用户名: 密码: 验证码:
青枯菌诱导的马铃薯防卫相关基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum)是重要的粮菜兼用作物,其适应性强、丰产性好、营养丰富、经济效益高、适于加工,在食物安全结构中具有举足轻重的地位。马铃薯种植和生产常受青枯病(Ralstonia solanacearum)的严重威胁。因此加速病害控制和抗病育种研究显得非常重要,这就迫切要求阐明马铃薯与青枯菌互作的分子机理,挖掘和利用优良抗性基因用于马铃薯抗病遗传结构的改造。目前关于马铃薯应对青枯菌的防卫或抗病相关基因的种类、数量及其表达调控等知之甚少。本论文针对马铃薯与青枯菌互作早期受病菌诱导的防卫相关基因及其表达模式进行初步研究,目的在于为揭示马铃薯与青枯菌互作的分子机制提供一些有用信息。
     本研究以伤根灌菌法接种马铃薯,应用抑制差减杂交技术构建病原诱导后差异表达EST文库;应用SMART技术构建富集青枯菌诱导的防卫相关基因cDNA文库;从差异表达EST文库中筛选与防卫相关的增强表达基因片段,采用基因本体论(gene ontology,GO)对其进行功能注释和分类;结合快速扩增cDNA末端技术获得部分防卫相关基因的全长cDNA,然后对其诱导表达模式进行qRT-PCR和Northern杂交验证。主要结果如下:
     1.通过构建马铃薯与青枯菌互作早期受病菌诱导表达基因的差减EST文库,筛选鉴定出上调表达EST共计189条。利用同源检索结合GO术语(GO term)初步确定了防卫相关基因122个,它们分别属于生物过程(25.42%)、分子功能(40.98%)、细胞组分(15.57%)。随机抽取5条EST做RT-PCR分析,证明其在病程早期明显受到青枯菌的诱导上调表达。
     2.结合GO分类和先验基因功能分析,展示了自根系接种青枯菌诱导感病马铃薯基因型防卫相关基因的EST内容;通过与同类病害的相关EST的纵向比较以及与另外一种维管束系统病害葡萄皮尔斯病病原苛养木杆菌诱导的葡萄EST转录谱的横向比较分析,找出了它们与本研究中防卫相关基因EST的异同;初步鉴别出一些可用于辨识抗性的关键防卫基因,这些基因可用来作为开发抗病品种可能的分子靶标。
     3.利用富集青枯菌诱导的防卫相关基因cDNA文库与RACE结合的方法,克隆了11条关键防卫基因的全长cDNA,包括非特异性脂质转移蛋白(StLTPa1,StLTPa7,StLTPb1,StLTPb3, StLTPf10)、印膜蛋白(StREMa4)、植物铁蛋白(StFb8)、开心蛋白(StYPa5)、蛋白酶抑制子(StPIa3)、MBF转录因子(StMBFb7)、NAC转录因子(StNACb4)等。
     4.结合青枯菌诱导、化学处理、环境扫描电子显微镜和EDAX能谱分析,发现非特异性脂质转移蛋白基因StLTPa7在马铃薯与青枯菌互作早期表现与钙相关、受病菌诱导的系统表达模式,非生物激发子水杨酸、茉莉酸、脱落酸以及一定浓度的氯化钙能够诱导该基因增强表达,钙离子通道抑制剂钌红可以抑制其表达;原位杂交显示其转录物主要在马铃薯茎、叶维管束系统的韧皮部细胞中积累,暗示其在青枯菌入侵和定殖的微管束系统中发挥作用。StLPTa7基因可能参与马铃薯系统获得抗性中的长距离信号转导。对这种钙离子相关的基因表达模式在抗病反应中的作用机制提出了一个可能的工作模型。
     5.对另一个非特异性脂质转移蛋白基因StLTPa1的表达分析表明,该基因在马铃薯的抗病基因型和感病基因型中差异诱导表达:在抗病基因型中的诱导表现得更快、更高、更强。在远离根部接种位点的组织和靠近接种位点的组织中的表达差异明显。该基因同样受水杨酸、茉莉酸和脱落酸的诱导并产生一定时间的持续效应。原位杂交结果显示StLTPa1主要在马铃薯茎、叶维管束系统的韧皮部细胞中表达。其表达特性与植物的抗病类型有一定的因果关系。
     6.从马铃薯根际土壤和块茎中分离到两株低温适应型青枯菌菌株,对其进行微生物学、病理学特征分析和分子鉴定,发现其属于青枯菌生理小种3号、生化变种2号,具有小菌落、小细胞、胞壁加厚、生长缓慢、细胞自聚、对固体培养基具强粘附性、潜伏感染等诸多小菌落变异株(small colony variants,SCVs)特征。检测其潜伏感染马铃薯后,非特异性脂质转移蛋白基因StLTPa7和StLTPa1的表达,结果表明SCV不能诱导这两个基因的上调表达,说明该防卫基因的表达与病菌的致病性相关。
     通过文库构建、基因克隆及其表达模式研究,本论文确定了自根系接种的感病马铃薯基因型早期防卫相关基因的种类、数量;初步确定了非特异性脂质转移蛋白的表达模式;发现青枯菌诱导的马铃薯防卫相关基因与苛养木杆菌诱导的葡萄防卫相关基因在生物过程和分子功能方面具有很大的相似性,而在细胞组分上具有较大的差别,而且不同的接种方法诱导的马铃薯青枯病防卫相关基因有很大的差异;青枯菌小菌落变异株不能诱导nsLTP基因的上调表达表明了该基因的表达与青枯菌的致病性有关。这些实验结果为进一步大范围基因表达分析、深入研究青枯病防卫机制奠定了基础。
On a global scale, potato (Solanum tuberosum) is an important crop species for the purpose of grain and vegetable consumption. Potato has wide adaptability, well fertility, high economic efficiency and rich nutritional value to be suitable for industrial processes. It plays a significant role in the food safety architectures. The plantation of potato and the production of potato are seriously threatened by bacterial wilt disease (Ralstonia solanacearum). It’s very important to improve the genetic resistance of potato cultivars for disease control. This presses for clarification of the molecular mechanism of potato-Ralstonia interactions and for discovery and utilization of the good resistance genes to improve the hereditary constitution for disease resistance. At the present time, very little is known about the amount and type of defense related genes or resistance genes expressed during the stages of potato-Ralstonia interaction, without mentioning the regulations. In order to acquire some useful information about the molecular mechanism, here we presented the screening and identification of potato defense related genes and their expression patterns.
     The SSH (suppression subtractive hybridization) technique was used to construct an EST library. SMART (switching mechanism at 5' end of RNA transcript) and LD-PCR (long distance PCR) techniques were used to construct a full length cDNA library. Gene ontology method was used for classification and functional annotation of the related genes. For validation of the expression patterns of the defense related genes, qRT-PCR and Northern blotting were used. The main results obtained are listed bellow:
     To identify potato genes differentially expressed during the early stages of infection, two cDNA libraries were constructed using the suppression subtractive hybridization (SSH) approach. Subtraction hybridization was conducted between cDNAs from stems and leaves of the susceptible genotype‘zhongshu 3’inoculated with R. solanacearum and the mock inoculated with water, in both directions. A total of 189 unique sequences were obtained from the library enriched for the inoculated susceptible‘zhongshu 3’sequences. By homology search and gene ontology analyses, the identified ESTs were mainly putatively categorized as belonging to: biology process (25.42%), cellular component (15.57%), and molecular function (40.98%). 22 ESTs (18.03%) were distributed among the unknown GO principles. RT-PCR analyses of 5 transcripts identified as differentially expressed between the inoculated and mock-inoculated plants revealed distinct kinetics of gene up-regulation at the early stage of the disease.
