用户名: 密码: 验证码:
抗虫Bt基因cry1Ac甜菜叶绿体遗传转化与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜(Beta vulgaris L.)是我国重要的糖料作物,也是虫害非常严重的作物之一,尤其是甘蓝夜蛾的危害更为严重,化学防治达不到预期效果,还严重污染环境。随着人类生态及环保意识的加强,大力发展绿色农业已经成为新时代的要求,因而,培育高抗虫甜菜新品种成为一项重要研究课题,基因工程方法培育抗虫品种是害虫防治的有效途径。本论文首次尝试对未知叶绿体基因组序列的甜菜进行抗虫基因的叶绿体转化与表达研究。以克隆的甜菜叶绿体基因atpB/rbcL为同源片段,以作用鳞翅目的Bt基因cry1Ac为外源目的基因,以aadA基因为筛选标记基因构建了甜菜叶绿体定点整合转化载体,基因枪法转化甜菜,通过抗性筛选、分子检测及抗虫试验等,最终获得了甜菜抗虫转基因再生植株及后代,并对转基因植株后代抗虫基因遗传稳定性进行了研究,以及对叶绿体转化技术的机理进行了探索,最终建立了甜菜叶绿体转化体系。
     通过对甜菜不同基因型、外植体及培养基激素组合等再生影响因素的筛选,优化了各类培养基配方,建立了以甜菜叶柄为外植体的高效不定芽直接再生体系,为转基因再生植株的获得打下了基础。通过抗性筛选试验确定了甜菜遗传转化中适宜的筛选剂(壮观霉素和卡那霉素)及其使用浓度(30mg/L和50mg/L),确定了甜菜叶绿体转化的筛选标记基因为aadA基因。
     通过比较试验,借鉴已有植物叶绿体DNA提取方法优点,并结合甜菜特性(糖分含量较高),研究建立了甜菜叶绿体DNA分离纯化方法。试验证明:利用该方法获得的甜菜叶绿体DNA不仅纯度高,得率提高3倍以上,可直接用于分子生物学研究及基因组测序。
     由于甜菜叶绿体基因组全序列未知,本研究首先利用高等植物叶绿体基因组在进化过程中的高度保守的特性,借助生物信息学软件分析了烟草、水稻、菠菜、玉米等高等植物的叶绿体基因组全序列资料,筛选到紧密连锁的atpB基因与rbcL基因、rps7基因与ndhB基因两个位点,并参照烟草、水稻和菠菜叶绿体基因组全序列资料中相应区段核苷酸序列,分别设计引物,PCR方法成功克隆了甜菜叶绿体中与光合作用有关的重要功能基因atpB和rbcL及rps7和ndhB的完整基因,测序、序列分析及同源性比较证实:得到的结果与预期相符。其中,atpB和rbcL基因序列已提交到GenBank,登录号分别为DQ067451、DQ067450,atpB和rbcL基因的克隆同时也为研究甜菜光合作用机理提供依据。
     采用分子生物学手段成功构建了抗虫Bt基因cry1Ac甜菜叶绿体转化载体,该载体包含有同源片段atpB/rbcL、Bt基因cry1Ac表达盒(Prrn-cry1Ac-psbA3’)、筛选标记基因aadA表达盒(Prrn-aadA-TpsbA),采用基因枪法转化甜菜,通过多次继代及2轮分化与多次继代结合的抗性筛选,获得一批转基因抗性植株。建立了甜菜叶绿体遗传转化体系,为今后继续开展甜菜叶绿体遗传转化研究提供了依据。
     转基因再生植株外源基因的PCR检测、Southern blot、Northern blot、Western blot,结果表明:抗虫Bt基因cry1Ac已定点整合到甜菜叶绿体基因组中,并得到了表达。以二龄末甘蓝夜蛾为试虫,通过人工饲虫法,分别检测克隆工程菌及转基因再生植株的杀虫性,结果表明:以克隆菌菌体蛋白涂抹甜菜叶片饲喂的二龄末幼虫,幼虫平均死亡率达到90%;以不同转基因再生植株叶片饲喂二龄末幼虫,幼虫死亡率达33.3%~66.7%。之所以出现差异,可能与转化体的同质化程度不同有关。众所周知:每个叶肉细胞含有数十个甚至数百个叶绿体,被整合外源基因的叶绿体数量越多,即转化体同质化程度越高,其外源基因表达量越高,杀虫性也越好。采用在抗性培养基上2轮筛选及多次继代方法对转基因植株进行同质化筛选研究,结果表明:转基因植株的同质化程度明显提高,加快了获得同质化纯系的进程。转基因甜菜后代抗虫基因的遗传稳定性和抗虫性分析表明,外源基因在转基因后代中得到稳定遗传并表达稳定的杀虫活性,幼虫死亡率仍达33.3%~55.6%。
     为了使叶绿体转化技术能广泛应用,本论文对其机理进行了研究。以除草剂抗性基因bar为筛选标记基因,比较研究bar基因和aadA基因的筛选效率,结果表明:筛选标记基因是影响目的基因转化效率的因素;以本研究克隆的位于叶绿体基因组中反向重复序列上的rps7-rps12/ndhB基因为同源片段,比较研究同源片段位置与目的基因转化效率的关系,结果表明:同源片段的位置对目的基因转化效率影响差异不大。此研究结果为其他植物开展叶绿体转化研究提供理论依据。
Sugar beet is a important sugar crops in China, but it’s always infested bymany insect pests, especially Barathra brassicae L. The chemical insecticidescann’t exterminate the insects effectively and also have bad effect on theentironment. With the emphasis of ecological and environmental protection,ecological agriculture has become a significant demand in the future and insect-resistant genetic engineering has been an effective method for breeding insect-resistant sugar beet. In this research, insect-resistant gene was transformed andexpressed into the chloroplast genome of sugar beet though the sequence ofchloroplast genome are unknown. We constructed sugar beet chloroplastmulticistron site integration expression vector. The atpB and rbcL genes clonedfrom sugar beet chloroplast genome is homologous fragments and Bt