peroxide.PCT International Patent,WO2007007075,2007.
    [73]伊建华,王莅.氢氧直接合成法制过氧化氢技术进展.无机盐工业,2005,37(11):4-7.
    [74]邱鹏远,赫崇衡,朱志华等.氢氧直接合成法合成过氧化氢的研究进展.石油化工,2006,35(8):785-789.
    [75]胡长诚.由氢、氧直接合成过氧化氢研发新进展.化学推进剂与高分子材料,2008,6(1):7-14.
    [76]Degussa and Headwaters plan new route to hydrogen peroxide.Focus on catalysts,2004,(12):6.
    [77]Gaikwad A G,Sansare S D,Choudhary Y R.Direct oxidation of hydrogen to hydrogen peroxide over Pd-containing fluorinated or sulfated Al_2O_3,ZrO_2,CeO_2,ThO_2,Y_2O_3 and Ga_2O_3catalysts in stirred slurry reactor at ambient conditions.Journal of Molecular Catalysis A:Chemical,2002,181(1-2):143-149.
    [78]Choudhary V R,Gaikwad A G,Sansare S D.Activation of supported Pd metal catalysts for selective oxidation of hydrogen to hydrogen peroxide.Catalysis Letters,2002,83(3-4):235-239.
    [79]Choudhary V R,Sansare S D,Gaikwad A G.Direct oxidation of H_2 to H_2O_2 and decomposition of H_2O_2 over oxidized and reduced Pd-containing zeolite catalysts in acidic medium.Catalysis Letters,2002,84(1-2):81-87.
    [80]Burch R,Ellis P R.An investigation of alternative catalytic approaches for the direct synthesis of hydrogen peroxide form hydrogen peroxide.Applied Catalysis B:Environmetn,2003,42(2):203-211.
    [81]Krishnan V,Dokoutchaev A G,Thompson M E.Direct production of hydrogen peroxide with palladium supported on phosphate viologen phosphonate catalysts.Journal of Catalysis,2000,196(2):366-374.
    [82]Melada S,Rioda R,Menegazzo et al.Direct synthesis of hydrogen peroxide on zirconia-supported catalysts under mild conditions.Journal of Catalysis,2006,239(2):422-430.
    [83]Lunsford J H.The direct formation of H_2O_2 from H_2 and O_2 over palladium catalysts.Journal of catalysis,2003,216(2):455-460.
    [84]Zhou B,Lee L K.Catalyst and process for direct catalytic production of hydrogen peroxide.US Patent,US6168775,2001.
    [85]Zhou B, Rueter M. Hydrogen peroxide production using catalyst particles with controlled surface coordination number. US Patent, US20040018143, 2004.
    [86]Fan S S, Yi J H, Wang L, et al. Direct synthesis of hydrogen peroxide form H_2/O_2 using Pd/Al_2O_3 catalysts. Reaction Kinetics and Catalysis Letters, 2007, 92(1), 175-182.
    [87]Dissanayake D P, Lunsford J H. Evidence for the role of colloidal palladium in the catalytic formation of H_2O_2 from H_2 and ft. Journal of Catalysis, 2002, 206(2): 173-176.
    [88]Dissanayake D P, Lunsford J H. The direct formation of H_2O_2 from H_2 and O_2 over colloidal palladium. Journal of Catalysis, 2003, 214(1): 113-120.
    [89]Chinta S, Lunsford J H. A mechanistic study of H_2O_2 and H_2O formation from H_2 and O_2 catalyzed by palladium in an aqueous medium. Journal of Catalysis, 2004, 225(1): 249-255.
    [90]Han Y F, Lunsford J H. A comparison of ethanol and water as the liquid phase in the direct formation of H_2O_2 from H_2 and O_2 over a palladium catalyst. Catalysis Letters, 2005, 99(1-2): 13-19.
    
    [91]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989, 115(2): 301-309.