     Using gene ontology hierarchy and prior known genes, this is the first study to display the extent of EST transcript diversity in susceptible genotype of potato after infection by R. solanacearum which were poured into soil surrounding wounded roots. By the comparative analyses with other two similar research works including ESTs from potato inoculated with R. solanacearum by so called‘stem culture in Bacterial solution method’and ESTs from grapes inoculated with Xylella fastidiosa, some similarities and differences were identified among the defense-related genes. This study has identified likely molecular targets for developing bacterial wilt resistant varieties and for characterizing their key defense genes.
     A full length cDNA library was constructed, with which RACE (rapid amplification of cDNA ends) method was combined to clone a dozen of key defense genes involved in the early stages of potato-Ralstonia interaction. These genes included non-specific lipid transfer protein (StLTPa1, StLTPa7, StLTPb1, StLTPb3, and StLTPf10), remorin (StREMa4), plant ferritin (StFb8), yippee-like protein (StYPa5), proteinase inhibitor (StPIa3), multiprotein bridging factor (StMBFb7), NAC transcription factor (StNACb4) and so on.
     The non-specific lipid transfer proteins (nsLTPs) gene StLTPa7’s expression pattern was investigated by using combined methods of inoculation with the pathogen, chemical treatments with abscisic acid, salicylate and methyl jasmonate, and ESEM-EDAX (environmental scanning electron microscopy-electron dispersive x-ray spectrometer) analysis. The results showed that StLTPa7 gene displayed a complex Ca2+-associated pattern of expression during the early stage of potato-Ralstonia interaction. Transcripts of the StLTPa7 gene were systemically up-regulated by infection with R. solanacearum. It was stimulated by salicylic acid, methyl-jasmonate, abscisic acid and CaCl2. The Ca2+ channel blocker, ruthenium red, partially blocked pathogen-induced expression of StLTPa7. In situ hybridization results showed that StLTPb7 mRNA was localized in inner phloem cells of vascular tissues of potato leaves and stems. These results suggested that the gene was involved in long distance signaling and played a key role in plant defense mechanisms. A putative working model on the Ca2+-associated expression pattern of StLTPa7 was proposed to explain the mechanism involved in the defense response to bacterial wilt.
     The transcripts of another nsLTP gene StLTPa1 accumulated in potato leave and stem tissues infected by R. solanacearum and showed significant differences between resistant and susceptible genotypes of potato. StLTPa1 transcription was induced faster, higher and stronger in resistant genotypes compared with susceptible genotypes by the pathogen. Dominant differences in the pathogen-induced gene expression pattern between the upper and lower leaves and stems were observed within the same genotypes. In situ hybridization localized the StLTPa1 mRNA in inner phloem cells of vascular tissues. Salicylic acid, methyl jasmonate and abscisic acid induced StLTPa1 gene expression in different manners. These three signal molecules could produce long-lasting effects on the expression of StLTPa1. These results showed that StLTPa1 be pathogen-responsive gene in potato defenses and involved in a complex gene regulation network. These results suggested the causality between the gene expression and genotypes with different resistance.
     Two R. solanacearum cold-adapted strains isolated from the potato rhizosphere soil and potato tuber were identified as race 3 biovar 2 by microbiological, pathological and molecular methods. The strains had the classical characters of small colony variants (SCVs): pinpoint colonies that were 1/10 smaller than those of the wild-type strain, smaller cells with thicker extracellular substance, rough and strongly cohesive colony on solid media, cell-cell aggregating behavior, reduced growth rate and symptomless latent infection. To our knowledge this is the first isolation of SCVs in plant pathogen of R. solanacearum. The SCVs could not induce the up-regulated expression of StLTPa1 or StLTPa7 gene, showing that the expressions of these genes were related to the pathogenity of R. solanacearum.
     By construction of SSH-EST and cDNA library, gene cloning and expression analysis, the content of R.solanacearum-induced ESTs and the amount and type of defense related genes expressed during the early stages of potato-Ralstonia interaction was preliminarily determined and the biological processes in which the defense related genes involved in came to understand. This study has identified some key defence gene as likely molecular targets for developing bacterial wilt resistant varieties and for characterizing their resistance genes. Based on the comparative EST analyses, the similarities and differences were of defense-related genes involved in two types of vascular disease, and it is clear that different inoculation methods could induce different defence-related genes. The expression patterns of two defense genes of StLTPa1 and StLTPa7 were displayed. It was deduced that there must exist a complicated network composed with multiple genes, multiple pathways and multiple biological proceeds in the early stages of potato-Ralstonia interaction.
     Therefore the SSH library that we have created provides a basis for the identification of potato defense genes that are up-regulated during the early interaction with the pathogen, which could be important for next intensive study on gene expressions and for the molecular mechanism of potato defense to R. solanacearum.
引文
1. 范敏, 金黎平, 黄三文, 谢开云, 刘庆昌, 屈冬玉. 马铃薯 SoFtsH 基因全长 cDNA 克隆与在干旱条件下表达研究. 作物学报, 2007, 33(11): 1748-1754.
    2. 冯洁, 何礼远, 袁凤华. 马铃薯 32kD 抗菌蛋白的 cDNA 分子克隆研究. 农业生物技术学报, 1999, 7(1): 37-40.
    3. 高音. 马铃薯抗青枯病菌蛋白的基因克隆及其在大肠杆菌中表达. [博士学位论文]. 北京:中国农科院, 1999, pp 1-3.
    4. 郜刚, 屈冬玉, 连勇, 金黎平, 冯兰香. 马铃薯青枯病抗性的分子标记. 园艺学报, 2000, 27(1): 37- 41.
    5. 郜刚, 屈冬玉, 连勇, 金黎平, 纪颖彪. 二倍体马铃薯青枯病抗性鉴定及遗传分析. 马铃薯杂志, 1998, 12(4): 212-217.
    6. 何礼远. 马铃薯抗青枯病体细胞变异体离体筛选研究初报. 马铃薯杂志, 1990, 4(1): 14-18.
    7. 贾士荣, 屈贤铭, 冯兰香. 转抗菌肽基因提高马铃薯对青枯病的抗性. 中国农业科学,1998, 31(1): 5-12.
    8. 康耀卫, 毛国璋, 吕常胜, 何礼远. 利用青枯菌胞外蛋白输出缺失突变体防治番茄青枯病的研究. 植物保护学报 1995, 22(3): 287-288.
    9. 李广存, 金黎平, 谢开云, 庞万福, 卞春松, 段绍光, 屈冬玉. 马铃薯青枯病抗性鉴定新方法. 中国马铃薯. 2006, 20(3):129-134.
    10. 李林章. 二倍体马铃薯青枯病抗性的分离及分子标记鉴定. [博士学位论文], 武汉:华中农业大学, 2004. pp 15-123.
    11. 李映, 蔡兴奎, 李林章, 谢从华. 马铃薯体细胞杂种的青枯病抗性鉴定. 中国马铃薯, 2005, 19(4): 199-203.
    12. 梁成罡, 何礼远. 抗菌蛋白 AP1 编码基因对马铃薯的转化及其介导的青枯病抗性研究. 植物保护学报, 2002, 29(1): 51-56.
    13. 梁远发. 马铃薯青枯病田间发病主要因素研究. 马铃薯产业与西部开发. 哈尔滨: 哈尔滨工程大学出版社, 陈伊里主编. 2001, pp 192-197.
    14. 刘焕利, 何礼远, 毛国璋, 康耀卫. 植物青枯病原细菌胞外蛋白相关基因的克隆. 植物病理学报, 1999, 29(2): 110-114.
    15. 屈冬玉, 谢开云, 金黎平, 庞万福, 卞春松, 段绍光. 中国马铃薯产业发展与食物安全. 中国农业科学, 2005, 38(2): 358-362.
    16. 屈冬玉, 金黎平, 谢开云, 卞春松. 中国马铃薯产业现状、问题和趋势. 马铃薯产业与西部开发 哈尔滨:哈尔滨工程大学出版社, 陈伊里主编,2001, pp 1-8.