genecry1Ac acted on lepidopteran insects is target gene, and aadA gene is selectivemarker. After transformation with particle-bombardment, screening of putativeplants was antibiotic, molecular detection and bioassay, finally transgenic sugarbeet plants and the T1seeds were obtained which have resistance to pests. Thegenetic stability of transgenic plants were studied and the mechanism ofchloroplast transformation was researched. The sugar beet chloroplasttransformation system was established.
     The culture medium component were confirmed after the experiment whichwere designed based on the different combination of genotype, explant type andplant growth regulators. Optimize sugar beet regeneration system was established.It provided a good foundation for regeneration of transgenic sugar beet.Afterselected with5antibiotics, kanamycin and spectinomycin were chosen as theselective agent, and their respective concentration were50mg/L and30mg/L. TheaadA gene was chosen as selectable marker in chloroplast transformation system.
     Because the feature of sugar beet which contain much sugar, the existingmethods of chloroplast DNA extraction methods are not applicable for sugar beet.Therefore, according to the advantages of existing methods and the feature ofsugar beet,a new method of sugar beet chloroplast DNA extraction was used in the research. The chloroplast DNA prepared with such method had not only high-yield more three times, but also high-quality, which could be directly used forgenome sequencing.
     The sequence of sugar beet chloroplast genome is unknown, so it is difficultto clone homologous fragments. In this research, we analyzed the completesequences chloroplast genome of higher plants, such as tobacco, rice, spinach andmaize, by referring to the conservation status of plant chloroplast genome formedthrough evolution. With the primers that designed according to the nucleotidesequences of atpB/rbcL and rps7/ndhB genes, we cloned the four significantfunctional genes from sugar beet chloroplast genome successfully by PCRreaction. The sequencing results showed no difference with expectancies and theatpB/rbcL genes had been submissioned to Genbank, the Accession No. areDQ067451and DQ067450. The atpB and rbcL genes cloning would alsocontribute to studying the photosynthesis mechanisms of sugar beet.
     A sugar beet chloroplast transformation vector was constructed, whichcontained homologous recombinant fragments atpB and rbcL, insect-resistant Btgene cry1Ac expression cassette(Prrn-cry1Ac-psbA3’)and selective markergene aadA expression cassette(Prrn-aadA-TpsbA). After transformation withparticle-bombardment and screening several times, some transgenic sugar beetwere obtained. The chloroplast transformation system of sugar beet wasestablished, and it would be a good foundation for further research.