    [92]Bond G C, Thompson D T. Catalysis by Gold. Catalysis Reviews-Science and Engineering, 1999, 41(3-4): 319-388.
    [93]Hashmi A S K, Hutchings G J. Gold Catalysis. Angewandte Chemie-International Edition, 2006, 45(47): 7896-7936.
    
    [94]Hashmi A S K. Gold-Catalyzed Organic Reactions. Chemical Reviews, 2007, 107(7): 3180-3211.
    [95]Bond G C, Louis C, Thompson D T. Catalysis by Gold. In Hutchings G J(Ed.). Catalytic Science Series. London: Imperial College Press, 2006.
    [96]Landon P, Collier P J, Papworth A J, et al. Direct formation of hydrogen peroxide from H_2/O_2 using a gold catalyst. Chemical Communications, 2002, (18): 2058-2059.
    [97]Landon P, Collier P J, Carley A F, et al. Direct synthesis of hydrogen peroxide from H_2 and O_2 using Pd and Au catalysts. Physical Chemistry Chemical Physics, 2003, 5(9): 1917-1923.
    [98]Okumura M, Kitagawa Y, Yamagcuhi K, et al. Direct production of hydrogen peroxide from H_2 and O_2 over highly dispersed Au catalysts. Chemistry Letters, 2003, 32(9): 822-823.
    [99]Ishihara T, OhuraY, YoshidaS, et al. Synthesis of hydrogen peroxide by direct oxidation of H_2 with O_2 on Au/SiO_2 catalyst. Applied Catalysis A: General, 2005, 291(1-2): 215-221.
    [100]Edwards J K, Solsona B E, Landon P, et al. Direct synthesis of hydrogen peroxide from H_2 and O_2 using Au-Pd/Fe_2O_3 catalysts. Journal of Materials Chemistry, 2005, 15(43): 4595-4600.
    [101]Edwards J K,Solsona B E,Landon P,et al.Direct synthesis of hydrogen peroxide from H_2 and O_2 using TiO_2-supported Au-Pd catalysts.Journal of Catalysis,2005,236(1):69-79.
    [102]Solsona B E,Edwards J K,Landon P,et al.Direct synthesis of hydrogen peroxide from H_2 and O_2 using Al_2O_3 supported Au-Pd catalysts.Chemistry of Materials,2006,18(11):2689-2695.
    [103]Edwards J K,Thomas A,Solsona B E,et al.Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd catalysts.Catalysis Today,2007,122(3-4):397-402.
    [104]Li G,Edwards J K,Carley A F,et al.Direct synthesis of hydrogen peroxide from H_2and O_2 using zeolite-supported Au catalysts.Catalysis Today,2006,114(4):369-371.
    [105]Mlelada S,Pinna F,Strukul G,et al.Direct synthesis of H_2O_2 on Monometallic and bimetallic catalytic membranes using methanol as reaction medium.Journal of Catalysis,2006,237(2):213-219.
    [106]Paparatto G,D'Aloisio R,De Alberti G,et al.Catalyst and process for the direct synthesis of hydrogen peroxide.Europe Patent,EP1160196,2001.
    [107]范双双,伊建华,王莅等.氢氧直接合成过氧化氢贵金属催化剂的研究.无机盐工业,2006,38(12),13-15.
    [108]Blanco-Brieva G,Cano-Serrano E,Campos-Martin J M.irect synthesis of hydrogen peroxide solution with palladium-loaded sulfonic acid polystyrene resins.Chemical Communications,2004,(10):1184-1185.
    [109]Choudhary V R,Samanta C,Gaikwad A G.Drastic increase of selectivity for H2O2formation in direct oxidation of H_2 to H_2O_2 over supported Pd catalysts due to their bromination.Chemical Communications,2004,(18):2054-2055.
    [110]Choudhary V R,Gaikwad A G,Sansare S D.Nonhazardous direct oxidation of hydrogen to hydrogen peroxide using a novel membrane catalyst.Angewandte Chemie,International Edition,2001,40(9):1776-1779.