    17. 司怀军, 戴朝曦. 马铃薯体细胞融合和杂交技术研究进展. 哈尔滨:哈尔滨工程大学出版社, 中国马铃薯研究进展, 陈伊里主编, 1999, 1: 217- 224.
    18. 谢万钦, 赵立青, 白文艳, 李振鹏, 赵玉龙, 李翠凤. 钙调素对钙调素结合蛋白-10 和玉米非特异性脂转移蛋白与脂质结合活性的影响. 植物生理与分子生物学学报, 2006, 32(5): 570 -576.
    19. 朱国庆, 王成华, 李艳, 伍佳莫. 四川省凉山州马铃薯青枯病综合防治措施. 中国马铃薯,2005, 19(4): 295-296.
    20. Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651-1656.
    21. Ahdesm?ki, M., L?hdesm?ki, H., Gracey, A., Shmulevich, L., and Yli-Harja, O. Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics, 2007, 8(1): 233.
    22. Al Laham, N., Rohde, H., Sander, G., Fischer, A., Hussain, M., Heilmann, C., Mack, D., Proctor, R., Peters, G., Becker, K., and von Eiff, C. Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. Journal of Bacteriology, 2007, 189(12): 4494-4501.
    23. Alessio, J. M. D., and Gerard, G. F. Second-strand cDNA synthesis with E.coli DNA polymerase I and RNase H: the fate of information at the mRNA 5' terminus and the effect of E.coli DNA ligase. Nucleic Acids Research, 1988, 16(5): 1999-2014.
    24. Almeida, R. P., Nascimento, F. E., Chau, J., Prado, S. S., Tsai, C.W., Lopes, S. A., and Lopes, J. R. Genetic structure and biology of Xylella fastidiosa causing disease in citrus and coffee in Brazil. Applied and Environmental Microbiology. 2008, in press.
    25. Altenbach, S. B., Kothari, K. M., Tanaka, C. K., and Hurkman, W. J. Expression of 9-kDa non-specific lipid transfer protein genes in developing wheat grain is enhanced by high temperatures but not by post-anthesis fertilizer. Journal of Cereal Science, 2008, 47(2): 201–213.
    26. Alison, E. R., Wechter, W. P., Timothy, P. D., Bruce, A. F., and Daniel, A. K. Relationship between avirulence gene (AvrA) diversity in Ralstonia solanacearum and bacterial wilt incidence. Molecular Plant-Microbe Interactions, 2004, 17(12): 1376.
    27. Anderson, J., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., and Kazan, K. Antagonistic interaction between abscisic acid and jasmonate -ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16(12): 3460-3479.
    28. Angot, A., Vergunst, A., Genin, S., and Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial Type III and Type IV Secretion Systems. PLoS Pathogens, 2007, 3: e3.
    29. Annemarie, B., Kettenis, D. L., Monique, M., van der, W., and Lansink, A. O. Individual-based models in the analysis of disease transmission in plant production chains: An application to potato brown rot. Agricultural Systems, 2006, 90(1-3): 112-131
    30. Arce, D. P., Tonon, C., Zanetti, M. E., Godoy, A. V., Hirose, S., and Casalongue, C. A. The potato transcriptional co-activator StMBF1 is up-regulated in response to oxidative stress and interacts with the TATA-box binding protein. Journal of Biochemistry and Molecular Biology, 2006, 39(4), 355-360.
    31. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. Geneontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 2000, 25(1): 25-29.
    32. Ball, L., Accotto, G. P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., and Mullineaux, P. M. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell, 2004, 16(9): 2448-2462.
    33. Barker, L., Kuhn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., and Hellmann, H., Schulze, W., Ward, J. and Frommer, W. B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12(7): 1153-1164.
    34. Barrachina, C., and Lorences, E. P. Xyloglucan endotransglycosylase activity in pine hypocotyls. Intracellular localization and relationship with endogenous growth. Physiologia Plantarum, 1998, 102(1): 55-60.
    35. Basim, E., Basim, H., and Ozcan, M. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering, 2006, 77(1): 992-996.
    36. Beisson, F., Koo, A. J. K., Ruuska, S., Schwender, J., Pollard, M., Thelen, J. J., Paddock, T., Salas, J. J., Savage, L., Milcamps, A., Mhaske, V. B., Cho, Y., and Ohlrogge, J.B. Arabidopsis genes involved in acyl lipid metabolism. A, 2003, census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiology, 2003, 132(2): 681-697.
    37. Bent, A., and Mackey, D. Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annual Review of Phytopathology, 2007, 45(N/A): 399-436.
    38. Bertolla, F., Frosteg?rd, ?., Brito, B., Nesme, X., and Pascal, S. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Molecular Plant-Microbe Interactions, 1999, 12(5): 467-472.
    39. Bertolla, F., Van Gijsegem, F., Nesme, X., and Simonet, P. Conditions for natural transformation of Ralstonia solanacearum. Applied and Environmental Microbiology, 1997, 63(12): 4965-4968.
    40. Besier, S., Smaczny, C., von Mallinckrodt, C., Krahl, A., Ackermann, H., Brade, V., and Wichelhaus, T. A. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. Journal of Clinical Microbiology, 2007, 45(1): 168-172.
    41. Blein, J. P., Coutos-Thevenot, P., Marion, D., and Ponchet, M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science, 2002, 7(7): 293-296.
    42. Borges, J. P., Jauneau, A., Brule, C., Culerrier, R., Barre, A., Didier, A., and Rouge, P. The lipid transfer protein (LTP) essentially concentrates in the skin of Rosaceae fruits as a cell-surface exposed allergen. Plant Physiology and Biochemistry, 2006, 44(10): 535-542.
    43. Bosotti, R., Locatelli, G., Healy, S., Scacheri, E., Sartori, L., Mercurio, C., Calogero, R., and Isacchi, A. Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinformatics, 2007, 8(1): S5.
    44. Boutrot, F., Chantret, N., and Gautier, M. F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLTP) gene families and identification of wheat nsLtp genes byEST data mining. BMC Genomics, 2008, 9(1): 86.
    45. Boutrot, F., Meynard, D., Guiderdoni, E., Joudrier, P., and Gautier, M. F. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta, 2007, 225(4): 843-862.
    46. Bradley, D. J., Kjellbom, P. and Lamb, C. J. Elicitor- and wound induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell, 1992, 70(1): 21-30.
    47. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S. R., Moon, K., Burcham, T., Pallas, M., DuBridge, R. B., Kirchner, J., Fearon, K., Mao, J. I., and Corcoran, K. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology, 2000, 18(6): 630-634.
    48. Brito, B., Aldon, D., Barberis, P., Boucher, C., and Genin, S. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum Hrp genes. Molecular Plant-Microbe Interactions, 2002, 15(2): 109-119.
    49. Buddenhagen, I., and Kelman, A. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1964, 2(1): 203-230.
    50. Buhot N., Douliez J. P., Jacquemard A., Marion D., Tran V., Maume B. F., Milat M. L., Ponchet M., Mikes V., Kader J. C., and BleinJ. P. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Letters, 2001, 509(1): 27-30.
    51. Buhot, N., Gomes, E., Milat, M. L., Ponchet, M., Marion, D., Lequeu, J., Delrot, S., Coutos-Thevenot, P., and Blein, J. P. Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Molecular Biology of the Cell, 2004, 15(11): 5047-5052.
    52. Burkholder, W. Sour skin, a bacterial rot of onion bulbs. Phytopathology, 1950, 40(2): 115-118.
    53. Busse, J. A. Polyamine patters as a chemotaxonomic marker within the proteobacteria. Systematic and Applied Microbiology, 1988, 11(1): 1-8.