     After PCR identification, Southern blot, Northern blot and Western blot, theresults indicated that insect-resistant Bt gene cry1Ac had integrated andexpressed in sugar beet chloroplast genome. We detected the insecticidal activityof cloning recombinant strain and transgenic plants with the second instar larvaesto Barathra brassicae L. The results indicated that the Bt toxin protein of cloningrecombinant strain had high insecticidal activity and the mortality of larvaes was90%; the mortality was33.3%~66.7%when the larvaes weve bred with leavesfrom transgenic plants. The difference of mortality is relevant to the differenthomoplasmic level. As we know, there are hundreds of chloroplasts in onemesophyll cell. When the numbers of chloroplasts integrated with target gene islarger, the homoplasmic level of transgenic plants and the expression level oftarget gene will be higher, and the insecticidal activity will be higher too. Secondary regeneration and many times of subculture on medium with antibioticswere carried out to filtrate homoplasmic plants. The results indicated that twoadditional rounds of regeneration and were subcultured for many times on MSmedium containing spectinomycin in the stem sections, increased thehomoplasmic level of transgenic plants markedly. This study of increasinghomoplasmic level of transgenic plants will extremely contribute to the obtainingof homopladmic pure line. The genetic stability of transgenic plants were studiedand it showed that the Bt gene could express steadily and expressed insecticidalactivity in the T1generation. The mortality of larvaes was33.3%-55.6%.
     The research also used the bar gene and aadA gene as a selective marker forcontrast, and the result showed that different selective marker had different effecton screening of transgenic plants. Meanwhile, the research used rps7rps12/ndhBwhich were also cloned from sugar beet chloroplast genome as homologousfragments, and the result showed that the position of the homologous fragmentshad no effect on tansformation. Those study may contribute to chloroplasttransformation on other crops.
引文
1王关林,方宏筠.植物基因工程.第二版.北京.科学出版社,2002:12~24
    2黄大昉,林敏.农业微生物基因工程.北京.科学技术出版社,2001:193~212
    3H.E.Schnepf,H.R.Whiteley.Cloning and Expression of the Bacillus thuringiensisCrystal Protein Gene in Escherichia coli. Proc. Natl. Acad. Sci.1981,(78):2893~2897
    4谢先芝.抗虫转基因植物的研究进展及前景.生物工程进展,1999,19(6):47~51
    5吴刚,崔海瑞,舒庆尧. Bt杀虫晶体蛋白基因及其转基因育种研究进展.生物工程进展,2000,20(2):45~48
    6鲁松清,孙明,喻子牛.苏云金芽孢杆菌杀虫晶体蛋白基因的分类.生物工程进展,1998,18(5):57~62
    7B. H. Knowles, M. R. Blatt, M.Tester. A Cytolytic δ-endotoxin from Bacillusthuringiensis Var Israelensis forms Catin-selective Channels in PlanarlipidBilayers. FEBS Lett,1989,(244):259~262
    8M. Vaeck, A. Reynaerts, H. Hofte. Transgenic Plants Protected from Insect Attack.Nature,1987,(328):33~37
    9M.L.Adang, M.J.Staver, T. A. Rockeleau. Characterized Full-length and TruncatedPlasmid Clones of the Crystal Protein of Bacillus Thuringiensis Subsp. urstakiHD-73and their Toxicity to Manduca Sexta. Gene,1985,(36):289~300