    [111]Melada S,Pinna F,Strukul G,et al.Palladium-modified membranes for the direct synthesis of H_2O_2:preparation and performance in aqueous solution.Journal of Catalysis,2005,235(1):241-248.
    [112]Abate S,Centi G,Melada S,et al.Preparation,performance and reaction mechanism for the synthesis of H_2O_2 from H_2 and O_2 based on palladium membranes.Catalysis Today,2005,104(2-4):323-328.
    [113]Abate S,Melada S,Centi G,et al.Performance of Pd-Me(Me=Ag,Pt) catalysts in the direct synthesis of H_2O_2 on catalytic membranes.Catalysis Today,2006,117(1-3):193-198.
    [114]Hancu D,Beckman E J.Generation of hydrogen peroxide directly from H_2 and O_2 using CO_2 as the solvent.Green Chemistry,2001,3(2):80-86.
    [115]Hancu D,Green J,Beckman E J.H_2O_2 in CO_2:sustainable production and green reactions.Accounts of Chemical Research,35(9):757-764.
    [116]Liu Q S,Lunsford J K.The roles of chloride ions in the direct formation of H_2O_2 from H_2 and O_2 over a Pd/SiO_2 catalyst in a H_2SO_4/ethanol system.Journal of Catalysis,2006,239(1):237-243.
    [117]Argauer R J,Landolt G R.Crystalline zeolite ZSM-5 and method of preparing the same.US Patent,US3702886,1972.
    [118]Taramasso M,Perego G,Notari B.Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides.US Patent,US4410501,1983.
    [119]Reddy J S,Kumar R,Ratnasamy P.Titanium silicalite-2:synthesis,characterization and catalytic properties.Applied Catalysis,1990,58(2):L1-L4.
    [120]Serrano D P,Li H X,Davis M E.Synthesis of titanium-containing ZSM-48.Journal of the Chemical Society,Chemical Communications,1992,(10):745-747.
    [121]Camblor M A,Corma A,Martinez A,et al.Synthesis of a titanium silicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules.Journal of the Chemical Society,Chemical Communications,1992,(8):589-590.
    [122]Corma A,Navarro M T,Perez-Pariente J.Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons.Journal of the Chemical Society,Chemical Communications,1994,(2):147-148.
    [123]Tanev P T,Malama C,Plnnavala T J.Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds.Nature,1994,368(6469):321-323.
    [124]Koyano K A,Tatsumi T.Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure.Chemical Communications,1996,(2):145-146.
    [125]Schindler G P,Bartl P,Hoelderich W F.Oxidative cleavage of cyclohexane derivatives over titanium-containing Y zeolites.Applied Catalysis A:General,1998,166(2):267-279.
    [126]Perego C,Carati A,Ingallina P,et al.Production of titanium containing molecular sieves and their application in catalysis.Applied Catalysis A:General,2001,221(1-2):63-72.
    [127]李钢.钛硅分子筛的合成、表征及催化丙烯环氧化性能的研究:(博士学位论文).大连:大连理工大学,2000.
    [128]王洪林.钛硅复合催化材料的合成、表征及催化性能:(博十学位论文).大连:大连理工大学,1999.
    [129]张法智.钛硅分子筛的气固相法制备、表征及其丙烯环氧化性能的研究:(博士学位论文).大连:大连理工大学,2000.
    [130]张义华.钛基催化材料的合成、表征和选择氧化性能研究:(博士学位论文).大连:大连理工大学,2001.
    [131]闫海生.丙烯环氧化钛硅沸石催化剂的研制、评价及反应过程的研究:(博士学位论文).大连:大连理工大学,2002.
    [132]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究:(博士学位论文).大连:大连理工大学,2003.
    [133]成卫国.丙烯环氧化钛硅分子筛制备、水热改性及反应过程的研究:(博士学位论文).大连:大连理工大学,2005.
    [134]刘民.Ti-ZSM-5沸石的气固相法合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,2005.