    54. Capocchi, A., Fontanini, D., Muccilli, V., Cunsolo, V., Saviozzi, F., Saletti, R., Lorenzi, R., Foti, S., and Galleschi, L. NsLTP1 and nsLTP2 isoforms in Triticum aestivum cv. Centauro and Triticum dicoccon. Schrank (farro) bran. Journal of Agricultural and Food Chemistry, 2005, 53(20): 7976-7984.
    55. Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., and Besse, P. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics, 2006, 113(1): 110-121.
    56. Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J., and Besse, P. Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. Journal of Phytopathology, 2006, 154(7-8): 398-402
    57. Carney, B. F., and Denny, T. P. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. Journal of Bacteriology, 1990, 172(9): 4836-4843.
    58. Carvalho, A. O. and Gomes, V. M. Role of plant lipid transfer proteins in plant cell physiology-A concise review. Peptides, 2007, 28(5): 1144-1153.
    59. Caturla, M., Chaparro, C, Schroeyers, K, Holsters, M. Suppression subtractive hybridization to enrich low-abundance and submergence-enhanced transcripts of adventitious root primordia of Sesbania rostrata. Plant Science, 2002, 162(6): 915-921.
    60. Chae, K., Zhang, K., Zhang, L., Morikis, D., Kim, S. T., Mollet, J. C., de la Rosa, N., Tan, K., and Lord, E. M. Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. Journal of Biological Chemistry, 2007, 282(46): 33845-33858.
    61. Chagoyen, M., Carmona-Saez, P., Shatkay, H., Carazo, J., and Pascual-Montano, A. Discovering semantic features in the literature: a foundation for building functional associations. BMC Bioinformatics, 2006, 7(1): 41.
    62. Chakravarthy, S., Tuori, R. P., D'Ascenzo, M. D., Fobert, P. R., Despres, C., and Martin, G. B. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis ELements. Plant Cell, 2003, 15(12): 3033-3050.
    63. Chen, K. G., and An, Y. Q. Transcriptional responses to gibberellin and abscisic acid in barley aleurone. Journal of Integrative Plant Biology, 2006, 48(5), 591-612.
    64. Chua, H., Sung, W. K., and Wong, L. Using indirect protein interactions for the prediction of Gene Ontology functions. BMC Bioinformatics, 2007, 8(1): S8.
    65. Clark, A. M., and Bohnert, H. J. Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana. Plant and Cell Physiology, 1999, 40(1): 69-76.
    66. Coenye, T., and Vandamme, P. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome. BMC Genomics, 2003, 4(1): 10.
    67. Cohen, M., Klein, E., Geiger, B., and Addadi, L. Organization and adhesive properties of the hyaluronan pericellular coat of chondrocytes and epithelial cells. Biophysical Journal, 2003, 85(3): 1996-2005.
    68. Collinge, M., and Boller, T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Molecular Biology, 2001, 46(5), 521-529.
    69. Cook, D., and Sequeira, L. Genetic and biochemical characterization of a Pseudomonas solanacearum gene cluster required for extracellular polysaccharide production and for virulence. Journal of Bacteriology, 1991, 173(5): 1654-1662.
    70. Cook, D., and Sequeira, L. The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Molecular and General Genetics, 1991, 227(3): 401-410.
    71. Coram, T. E., Settles, M. L., and Chen, X. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Molecular Plant Pathology, 2008, 9(2): 157-169.
    72. Danesh, D., Aarons, S., McGill, G. E., and Young, N. D. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Molecular Plant-Microbe Interactions, 1994, 7(4): 464-471.
    73. Dangl, J. L., and Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.
    74. Dannon, E. A., and Wydra, K. Interaction between silicon amendment, bacterial wilt developmentand phenotype of Ralstonia solanacearum in tomato genotypes. Physiological and Molecular Plant Pathology, 2004, 64(5): 233-243.
    75. Daxboeck, F., Stadler, M., Assadian, O., Marko, E., Hirschl, A. M., and Koller, W. Characterization of clinically isolated Ralstonia mannitolilytica strains using random amplification of polymorphic DNA (RAPD) typing and antimicrobial sensitivity, and comparison of the classification efficacy of phenotypic and genotypic assays. Journal of Medical Microbiology, 2005, 54(1): 55-61.
    76. Degenhardt, J., Al-Masri, A. N., Kürkcüoglu, S., Szankowski, I., Gau, A. E. . Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics, 2005, 273(4): 326-335.
    77. Delessert, C., Kazan, K., Wilson, I. W., Van Der Straeten, D., Manners, J., Dennis, E. S., and Dolferus, R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant Journal, 2005, 43(5): 745-757.
    78. Deluc, L., Grimplet, J., Wheatley, M., Tillett, R., Quilici, D., Osborne, C., Schooley, D., Schlauch, K., Cushman, J., and Cramer, G. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics, 2007, 8(1): 429.
    79. Deslandes, B., Gariepy, C., and Houde, A. Review of microbiological and biochemical effects of skatole on animal production. Livestock Production Science, 2001, 71(2-3): 193-200.
    80. Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a Type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences, 2003, 100(13): 8024-8029.
    81. Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D. X., Bittner-Eddy, P., Beynon, J., and Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences, 2002, 99(4): 2404-2409.
    82. Devoto, A., Muskettz, P. R., and Shirasu, K. Role of ubiquitination in the regulation of plant defence against pathogens. Current Opinion in Plant Biology, 2003, 6(4): 307-311.
    83. Diatchenko, L., Lau, Y. F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., and Siebert, P.D. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences, 1996, 93(12), 6025-6030.
    84. Dietrich, A., Mayer, J. E., and Hahlbrock, K. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. Journal of Biological Chemistry, 1990, 265(11): 6360-6368.
    85. Divol, F., Vilaine, F., Thibivilliers, S., Kusiak, C., Sauge, M. H., and Dinant, S. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant, Cell and Environment, 2007, 30(2): 187-201.
    86. Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cerealkernels. Journal of Cereal Science, 2000, 32(1): 1-20.
    87. Duguid, J. R., and Dinauer, M. C. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Research 1990, 18(9): 2789-2792.
    88. Dunn, M., Hughes, M., Zhang, L., Pearce, R., Quigley, A., and Jack, P. Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4. Molecular and General Genetics, 1991, 229(3): 389-394.
    89. Durrant, W. E., and Dong, X. Systemic acquired resistance. Annual Review of Phytopathology, 2004, 42(1), 185-209.
    90. Edward, R., Henderson, B., and McFall-Ngai, M. We get by with a little help from our (little) friends. Science, 2004, 303(5662): 1305-1307.
    91. Elorza, A., Leon, G., Gomez, I., Mouras, A., Holuigue, L., Araya, A., and Jordana, X. Nuclear SDH2-1 and SDH2-2 genes, encoding the iron-sulfur subunit of mitochondrial complex II in Arabidopsis, have distinct cell-specific expression patterns and promoter activities. Plant Physiology, 2004, 136(4): 4072-4087.
    92. Elphinstone, J., Stanford, H., and Stead, D. Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara, and associated irrigation water. In: Bacterial wilt disease: molecular and ecological aspects, (Ed. Prior P, Allen C and Elphinstone J), Berlin: Springer Verlag, 1998, pp 133-139
    93. Elphinstone, J. G., Hennessey, J., Wilson, J. K., and Stead, D. E. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin, 1996, 26(6): 663-678.
    94. Elsas, J. D. V., Kastelein, P., de Vries, P. M., and van Overbeek, L. S. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 2001, 47(9): 842-854.
    95. Fegan, M., and Prior, P. How complex is the "Ralstonia solanacearum species complex". In: Bacterial wilt disease and the Ralstonia solanacearum species complex, (Ed. C. Allen, P. Prior, and A.C. Hayward), Madison: APS Press, 2005, pp 449-462.
    96. Fegan, M., Holoway, G., Hayward, A. C., and Timmis, J. Development of a diagnostic test based on the polymerase chain reaction (PCR) to identify strains of R. solanacearum exhibiting the biovar 2 genotype. In: Bacterial wilt disease: molecular and ecological aspects, C. A. Prior, and J. G. Elphinstone, ed., Berlin, Germany: Springer-Verlag. 1998, pp 34-43.