    10F.J.Perlak, R.L. Fuchs, D. A. Dean. Modification of the Coding Sequence EnhancesPlant Expression of Insect Control Protein Genes. Proc. Natl. Acad. Sci,1991,(88):3324~3328
    11M.Vaeck, A. Reynaerts, H. Hofte, et al. Transgenic Plants Protected from InsectAttack. Nature,1987,(328):33~37
    12D. A. Fischhoff, K. S. Bowdish, F. J. Perlak, et al.Insect Tolerant TransgenicTomato Plants. Biotechno-logy,1987,(5):807~813
    13E.E.Murray, T.R.Rochlean, M. Eberle, et al. Analysis of Unstable RNA Transcriptsof Insecticidal Crystal Protein Genes of Bacillus Thuringiensis in TransgenicPlants and Electroporated Protoplasts. Plant Mol Biol,1991,(16):1035~1050
    14G.Honee, W. Vriezen, B. Visser. A Translation Fusion Product of Two DiffirentInsecticidal Crystal Protein Genes of Bacillus Thuringiensis Exhibits anEnlarge Insecticidal Spectrum. Appl And Envi Micro,1991,56(3):923~925
    15TV. D. Salm, HoneG, L. Feng. Insect Resistance of Transgenetic Plants thatExpress Modified Bacillus Thuringiensis CryⅠA(b) and CryⅠC Genes: aResistance Management Strategy. P M B,1994,(26):51~59
    16F. J. Perlak, R.W.Deaton, T.A.Armstrong, et al. Insect Resistant Cotton Plants.Biotechnology,1990,(8):939~943
    17郭三堆,范云六.苏云金芽孢杆菌和大肠杆菌穿梭质粒的构建和特性研究.遗传学报,1992,(6):12~15
    18张锐,郭三堆.植物抗虫基因工程研究进展.生物技术通报,2001,(2):8~12
    19郭洪年,秦洪敏,陈晓英等.新型双抗虫基因植物表载体的构建及其在转基因烟草中的表达.自然科学通报,2002,12(6):601~606
    20D. Bosch, B. Schipper. Recombinant Bacillus Thuringensis Crystal ProteinsWith new properties:Possibilities for Resistance Management. Biotechnology,1994,(12):915~918
    21V. A. Hilder, A. MR. Gatehouse, S. E. Sheerman, et al. A Novel Mechanism ofInsect Resistance Engineered into Tobacco. Proc Natl Acad Sci USA,1989,(86):9871~9875
    22刘春明,朱祯,周兆斓等.豇豆胰蛋白酶抑制剂抗虫转基因烟草的获得.科学通报,1992,37(8):1694~1697
    23王志斌,郭三堆.双价抗虫基因植物表达载体的构建及其在烟草中的表达.高技术通讯,1999,(11):1~6
    24Clive James.2007年全球转基因作物商品化发展态势.中国生物工程杂志,2008,28(2):1~10
    25Z.Svab, P.Hajdukiewitz, P.Maliga.Stable Transformation of Plastids in HigherPlants[J]. Proc Natl Acid Sci USA,1990,(87):8526~8530
    26K.E.Mcbride, Z.Svab, D.J.Schaal.Amplilication of a Chinmeric Bacillus Gengin Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein inTobacco[J]. Bio/technol,1995,(13):362~365
    27于惠敏.植物叶绿体基因组.植物生理学通讯,2001,37(5):483~488
    28M. Sugiura. The Chloroplast Genome.Plant Mol. Biol,1992,(19):149~168
    29侯丙凯,陈正华.高等植物的质体基因转化.生物工程进展,2000,20(1):70~73
    30H. Daniell. Transient Foreign Gene Expression in Chloroplast of CulturedTobacco Cells After Biolistiiic Delivery of Chloroplast Vectors. Proc NatlAcad Sci USA,1990,(87):88~92
    31Z.Svab, P.Maliga. High-frequency Plastid Transformation in Tobacco bySelection for a Chimeric aadA Gene[J].Proc Natl Acad Sci USA,1993,(90):
    913~917.
    32O.V.Zoubenko, L.A.Allison, Z.Svab.Eflicient Targeting of Foreign Genes intothe Tobacco Plastid Genome[J].Nucleic Acids Research,1994,(22):819~3824
    33S. M. Lee, K. Kang, H. Chung, et al. Plastid Transformation in theMonocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission ofTransgenes to their Progeny. Mol Cells.2006,21(3):401~410.