    [135]刘娜.廉价体系合成的钛硅沸石分子筛结构稳定性及催化性能的研究:(博士学位论文).大连:大连理工大学,2006.
    [136]孔令艳.钛硅分子筛催化氧化脱除噻吩类硫化物的研究:(博士学位论文).大连:大连理工大学,2005.
    [137]Kong L Y,Li G,Wang X S.Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H_2O_2 under mild conditions.Catalysis Letters,2004,92(3-4):163-167.
    [138]Kong LY,Li G,Wang XS,et al.Thiophene oxidation over titanium silicalite using hydrogen peroxide.Chinese Journal of Catalysis,2004,25(2):89-90.
    [139]Kong LY,Li G,Wang XS.Mild oxidation of thiophene over TS-1/H_2O_2.Catalysis Today.2004,93-95:341-345.
    [140]孔令艳,李钢,王祥生等.TS-1/过氧化氢催化体系中有机硫化物的选择氧化.催化学报,2004,25(10):775-778.
    [141]Kong LY,Li G,Wang XS,et al.Oxidative desulfurization of organic sulfur in gasoline over Ag/TS-1.Energy and Fuels,2006,20(3):896-902.
    [142]刘斌.模拟汽油中噻吩氧化脱除的研究:(硕士学位论文).大连:大连理工大学,2006.
    [143]刘斌,李钢,王祥生.TS-1/H_2O_2催化模拟汽油中噻吩的选择氧化研究.燃料化学学报,2006,24(5):629-632.
    [144]赵月峰.含钛分子筛催化汽油氧化脱硫:(硕士学位论文).大连:大连理工大学,2006.
    [145]赵丽霞.钛硅分子筛催化氧化脱除硫化物的研究:(硕士学位论文).大连:大连理工大学,2007.
    [146]赵丽霞,李钢,金长子等.四丙基氢氧化铵改性TS-1催化氧化脱除2-甲基曝吩研究.石油学报(石油加工),2007,23(4):95-99.
    [147]王云,李钢,王祥生等.Ti-HMS催化氧化脱除模拟燃料中的硫化物.催化学报,2005,26(7):567-270.
    [148]Liang X H,Mi Z T,Wang Y Q,et al.Process integration of H_2O_2 generation and the ammoximation of cyclohexanone.Journal of Chemical Technology and Biotechnology,2004,79(6):656-662.
    [149]Liang X H,Mi Z T,Wang Y Q,et al.An integrated process of H_2O_2 production through isopropanol oxidation and cyclohexanone ammoximation.Chemical Engineering &Technology,2004,27(2),176-180.
    [150]Liu T F,Meng X K,Wang Y Q,et al.Integrated process of H_2O_2 generation through anthraquinone hydrogenation-oxidation cycles and the ammoximation of cyclohexanone.Industrial & Engineering Chemistry Research,2004,43(1):166-172.
    [151]梁新华.异丙醇法生产过氧化氢与环己酮氨氧化的集成过程研究:(硕士学位论文).天津:天津大学,2003.
    [152]王庆法,王莅,陈晓昀等.氯丙烯环氧化与蒽醌法生产过氧化氢过程集成研究.化学反应工程与工艺,2004,20(4):348-352.
    [153]王莅,古玲,陈四海等.丙烯环氧化与H_2O_2生产的集成.石油化工,2003,32(6):525-529.
    [154]Meiers R,Holderich W F.Epoxidation of propylene and direct synthesis of hydrogen peroxide by hydrogen and oxygen.Catalysis Letters,1999,59(2-4):161-163.
    [155]Sinha A K,Seelan S,Tsubota S,et al.Catalysis by gold nanoparticles:epoxidation of propylene.Topics in Catalysis,2004,29(3-4):95-102.
    [156]Taylor B,Lauterbach J,Delgass W N.Gas-phase epoxidation of propylene over small gold ensembles on TS-1.Applied Catalysis A:General,2005,291(1-2):188-198.