    97. Fegan, M., Taghavi, M., Sly, L., and Hayward, A. Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. In: Bacterial wilt disease, molecular and ecological aspects, (Ed. Prior P, Allen C, Elphinstone J), Berlin Heidelberg, Germany and Paris, France: Springer-Verlag and INRA editions, 1998, pp 19-33.
    98. Feldman, M. L., Oliva, C. R., Casalongue, C. A., and Daleo, G. R. Induction of a proteinase K inhibitor in a potato cultivar with a high degree of field resistance against Phytophthora infestans. Physiologia Plantarum, 2000, 109(1): 14-20.
    99. Feng, D., Deslandes, L., Harald, K., Frederic, R., and Baoucher, M. Isolation and characterization of a novel Arabidopsis thaliana mutant unable to develop wilt symptoms after inoculation with avirulent strain of Ralstonia solanacearum. Phytopathology, 2004, 94(3): 289-295.
    100. Feng, J., Yuan, F., Gao, Y., Liang, C., Xu, J., Zhang, C., and He, L. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Biochemical Journal, 2003, 376(2): 481-487.
    101. Fernandez-del-Carmen, A., Celis-Gamboa, C., Visser, R. G. F., and Bachem, C. W. B. Targeted transcript mapping for agronomic traits in potato. Journal of Experimental Botany, 2007, 58(11): 2761-2774.
    102. Finlay, B. B., and Medzhitov, R. Host-microbe interactions: fulfilling a niche. Cell Host and Microbe, 2007, 1(1), 3-4.
    103. Fleming, A., Mandel, T., Hofmann, S., Sterk, P., de Vries, S., and Kuhlemeier, C. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant Journal, 1992, 2(6): 855-862.
    104. Flinn, B., Rothwell, C., Griffiths, R., Lague, M., DeKoeyer, D., Sardana, R., Audy, P., Goyer, C., Li, X. Q., Wang-Pruski, G., and Regan, S. Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Molecular Biology, 2005, 59(3): 407-433.
    105. Fobis-Loisy, I., Loridon, K., Lobreaux, S., Lebrun, M., and Briat, J. F. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. European Journal of Biochemistry, 1995, 231(3): 609-619.
    106. Fock, I., Collonnier, C., Luisetti, J., Purwito, A., Souvannavong, V., Vedel, F., Servaes, A., Ambroise, A., Kodja, H., Ducreux, G., and Sihachakr, D. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiology and Biochemistry, 2001, 39(10): 899-908.
    107. Fock, I., Collonnier, C., Purwito, A., Luisetti, J., Souvannavong, V., Vedel, F., Servaes, A., Ambroise, A., Kodja, H., Ducreux, G., and Sihachakr, D. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Science, 2000, 160(1): 165-176.
    108. Foster-Hartnett, D., Danesh, D., Penuela, S., Sharopova, N., Endre, G., Vandenbosch, K. A., Young, N. D., and Samac, D. A. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Molecular Plant Pathology, 2007, 8(3): 307-319.
    109. Freilich, S., Massingham, T., Bhattacharyya, S., Ponsting, H., Lyons, P. A., Freeman, T. C., and Thornton, J. M. Relationship between the tissue-specificity of mouse gene expression and the evolutionary origin and function of the proteins. Genome Biology, 2005, 6, R56.
    110. Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 2008, 9(3): 385-402.
    111. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L. S., Yamaguchi-Shinozaki, K., and Shinozaki, K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal, 2004, 39(6): 863-876.
    112. Fuller, V. L., Lilley, C. J., Atkinson, H. J., and Urwin, P. E. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Molecular Plant Pathology, 2007, 8(5): 595-609.
    113. Gabriel, D. W., Allen, C., Schell, M. A., Denny, T. P., Greenberg, J. T., Duan, Y. P., Flores-Cruz, Z., Huang, Q., Clifford, J. M., Presting, G., González, E. T., Reddy, J., Elphinstone, J., Swanson, J., Yao,J., V. Mulholland, L. Liu, Farmerie, W., Patnaikuni, M., Balogh, B., Norman, D., Alvarez, A., Castillo, J. A., Jones, J., Saddler, G., Walunas, T., Zhukov, A., and Mikhailova, N. Identification of open reading frames unique to a select agent: Ralstonia solanacearum race 3 biovar 2. Molecular Plant-Microbe Interactions, 2006, 19(1): 69-79.
    114. Gao, G., Jin, L. P., Xie, K. Y., Yan, G. Q., and Qu, D. Y. Bottle gourd: a new host of Ralstonia solanacearum in China. Australasian Plant Disease Notes, 2007, 2(1), 151-152.
    115. García Mata, C., Lamattina, L., and Cassia, R. O. Involvement of iron and ferritin in the potato-Phytophthora infestans interaction. European Journal of Plant Pathology, 2001, 107(5): 557-562.
    116. Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M. The defensive role of nonspecific lipidtransfer proteins in plants. Trends Microbiology, 1995, 3(1): 72-74.
    117. Ge, L. L., Tian, H. Q., and Russell, S. D. Calcium function and distribution during fertilization in angiosperms. American Journal of Botany, 2007, 94(6), 1046-1060.
    118. Ge, X., Chen, J., Li, N., Lin, Y., Sun, C., and Cao, K. Resistance function of rice lipid transfer protein LTP110. Journal of Biochemistry and Molecular Biology, 2003, 36(6): 603-607.
    119. Genin, S., and Boucher, C. Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. Molecular Plant Pathology, 2002, 3(3), 111-118.
    120. Genin, S., Brito, B., Denny, T. P., and Boucher, C. Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEBS Letters, 2005, 579(10): 2077-2081.
    121. Gijsegem, F. V., Vasse, J., Camus, J. C., Marenda, M., and Boucher, C. Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Molecular Microbiology, 2000, 36(2): 249-260.
    122. Gincel, E., Simorre, J. P., Caille, A., Marion, D., Ptak, M., and Vovelle, F. Three dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. European Journal of Biochemistry, 1994, 226(2): 413-422.
    123. Girault, T., Francois, J., Rogniaux, H., Pascal, S., Delrot, S., Coutos-Thevenot, P., and Gomes, E. Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Plant Physiology and Biochemistry, 2008, 46(2): 140-149.
    124. Glickman, M. H., and Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiology Review, 2002, 82(2): 373-428.
    125. Godiard, L., Sauviac, L., Torii, K. U., Grenon, O., Mangin, B., Grimsley, N. H., and Marco, Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal, 2003, 36(3): 353-365.
    126. Godoy, A. V., Zanetti, M. E., San Segundo, B., and Casalongue, C. A. Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. Physiologia Plantarum, 2001, 112(2): 217-222.
    127. Gomès, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y. H., Delrot, S., and Coutos-Thevenot, P.. Nonspecific lipid-transfer protein genes expression in grape (vitis sp.) cells inresponse to fungal elicitor treatments. Molecular Plant-Microbe Interactions, 2003, 16(5): 456-464.
    128. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996, 8(4): 629-643.
    129. Goudie, J. B., and Goudie, R. B. Recurrent infection by a stable dwarf-colony variant of Staphylococcus aureus. Journal of Clinical Pathology, 1955, 8(4): 284-287.
    130. Gowda, M., Venu, R. C., Li, H., Jantasuriyarat, C., Chen, S., Bellizzi, M., Pampanwar, V., Kim, H., Dean, R. A., Stahlberg, E., Wing, R., Soderlund, C., and Wang, G. L. Magnaporthe grisea infection triggers RNA variation and antisense transcript expression in rice. Plant Physiology, 2007, 144(1): 524-533.