    34侯丙凯,胡赞民,党本元等.定点整合抗虫基因到油菜叶绿体基因组并获得转基因植株.植物生理与分子生物学学报,2002,28(3):187~192
    35张中林,张景昱,李轶女等.油菜叶绿体基因组同源片段的克隆及phb基因定点整合载体构建.植物生理学报,2001,27(3):235~242
    36B.K.Hou, Y.H.Zhou, L. H. Wan, et al. Chloroplast Transformation inO ilseedRape. Transgenic Res.2003,12(1):111~114
    37B.Sporlein, M.Streubel, G.Dahlfeld.PEG-mediated Plastid Transfor-mation: NewSystem for Transicnt Gene Expression Assays in Chloroplsts. Theor ApplGenet,1991,(82):717~722
    38C. O’neil. Chloroplast Transformation in Plants: Polyelene Glycol (PEG)Treatment of Protoplasts is an Alternative to Biolistic Delivery Systems. ThePlant Joumal,1993,(3):729~738
    39T. Golds, P. Maliga, H. U Koop. Stable Plastid Transformation in PEG-treatedProtoplasts of Nicotiana Tabacum. Biotechnology,1993,(11):95~97
    40M. D. Block, J. Schell, M. V. Montagu.Chloroplast Transformation by Agroba-cterium tumefaciens. The EMBO Joumal,1985,(4):1367~1372
    41K. Venkatesw arlu, R. N. Nazar. Evidence for T-DNA Mediated GeneTargeting to Tobacco Chloroplasts. Biotechnology,1991,(9):1103~1105
    42G.Weber. Uptake of DNA in Chloroplsts of Brassica Napus(L.)Facilitated bya UV-laser Microbeam. European Journal of Cell Biology,1989,(49):73~79
    43刘博林,岳绍先,胡乃璧等.龙葵Atrazinc抗性基因向大豆叶绿体的转移及在转基因植物中的表达.中国科学(B辑),1989,(7):699~705
    44苏宁,吴燕民,孙丙耀.植物基因工程新途径:叶绿体转化.生物技术通报,2001,(4):9~12
    45H. Carrer, T. N. Hockenberry, Z. Svab. Kanamycin Resistance as a SelectableMarker for Plastid Transformation in Tobacco [J]. Mol.Gen.Genet,1993,(241):49~56
    46M.Kota, H.Daniell, S.Varma, et al. Overexpression of the Bacillus Thuringiensis(Bt)Cry2Aa2Protein in Chloroplasts Confers Resis-tance to Plants AgainstSusceptible and Bt resistant Insects[J]. Proc Natl Acad Sci USA,1999,(96):1840~1845
    47O. V. Zoubenko, L. A. Allison, Z. Svab.Eflicient Targeting of Foreign Genes intothe Tobacco Plastid Genome[J]. Nucleic Acids Research,1994,(22):3819~3824
    48张中林,山松,范国昌等.苏云金芽孢杆菌(Bt)晶体蛋白基因在烟草叶绿体中的表达.遗传学报,2000,27(3):270~277
    49侯丙凯,张中林,周奕华等.油菜叶绿体定点转化载体的构建及其杀虫性.高技术通讯,2000,(7):5~11
    50S. R. Sikdar, G. Serino, S. Chaudhuri. Plastid Transformation in ArabidopsisThaliana[J]. Plant Cell Rep,1998,(18):20~24
    51H. Daniell, R. Datta, S. Varma. Containment of Herbicide Resistance throughGenetic Engineering of the Chloroplast Genome[J]. Nat Biotechnol,1998,(16):345~348
    52V. A. Sidorov, D. Kasten, S. Z. Pang. Stable Chloroplast Transformation inPotato: use of Green Fluorescent Protein as a Plastid Marker[J]. Plant J,1999,(19):209~216
    53J. M Staub, B. Garcia, J. Graves. High-yield Production of a Human TherapeuticProtein in Tobacco Chloroplasts[J]. Nat Biotechnol,2000,(18):333~338
    54侯丙凯,于惠敏,夏光敏.用于叶绿体遗传转化的表达载体.遗传,2002,24(1):100~103
    55李轶女,杨宗岐,张志芳等.叶绿体遗传转化研究中的选择标记.中国生物工程杂志,2007,27(4):132~138
    56S. Corneille, K. Lutz, Z. Svab. Efficientelimination of Selectable Marker Genesfrom the Plastid Genome by the CRELox Site Specificre Combination System.PlantJ,2001,27(2):171~178