    [157]Nijhuis T A,Huizinga B J,Makkee M,et al.Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports.Industrial and Engineering Chemistry Research,1999,38(3):884-891.
    [158]Olivera P P,Patrito E M,Sellers H.Hydrogen peroxide synthesis over metallic catalysts.Surface Science,1994,313(1-2):25-40.
    [159]Block B P,Bailar,J C.The reaction of gold(Ⅲ) with some bidentate coordinating groups.Journal of the American Chemical Society,1951,73(10):4722-4725.
    [160]Zhou H G,Liang C D,et al.Preparation of highly active silica-supported hu catalysts for CO oxidation by a solution based technique.Journal of Physical Chemistry B,2006,110(22):10842-10848.
    [161]Claus P,Bruckner A,Mohr C,et al.Supported gold nanoparticles from quantum dot to mesoscopic size scale:effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups.Journal of the hmerican Chemical Society,2000,122(46),11430-11439.
    [162]Gluhoi h C,Tang X,Marginean P,et al.Characterization and catalytic activity of unpromoted and alkali(earth)-promoted Au/Al_2O_3 catalysts for low-temperature CO oxidation.Topics in Catalysis,2006,39(1-2):101-110.
    [163]Haruta M,Uphade B S,Tsubota S,et al.Selective oxidation of propylene over gold deposited on titaninm-based oxides.Research on Chemical Intermediates,1998,24(3):329-336.
    [164]Qi C X,Akita T,Okumura M,et al.Epoxidation of propylene over gold catalysts supported on non-porous silica.Applied Catalysis A:General,2001,218(1-2):81-89.
    [165]Zanella R,Giorgio S,Henry CR,et al.Alternative methods for the preparation of gold nanoparticles supported on TiO_2.Journal of Physical Chemistry B,2002,106(31):7634-7642.
    [166]Zanella R,Giorgio S,Shin CH,et al.Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO_2 prepared by deposition-precipitation with NaOH and urea.Journal of Catalysis,2004,222(2):357-367.
    [167]Zanella R,Delannoy L,Louis C.Mechanism of deposition of gold precursors onto TiO_2during the preparation by cation adsorption and deposition-precipitation with NaOH and urea.Applied Catalysis A:General,2005,291(1-2):62-72.
    [168]李钢,郭新闻,王祥生等.钛硅沸石UV-Vis谱的研究.大连理工大学学报,1998,38(3):359-362.
    [169]Vayssilov G N.Structural and physicochemical features of titanium silicalites.Catalysis Reviews Science and Engineering,1997,39(3):209-251.
    [170]Margitfalvi J L,Fasi A,Hegedus M,et al.Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation.Catalysis Today,2002,72(1-2):157-169.
    [171]Pestryakov A,Tuzovskaya I,Smolentseva E,et al.Formation of gold nanoparticles in zeolites.International Journal of Modern Physics B,2005,19(15-17):2321-2326.
    [172]Yuan G,Louis C,Delannoy L,et al.Silica- and titania-supported Ni - Au:Application in catalytic hydrodechlorination.Journal of Catalysis,2007,247(2):256-268.
    [173]Baatz C,Thielecke N,Pr(u|")βe U.Influence of the preparation conditions on the properties of gold catalysts for the oxidation of glucose.Applied Catalysis B:Environmental,2007,70(1-4):653-660.
    [174]Lin J N,Wan B Z.Effects of preparation conditions on gold/Y-type zeolite for CO oxidation.Applied Catalysis B:Environmental,2003,41(1-2):83-95.
    [175]Chang C K,Chen Y J,Yeh C T.Characterizations of alumina-supported gold with temperature-programmed reduction.Applied Catalysis A:General,1998,174(1-2):13-23.
    [176]Fu Q,Saltsburg H,Flytzani-Stephanopoulos M.Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts.Science,2003,301(5635):935-938.