    131. Grey, B. E., and Steck, T. R. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology, 2001, 67(9): 3866-3872.
    132. Grimplet, J., Deluc, L., Tillett, R., Wheatley, M., Schlauch, K., Cramer, G., and Cushman, J. Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics, 2007, 8(1): 187.
    133. Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S., and Chakrabarti, S. K. Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic DNA markers. Journal of Applied Microbiology, 2006, 101(4): 798-806.
    134. Guse, A. H. Back from the dormant stage: second messenger cyclic ADP-ribose essential for Toxoplasma gondii pathogenicity. Science Signaling, 2008, 1(17): pe18.
    135. Gutierrez, R. A., Green, P. J., Keegstra, K., and Ohlrogge, J. B. Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms? Genome Biology, 2004, 5(8): R53.
    136. Hale, J. H. Studies on Staphylococcus mutation: characteristics of the “G” (gonidial) variant and factors concerned in its production. British Journal of Experimental Pathology, 1947, 28(2): 202-210.
    137. Hall, H. C., Samuel, M. A., and Ellis, B. E. SIPK conditions transcriptional responses unique to either bacterial or oomycete elicitation in tobacco. Molecular Plant Pathology, 2007, 8(5): 581-594.
    138. Hamilton, J. A. Fatty acid interaction with proteins: what X-ray crystal and NMR solution structures tell us. Progress in Lipid Research, 2004, 43(3): 177-199.
    139. Hane, J. K., Lowe, R. G. T., Solomon, P. S., Tan, K. C., Schoch, C. L., Spatafora, J. W., Crous, P. W., Kodira, C., Birren, B. W., Galagan, J. E., Torriani, S. F. F., McDonald, B. A., and Oliver, R. P. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell, 2007, 19(11): 3347-3368.
    140. Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. A robust measure of correlation between two genes on a microarray. BMC Bioinformatics, 2007, 8(1): 220.
    141. Harrak, H., Azelmat, S., Baker, E. N., and Tabaeizadeh, Z. Isolation and characterization of a geneencoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome, 2001, 44(3): 368-374.
    142. Hayward, A. C. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology, 1964, 27(2): 265-277.
    143. Hayward, A. C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1991, 29(1): 65-87.
    144. Hayward, A. C. The hosts of Pseudomonas solanacearum. In: Bacterial wilt, the disease and its causative agent, Pseudomonas solanacearum. (Ed. A. C. Hayward, and G. L. Hartman), Wallingford, United Kingdom, CAB International, 1994, pp 9-25.
    145. Hayward, A. C., El-Nashaar, H. M., Nydegger, U., and Lindo, L. D. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. Journal of Applied Bacteriology, 1990, 69(2): 269-280.
    146. He, L. Y., Sequeira, L., and Kelman, S. L. Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease, 1983, 67(26): 1357-1361.
    147. Heinemann, B., Andersen, K. V., Nielsen, P. R., Bech, L. M., and Poulsen, F. M. Structure in solution of a four-helix lipid binding protein. Protein Science, 1996, 5(1): 13-23.
    148. Hepler, P. K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17(8): 2142-2155.
    149. Hedrick, S. M., Cohen, D. I., Nielsen, E. A., and Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature, 1984, 308(5955), 149-153.
    150. Higgins, D. G., Thompson, J. D., and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680.
    151. Hincha, D. K., Neukamm, B., Sror, H. A. M., Sieg, F., Weckwarth, W., Ruckels, M., Lullien-Pellerin, V., Schroder, W., and Schmitt, J. M. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiology, 2001, 125(2): 835-846.
    152. Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.J. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta, 1997, 203(1): 9-19.
    153. Horita, M., and Tsuchiya, K. Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology, 2001, 91(4): 399-407.
    154. Horvath, B. M., Bachem, C. W. B., Trindade, L. M., and Visser, R. G. F. Expression analysis of a family of nsLTP genes tissue specifically expressed throughout the plant and during potato tuber life cycle. Plant Physiology, 2002, 129(4): 1494-1506.
    155. Hotopp, J. , Clark, M. E., Oliveira, D., Foster, J. M., Fischer, P., Torres, M., Giebel, J. D., Kumar, N., Ishmael, N., Wang, S., Ingram, J., Nene, R. V., Shepard, J., Tomkins, J., Richards, S., Spiro, D. J., Ghedin, E., Slatko, B. E., Tettelin, H., and Werren, J. H. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science, 2007, 317(5845): 1753-1756.
    156. Houterman, P. M., Speijer, D., Dekker, H. L., De Koster, C. G., Cornelissen, B. J. C., and Rep, M. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology, 2007, 8(2): 215-221.
    157. Hu, F. P., Young, J. M., Triggs, C. M., Park, D. C., and Saul, D. J. Relationships within the Proteobacteria of plant pathogenic Acidovorax species and subspecies, Burkholderia species, and Herbaspirillum rubrisubalbicans by sequence analysis of 16S rDNA, numerical analysis and determinative tests. Antonie Van Leeuwenhoek, 2001, 80(3-4): 201-214.
    158. Hu, G., Linning, R. O. B., McCallum, B., Banks, T., Cloutier, S., Butterfield, Y., Liu, J., Kirkpatrick, R., Stott, J., Yang, G., Smailus, D., Jones, S., Marra, M., Schein, J., and Bakkeren, G. Generation of a wheat leaf rust, Puccinia triticina, EST database from stage-specific cDNA libraries. Molecular Plant Pathology, 2007, 8(4): 451-467.
    159. Hu, J. Y., Fan, Y., Lin, Y. H., Zhang, H. B., Hong, S. L., Dong, N., Xu, J. L., Ng, W. J., and Zhang, L. H. Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system. Research in Microbiology, 2003, 154(9): 623-629.
    160. Hughes, M., Dunn, M., Pearce, R., White, A., and Zhang, L. An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell and Environment, 1992, 15(7): 861-865.
    161. Husain, A., and Kelman, A. Relation of slime production to mechanism of wilting and pathogenicity in Pseudomonas solanacearum. Phytopathology 1958, 48(2): 155-165.
    162. Inglis, G. D., and Kalischuk, L. D. Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR. Applied and Environmental Microbiology, 2004, 70(4): 2296-2306.
    163. Ingvardsen, C., and Veierskov, B. Ubiquitin- and proteasome-dependent proteolysis in plants. Physiologia Plantarum, 2001, 112(4): 451-459.
    164. Ito, S., Ushijima, Y., Fujii, T., Tanaka, S., Kameya-Iwaki, M., Yoshiwara, S. and Kishi, F. Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and a PCR technique. Journal of Phytopathology, 1998, 146(8-9): 379-384.
    165. Jain, M., Kaur, N., Tyagi, A. K., and Khurana, J.P. The auxin responsive GH3 gene family in rice (Oryza sativa). Functional and Integrative Genomics, 2006, 6(1): 36-46.
    166. Jatala, P. M., C., and Mendoza, H. A. Role of nematodes in disease expression by Pseudomonas solanacearum and strategies for screening and breeding for combined resistance. International Potato Center CIP, 1998, 1(1): 35-37.
    167. Jones, D. Evolutionary theory: Personal effects. Nature, 2005, 438(7064): 14-16.
    168. Jose-Estanyol, M., Gomis-Ruth, F. X., and Puigdomenech, P. The eightcysteine motif, a versatile structure in plant proteins. Plant Physiology and Biochemistry, 2004, 42(5): 355-365.
    169. Jung, H. W. and Hwang, B. K. Pepper gene encoding a basicβ-1,3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl asmonate treatment. Plant Science, 2000, 159(1): 97-106.
    170. Jung, H. W., Kim, K. D. and Hwang, B. K. Identification of pathogen responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 2005, 221(3): 361-373.
    171. Jung, H. W., Kim, W. and Hwang, B. K. Three pathogen-inducible genes encoding lipid transferprotein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant, Cell and Environment, 2003, 26(1): 15-28.