    57Y. N. Li, M. Sun, J. X. Liu. Highexpression of Foot and Mouth DiseaseVirus Structural Protein VP1in Tobacco Chloroplasts. Plant Cell Rep,2006,25(4):329~333
    58S. K. Chakrabarti, K. A. Lutz, B. Lertwiriyawong. Expression of the cry9Aa2Btgene in Tobacco Chloroplasts Confers Resistance Topotatotubermoth.TransgenicRes,2006,15(4):481~488
    59S. Ruf, M. Hermann, I. J. Berger. Stablegenetic Transformation of TomatoPlastid Sand Expression of Aforeign Protein in Fruit. Nat Bio Technol,2001,19(9):870~875
    60D. Wurbs, S. Ruf, R. Bock. Contained Metabolic Engineering in Tomato EsbyExpression of Carotenoid Biosynthesis Genes from the Plastid Genome, Plant J,2007,49(2):276~288
    61J. M. Hibberd, P. J. Linley, M. S. Khan. Transient Expression of Green Fluo-rescent Protein in Various Plastid Types Following Microprojectile Bomba-rdment. Plant J,1998,16(5):627~632
    62M. J. Reed, S. K. Wilson, C. A. Sutton. High Level Expression of a SyntheticRedsifted GFP Coding Region Incorporated into the Chloroplast. Plant J,2001,27(3):257~265
    63M. S. Khan, P. Maliga. Fluorescent Antibiotic Resistance Marker for TrackingPlastid Transformation in Higher Plants[J]. Nat Biotechnol,1999,17:910~915
    64J. MStaub, P. Maliga. Expression of a Chimeric uidA Gene Indicates ThatPolycistronic mRNAs are Efficiently Translated in Tobacco Plastids. Plant J,1995,7(5):845~848
    65J. M.Bateman, S.Purton. Tools for Chloroplasts Transformation in Chlamydo-monas: Expression Vectors and a New Dominant Selectable Marker. MolGen Genet,2000,263:404~410
    66H. Daniell, B. Muthukumar, B.LeeS. Marker free Transgenic Plants: Engineeringthe Chloroplast Genome Without the Use of Antibiotic Selection. Curr. Genet,2001,39(2):109~116
    67S. Kumar, A. Dhingra, H. Daniell. Plastid Expressed Betaine Aldehyde Dehy-drogenase Gene in Carrot Cultured Cells, Roots, and Leaves ConfersEnhanced Salt Tolerance. Plant Physiol,2004,136(1):2843~2854
    68K. A. Lutz, J. E. Knapp, P. Maliga. Expression of bar in the Plastid GenomeConfers Herbicide Resistance. Plant Physiol,2001,125(4):1585~1590
    69H. Danill, M. S. Khan, L. Allison.Milestones in Chloroplast Genetic Engineering:an Environmentally Friendly Era in Biotechnology. Trends in Plant Science,2002,7, in press
    70J. S. Tregonig, P. Nion, H. Kuroda, et al. Expression of Tetanus Toxin Frag-mentC in Tobacco Chloroplasts. Nucleic Acids Res,2003,31(4):1174~1179
    71S. Kumar, A. Ohingra, H. Daniell. Stable Transformation of the Cotton PlastidGenome and Maternal Inheritance of Transgenes. Plant Mol Biol,2004spe;56(2):203~216
    72K. A. Lutz, S. Corneille, A. K. Azhagiri, et al. A Novel Approach to PlastidTransformation Utilizes the phiC31Phage Integrase. Plant J,2004,37(6):906~913
    73S. Corneille, K. A. Lutz, A. K. Azhagiri, et al. Identification of FunctionalLox Sites in the Plastid Genome. Plant J,2003,35(6):753~762