    [177]Daté,M,Okumura,M,Tsubota,S,et al.Vital role of moisture in the catalytic activity of supported gold nanoparticles.Angewandte Chemie,International Edition,2004,43(16):2129-2132.
    [178]Daté M,Haruta M.Moisture Effect on CO Oxidation over Au/TiO_2 Catalyst.J of Catalysis,2001,201(2):221-224.
    [179]Liu L M,McAllister B,Ye H Q,et al.Identifying an O_2 supply pathway in CO oxidation on Au/TiO_2(110):a density functional theory study on the intrinsic role of water.Journal of the American Chemical Society,2006,128(12):4017-4022.
    [180]Reddy R S,Reddy J S,Kumar R,et al.Sulfoxidation of thioethers using titanium silicate molecular sieve catalyst.Journal of the Chemical Society,Chemical Communications,1992,(1):84-85.
    [181]Hulea V,Fajula F,Bousquet J.Mild Oxidation with H202 over Ti-Containing Molecular Sieves-A veryEfficient Method for Removing Aromatic Sulfur Compounds from Fuels.Journal of Catalysis,2001,198(2):179-186.
    [182]Shiraishi Y,Hirai T,Komasawa I.Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts.Journal of Chemical Engineering of Japan,2002,35(12):1305-1311.
    [183]Bellussi G,Carati A,Clerici M G,et al.Reactions of titanium silicalite with protic molecules and hydrogen peroxide.Journal of Catalysis,1992,133(1):220-230.
    [184]王祥生,李钢,陈涛等.一种复合催化剂的制备及其应用.中国专利,CN1346705,2002.
    [185]Clerici,M G,Ingallina,P.Process for producing olefin oxides.US Patent,US5221795,1993.
    [186]Meiers R,Dingerdissen U,H(o|")lderich W F.Synthesis of Propylene Oxide from Propylene,xygen,and Hydrogen Catalyzed by Palladium - Platinum -Containing Titanium Silicalite.Journal of Catalysis,1998,176(2):376-386.
    [187]van der Pol A J H P,van Hooff J H C.Oxidation of linear alcohols with hydrogen peroxide over titanium silicalite 1.Appllied Catalysis A:Gerneral,1993,106(1):77-113.
    [188]Clerici M G,Iagallina P.Epoxidation of Lower Olefins with Hydrogen Peroxide and Titanium Silicalite.Journal of Catalysis,1993,140(1):71-83.
    [189]闫海生,刘靖,王祥生.环氧丙烷的溶剂分解反应研究.催化学报,2001,22(3):250-254.
    [190]李钢,王祥生,郭新闻.丙烯环氧化反应溶剂效应和酸碱效应研究.石油学报(石油加工),2001,17(3):62-67.
    [191]Li G,Guo X W,Wang X S,et al.Synthesis of titanium silicalites in different template systems and their catalytic performance.Applied Catalysis A:General,1999,185(1):11-18.
    [192]Liu M,Guo X W,Wang X S,et al.Effect of(n)SiO_2/(n)B_2O_3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method.Catalysis Today,2004,93-95:659-664.
    [193]Blasco T,Corma h,Navarro M T,et al.Synthesis,characterization and catalytic activity of Ti-MCM-41 structures.Journal of catalysis,1995,156(1):65-74.
    [194]Fu Z, Yin D, Xie Q, et al. Ti complexes assembled HMS as effective catalysts for epoxidation of alkene. Joural of Molecular Catalysis A: Chemical, 2004, 208(1-2): 159-166.
    [195]Langham C, Piaggio P, Bethell D. Catalytic aziridination of alkenes using microporous materials. In: Herkers FE, ed. Catalysis of organic reactions (vol. 75). Marcel Dekker: Chemical Industries, 1998. 25-36.
    [196]Uguina M A, Serrano D P, Sanz R, et al. Preliminary study on the TS-1 deactivation during styrene oxidation with H_2O_2. Catalysis Today, 2000, 61(1-4): 263-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700