    172. Jung, H. W., Lim, C. W. and Hwang, B. K. Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental tresses. Plant Science, 2006, 170(2): 258-266.
    173. Jung, H. W., Kim, W., and Hwang, B. K. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant, Cell and Environment, 2003, 26(6): 915-928.
    174. Kabe, Y., Goto, M., Shima, D., Imai, T., Wada, T., Morohashi, K., Shirakawa, M., Hirose, S., and Handa, H. The role of human MBF1 as a transcriptional coactivator. Journal of Biological Chemistry, 1999, 274(34): 34196-34202.
    175. Kader, J. C. Lipid-transfer proteins: A puzzling family of plant proteins. Trends in Plant Science, 1997, 2(1): 66-70.
    176. Kader, J. C., Julienne, M. and Vergnolle, C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. European Journal of Biochemistry, 1984, 139(3): 411-416.
    177. Kader, J. C. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1): 627-654.
    178. Kamoun, S., and Hogenhout, S. A. Agricultural microbes genome 2: first glimpses into the genomes of plant-associated microbes. Plant Cell, 2001, 13(3): 451-458.
    179. Kang, Y., Liu, H., Genin, S., Schell, M. A., and Denny, T. P. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Molecular Microbiology, 2002, 46(2): 427-437.
    180. Kelman, A. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 1954, 44(12): 693-695.
    181. Kersten, B., Agrawal, G. K., Iwahashi, H. and Rakwal, R. Plant phosphoproteomics: a long road ahead. Proteomics, 2006, 6(20): 5517-5528.
    182. Kim, Y. J., and Hwang, B. K. Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiologia Plantarum, 2000, 108(1): 51-60.
    183. Kim, M. J., Lim, G. H., Kim, E. S., Ko, C. B., Yang, K. Y., Jeong, J. A., Lee, M. C., and Kim, C. S. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochemical and Biophysical Research Communications, 2007, 354(2): 440-446.
    184. Kim, S. G., Lee, A. K., Yoon, H. K., and Park, C. M. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant Journal, 2008, In Press.
    185. Kotewicz, M. L., Li, B., Levy, D. D., LeClerc, J. E., Shifflet, A. W., and Cebula, T. A. Evolution of multi-gene segments in the mutS-rpoS intergenic region of Salmonella enterica serovar Typhimurium LT2. Microbiology, 2002, 148(8): 2531-2540.
    186. Kroos, L., and Maddock, J. R. Prokaryotic Development: Emerging Insights. Journal ofBacteriology, 2003, 185(4): 1128-1146.
    187. Kurkcuoglu, S., Degenhardt, J., Lensing, J., Al-Masri, A. N., and Gau, A. E. Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. Journal of Experimental Botany, 2007, 58(3): 733-741.
    188. Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J. W., Frommer, W. B., and Ward, J. M. The dual function of sugar carriers Transport and sugar sensing. Plant Cell, 1999, 11(4): 707-726.
    189. Lan, H., Carson, R., Provart, N., and Bonner, A. Combining classifiers to predict gene function in Arabidopsis thaliana using large-scale gene expression measurements. BMC Bioinformatics, 2007 8(1): 358.
    190. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R., and Clark, W. A. International code of nomenclature of bacteria. American Society for Microbiology. Washington, DC: Washington Press, 1975, pp 180.
    191. Laquitaine, L., Gomes, E., Francois, J., Marchive, C., Pascal, S., Hamdi, S., Atanassova, R., Delrot, S., and Coutos-Thevenot, P. Molecular basis of ergosterol-induced protection of grape against botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Molecular Plant-Microbe Interactions, 2006, 19(10): 1103-1112
    192. Lauga, B., Harbonnel-Campaa, L. and Combes, D. Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Science, 2000, 157(1): 65-75.
    193. Lautner, S., Ehlting, B., Windeisen, E., Rennenberg, H., Matyssek, R., and Fromm, J. Calcium nutrition has a significant influence on wood formation in poplar. New Philologist, 2007, 173(4): 743-752.
    194. Le Berre, J. Y., Engler, G., and Panabieres, F. Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. New Phytologist, 2008, 177(2): 480-492.
    195. Leal, G. A., Albuquerque, P. S. B., and Figueira, A. Genes differentially expressed in Theobroma cacao associated with resistance to witches broom disease caused by Crinipellis perniciosa. Molecular Plant Pathology, 2007, 8(3): 279-292.
    196. Lecourieux, D., Ranjeva, R., and Pugin, A. Calcium in plant defence-signalling pathways. New Phytologist, 2006, 171(2): 249-269.
    197. Lee, V.T., Smith, R.S., Tummler, B., and Lory, S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infection and Immunity, 2005, 73(3): 1695-1705.
    198. Lescure, A., Proudhon, D., Pesey, H., Ragland, M., Theil, E.C., and Briat, J. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proceedings of the National Academy of Sciences, 1991, 88(18): 8222-8226.
    199. Li, F. Q., Ueda, H., and Hirose, S. Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Molecular Cell Biology, 1994, 14(5): 3013-3021.
    200. Li, G. C., Jin, L. P., Xie, K. Y., Li, Y., and Qu, D. Y. Cloning of proteinase inhibitor gene StPI in diploid potato and its expression analysis. Agricultural Sciences in China, 2007, 6(11): 1315-1321.
    201. Liao, C. H., McCallus, D. E., and Fett, W. F. Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Molecular Plant-Microbe Interactions, 1994, 7(3): 391-400.
    202. Lin, H., Doddapaneni, H., Takahashi, Y., and Walker, M. A. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. BMC Plant Biology, 2007, 7(1): 8.
    203. Lindow, S. E., and Brandl, M. T. Microbiology of the phyllosphere. Applied and Environmental Microbiology, 2003, 69(4), 1875-1883.
    204. Liu, Q.X., Jindra, M., Ueda, H., Hiromi, Y., and Hirose, S. Drosophila MBF1 is a co-activator for Tracheae defective and contributes to the formation of tracheal and nervous systems. Development, 2003, 130(4): 719-728.
    205. Lu, Z. X., Gaudet, D., Puchalski, B., Despins, T., Frick, M., and Laroche, A. Inducers of resistance reduce common bunt infection in wheat seedlings while differentially regulating defence-gene expression. Physiological and Molecular Plant Pathology, 2006, 67(3): 138-148.
    206. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 2002, 419(6905): 399-403.
    207. Mangin, B., Thoquet, P., Olivier, J., and Grimsley, N. H. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics, 1999, 151(3): 1165-1172.
    208. Martin, S. A., Blaney, S. C., Houlihan, D. F., and Secombes, C. J. Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (Salmo salar). Molecular Immunology, 2005, 43(11): 1900-1911
    209. Martin-Galiano, A. J., Wells, J. M., and de la Campa, A. G. Relationship between codon biased genes, microarray expression values and physiological characteristics of Streptococcus pneumoniae. Microbiology, 2004, 150(7): 2313-2325.
    210. McCarer, S. M., and Jaworski, C. A. Field studeis on spred of Pseudomonas solanacearum and tobacco mosaic virus in tomato plant by clipping. Plant Disease Reporter, 1969, 43(8): 942-945.
    211. Mitchell-Olds, T., Feder, M., and Wray, G. Evolutionary and ecological functional genomics. Heredity, 2008, 100(2), 101-102.
    212. Mithofer, A., Muller, B., Wanner, G., and Eichacker, L. A. Identification of defence-related cell wall proteins in Phytophthora sojae-infected soybean roots by ESI-MS/MS. Molecular Plant Pathology, 2002, 3(3): 163-166.
    213. Moffett, M. L., and Hayward, A. C. The role of weed species in the survival of Pseudomonas solanacearum in tomato cropping land Australas. Plant Pathology, 1980, 9(1): 6-8.
    214. Molina, A., Diaz, I., Vasil, I., Carbonero, P., and Garcia-Olmedo, F. Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Molecular and General Genetics. 1996, 252(2): 162-168.