    74H. Kuroda, P. Maliga. The Plastid clpP1Protease Gene is Essential for PlantDevelopment. Nature,2003,425(6953):86~89
    75任延国,张中林,邹竹荣等. Bt毒蛋白基因叶绿体载体的构建及其生物杀虫试验.农业生物技术学报,1996,4(1):23~27
    76张中林,山松,陈曦等.除草剂抗性基因bar导入烟草叶绿体.作物学报,1999,25(5):574~578
    77张中林,山松,陈曦等.丙肝病毒融合抗原基因NS3-C定点整何入衣藻叶绿体基因组的研究.遗传,1999,21(6):1~6
    78张中林,山松,范国昌等.苏云金芽孢杆菌(Bt)晶体蛋白基因在烟草叶绿体中的表达.遗传学报,2000,27(3):270~277
    79张中林,钱凯先,沈桂芳. NifH基因能够在高等植物叶绿体原核环境中表达.科学通报,2001,46(12):1026~1036
    80王玉华,张秀海,吴忠义等.通过叶绿体基因工程在烟草中合成中长链羟基脂肪酸聚酯.科学通报,2005,50(10):980~986
    81J. J. Grevich, H. Danill. Chloroplast Genetic Engineering: Recent Advances andFuture Perspectives. Critical Reviews in Plant Scien-ces,2005,(24):83~107
    82H. Danill. Production of Biopharmaceutical and Vaccines in Plants via theChloroplast Genome. Biothechnology Journal,2006,(1):1071~1079
    83P. Maliga. Plastid transformation in higher plants. Annu Rev Plant Biol,2004,55:289~313
    84G. Serino,P. Maliga. A Negative Selection Scheme Based on the Expressionof Cytosine Deaminase in the Plastids. Plant,1997,(12):697~701
    85H. Daniell, M. Krishnan, B. F. Mcfadden. Transient Expression of β-glucuro-nidase in Different Celluar Compartments Following Biolistic Delivery ofForeign DNA into Wheat Leaves and Alli. Plant Cell Rep,1991,(9):615~619
    86G. N. Ye. Plastid-expressed5-enolpyruvylshikmate-3-phosphate Synthase GenesProvide High Level Glyphosate Tolerance in Tobacco. Plant J,2001,(25):261~270
    87De. Cosa. Overexpression of the Bt Cry2Aa Operon in Chloroplast Leads toFormation of Insecticidal Crystals. Natl Biotechnol,2001,(19):71~74
    88G. Degray. Expression of an Antimicrobial Peptide Via the Chloroplast Genometo Control Phytopathogenic Bacteria and Fungi. Mol.Gen.Genet,2001,(127):852~862
    89S. B. Lee. Drought Tolerance Conferred by the Yeast Trehalosa-6phosphateSynthase Gene Engineered via the Chloroplast Genome. Transgenic Res,in press
    90X. H. Zhang.Targeting a Nuclear Anthranilate Synthase a Subunit Gene to theTobacco Plastid Genome Results in Enhanced Tryptophan Biosynthesis-Retumof a Gene to its Pre-endosymbiotic Origin. Plant Physiol,2001,(127):131~141
    91H. Daniell. Expression of Cholera Toxin B Subunit Gene and Assembly asFunctional Oligomers in Transgenic Tobacco Chloroplast. J Mol.Biol,2001,(311):1001~1009
    92李大伟,于嘉林,邢怡明.甜菜坏死黄脉病毒外壳蛋白基因在甜菜转基因植株中的表达.生物工程学报.1997,13(4):440~442
    93刘巧红,孔凡江,于歆等.基因工程方法抗甜菜丛根病病毒育种的研究.中国甜菜糖业,2000,(2):15~18
    94马龙彪,徐香玲,张悦琴等.几丁质酶基因转化甜菜的初步研究.中国糖料,2000,(3):18~20
    95島本義也,前堂友子. ICP遺傳子導入テンサィのョトゥガ幼蟲耐性[J].てん菜研究会报,1999,(41):90~98
    96木本裕,島本義也. cryIC導入テンサィのョトゥガ幼蟲耐性[J].てん菜研究会报,2000,(42):8~12
    97H. L. Glick. Herbicide Tolerant Crops: are View of Agronomic, Economicand Environmental Impacts. The BCPC conference-weeds.2001,(1):359~366
    98E. M. Kishchenko, I. K. Komarnitskii, N. V. Kuchuk. Production of Trans-genetic Sugar Beet (Beta vulgaris L.) Plants Resistant to Phosphinothricin. CellBiology International.2005,(29):15~19
    99A. K. Lutz, E. J. Knapp, P. Maliga.Expression of bar in the Plastid GenomeConfers Herbicide Resistance1. Plant Physiology.2001,(125):1585~1590
    100龚小松,曾宪华,阎龙飞.一种纯化高等植物叶绿体DNA的有效方法.武汉植物学研究,1994,12(3):277~280
    101R. Bock. Transgenic Plastids in Basic Research and Plant Biotechnology.Mol. Biol.2001,3(12),425~438
    102龚小松,阎龙飞.高等植物叶绿体DNA提纯方法的改进.科学通报,1991,(6):467~469
    103K. Shinozaki, M. Ohme, M. Tanaka. The Complete Nucleotide Sequence of theTobacco Chloroplast Genome:its Gene Organization and Expre-ssion. EMBO J,1986,(5):2043~2049
    104J. Hiratsuka, H. Shimada, R.Whittire, et al. The Complete Sequence of the RiceChloroplast Genome:Intermolecular Recombination Between Distinct tRNAGenes Accounts for a major Plastid DNA Inversion During the Volution of theCereals. Mol Gen Genet,1989,(217):185~194
    105C. Schmitz-Linneweber, R. M. Maier, J. P. Alcaraz, et al. The PlastidChromosome of Spinach (Spinacia oleracea): Complete Nucleotids Sequenceand Gene Organization. Plant Mol. Biol,2001,45(3):307~315
    106陈集双,冯明光,张耀州.黄瓜花叶病毒萝卜分离株卫星RNA的克隆及其与12卫星RNA核苷酸序列的比较[J].浙江大学学报(农业与生命科学版),2001,27(3):249~254
    107田颖川,蔡发兴.苏云金杆菌δ-内毒素基因在大肠杆菌中的克隆及表达.生物工程学报,1989,5(1):11~18
    108郭三堆.苏云金杆菌δ-内毒素基因及3’末端缺失基因在大肠杆菌中的亚克隆和表达.生物工程学报,1991,7(1):54~61
    109郑洪.甜菜不同基因型与外植体再生能力的研究.中国糖料,2007,3:11~13
    110赵衍,翁醒华.水稻叶绿体基因文库的构建和精细限制图谱的制作.遗传学报,1991,18(2):149~160
    111I. Kanevski, P. Maliga, D. F. Rhoades. Plastome Engineering of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Tobacco to from a Sunflower LargeSubunit and Tobacco Small Subunit Hybrid[J]. Plant Physiol,1999,(119):133~141
    112王艇,苏应娟,朱建明.叶绿体rbcL基因序列在植物系统学研究中的应用.武汉植物学研究,1999,17(增刊):8~14
    113J. E. Boynton, N. W. Gillham, E. H. Harris, et al. Manipulating the chloroplastgenome of Chlamydomonas: Molecular genetics and transformation. In:Baltscheffsky M ed. Current Research in Photosynthesis, Dordrecht: KluwerAcademic Publishers, Vol III,1990:509~516
    114K. L. Kindle, K. L. Richards, D. B Stern. Engineering the chloroplast genome:Techniques and capabilities for chloroplast transformation in Chlamydomonasreinhardtii. Proc Natl Acad Sci USA,1991,(88):1721~1725
    115J. S. Ye, R. T. Sayre. Reduction of chloroplast DNA content in Solanumnigrum suspension cells by treatment with chloroplast DNA synthesis inhibitors.Plant Physiol,1990,(94):1477~1483
    116V. A. Dzelzkalns, L. Bogorad. Stable transformation of the cyanobacteriumSynechocystis sp. PCC6803induced by UV irradiation. J Bacteriol,1986,(165):964~971
    117H. Cerutti, A. M. Johnson, J. E. Boynton, et al. Inhibition of chloroplast DNArecombination and repair by dominant negative mutants of Escherichia coliRecA. Mol Cell Biol,1995,15:3003~3011
    118J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南.第三版.科学出版社,2002:27~30;96~99;463~470;1595~1604
    119P. Yin, X. L. Liu. Technology of cell molecular biology. Science and Technologypress,2001:69~72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700