    215. Molina, A., Segura, A., and Garcia-Olmedo, F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Letters, 1993, 316(1-2): 119-122.
    216. Motose, H., Sugiyama, M. and Fukuda, H. A proteoglycan mediates inductive interaction during plant vascular development. Nature, 2004, 429(6987): 873-878.
    217. Müller, P., Abdel-Kader, D., Kakau, J., Pastrik, K. H., and Seigner, L. Uberleben von Ralstonia solanacearum Biovar 2 (Rasse 3), dem Erreger der Schleimkrankheit der Kartoffel, in Boden und auf verschiedenen Materialien (Mikrokosmos). Gesunde Pflanzen, 2004, 56(4-5): 129-141.
    218. Mundy, L. M., Sahm, D. F., and Gilmore, M. Relationship between enterococcal virulence and antimicrobial resistance. Clinical Microbiology Reviews, 2000, 13(4): 513-522.
    219. Nakane, E., Kawakita, K., Doke, N., and Yoshioka, H. Elicitation of primary and secondary metabolism during defense in the potato. European Journal of Plant Pathology, 2003, 69(6): 378-384.
    220. Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., and Gatz, C. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant Journal, 2007, 50(1): 128-139.
    221. Nemchinov, L. G., Shabala, L., and Shabala, S. Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant and Cell Physiology, 2008, 49(1): 40-46.
    222. Nishi, T., Tajima, T., Noguchi, S., Ajisaka, H., and Negishi, H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theoretical and Applied Genetics, 2003, 106(4): 765-770.
    223. Noutoshi, Y., Ito, T., Seki, M., Nakashita, H., Yoshida, S., Marco, Y., Shirasu, K., and Shinozaki, K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant Journal, 2005, 43(6): 873-888.
    224. OEPP/EPPO. Ralstonia solanacearum. Bulletin OEPP/EPPO Bulletin, 2004, 34(2): 327-329.
    225. Ogo, Y., Kobayashi, T., Itai, R. N., Nakanishi, H., Kakei, Y., Takahashi, M., Toki, S., Mori, S., and Nishizawa, N. K. A novel NAC transcription factor IDEF2 that recognizes the iron deficiency- responsive element 2 regulates the genes involved in iron homeostasis in plants. Journal of Biological Chemistry. 2008, In Press.
    226. Palleroni, N. J. Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiology, 2003, 149(1): 1-7.
    227. Park, C. J., Shin, R., Park, J. M., Lee, G. J., You, J. S., and Paek, K. H. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Molecular Biology, 2002, 48(3): 243-254.
    228. Park, H. S. M., Wolfgang, M., Putten, J. P. M., Dorward, D., Hayes, S. F., and Koomey, M. Structural alterations in a Type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Molecular Microbiology, 2001, 42(2): 293-307.
    229. Pegg, K., and Moffett, M. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Australian Journal of Experimental Agriculture and Animal Husbandry, 1971, 11(53): 696-698.
    230. Pelèse-Siebenbourg, F., Caelles, C., Kader, J. C., Delseny, M. and Puigdomènech, P. A pair of genescoding for lipid-transfer proteins in Sorghum vulgare. Gene, 1994, 148(2), 305-308.
    231. Pellinen, R. I., Korhonen, M. S., Tauriainen, A. A., Palva, E. T., and Kangasjarvi, J. Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiology, 2002, 130(2): 549-560.
    232. Peters, W. S., Fricke, W., and Chandler, P. M. XET-related genes and growth kinematics in barley leaves. Plant, Cell and Environment, 1999, 22(4): 331-332.
    233. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9): e45.
    234. Pham, X. T., Eufemio, T., Rasco, J., vander Zaag, P., and Schmiediche, P. Resistance to Pseudomonas solanacearum in the potato: I. Effects of sources of resistance and adaptation. Euphytica, 1990, 45(3): 203-210.
    235. Poussier, S., Thoquet, P., Trigalet-Demery, D., Barthet, S., Meyer, D., Arlat, M., and Trigalet, A. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the PhcA gene. Molecular Microbiology, 2003, 49(7): 991-1003.
    236. Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., and Trigalet, A. Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the Hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology, 2000, 146(7): 1679-1692.
    237. Proctor, R. A., C. von Eiff, Kahl, B. C., Becker, K., McNamara, P., Herrmann, M., and Peters, G. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nature Reviews Microbiology, 2006, 4(4): 295-305.
    238. Pruvot, G., Cuine, S., Peltier, G., and Rey, P. Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta, 2004, 198(3): 471-479.
    239. Qin, Q., Bergmann, C. W., Rose, J. K. C., Saladie, M., Kolli, V. S. K., Albersheim, P., Darvill, A. G., and York, W.S. Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. Plant Journal, 2003, 34(3): 327-338.
    240. Qiu, D., Wilson, I. W., Gan, S., Washusen, R., Moran, G. F., and Southerton, S. G. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytologist, 2008, Online Early.
    241. Qu, D. Y. Use of unreduced gametes of potato for TPS production through 4x-2x crosses. Wageningen: Wageningen University, 1996, pp 18-43.
    242. Raffaele, S., Mongrand, S., Gamas, P., Niebel, A., and Ott, T. Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiology, 2007, 145(3): 593-600.
    243. Rafoss, T. Spatial stochastic simulation offers potential as a quantitative method for pest risk analysis. Risk Analysis, 2003, 23(4): 651-661.
    244. Rao, N. N., Prasad, K., Kumar, P. R., and Vijayraghavan, U. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proceeding of National Academy Sciences, 2008, 105(9): 3646-3651.
    245. Rauscher, M., Adam, A. L., Wirtz, S., Guggenheim, R., Mendgen, K., and Deising, H. B. PR-1protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant Journal, 1999, 19(6): 625-633.
    246. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Z, C., Jiang, Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., and L. Yu, G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.
    247. Rediers, H., Rainey, P. B., Vanderleyden, J., and De Mot, R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiology and Molecular Biology Reviews. 2005, 69(2): 217-261.
    248. Reymond, P., Kunz, B., Paul-Pletzer, K., Grimm, R., Eckerskorn, C., and Farmer, E. E. Cloning of a cDNA encoding a plasma membrane-associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins. Plant Cell, 1996, 8(12): 2265-2276.
    249. Rinaldi, C., Kohler, A., Frey, P., Duchaussoy, F., Ningre, N., Couloux, A., Wincker, P., Le Thiec, D., Fluch, S., Martin, F., and Duplessis, S. Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiology, 2007, 144(1): 347-366.
    250. Rodrigues, C. M., Takita, M. A., Coletta-Filho, H. D., Olivato, J. C., Caserta, R., Machado, M. A., and de Souza, A. A. Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Applied Microbiology and Biotechnology, 2008, 77(5): 1145-1157.
    251. Romero-Tabarez, M., Jansen, R., Sylla, M., Lunsdorf, H., Haussler, S., Santosa, D. A., Timmis, K. N., and Molinari, G. 7-O-malonyl macrolactin a, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1701-1709.
    252. Rouhier, N., Couturier, J., and Jacquot, J. P. Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany, 2006, 57(8): 1685-1696.
    253. Rowe, P. R., and Sequeira, L. Inheritance of resistance to Pseudomonas solanacearum in Solanum phureja. Phytopathology, 1970, 60(115): 1499-1501.
    254. Roxstr?m-Lindquist, K., and Faye, I. The Drosophila gene yippee reveals a novel family of putative zinc binding proteins highly conserved among eukaryotes. Insect Molecular Biology, 2001, 10(1): 77-86.
    255. Ryals, J., Uknes, S. and Ward, E. Systemic acquired resistance. Plant Physiology, 1994, 104(4): 1109-1112.
    256. Ryan, C. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 1990, 28(1): 425-449.
    257. Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J., and Boucher, C. A. Genomesequence of the plant pathogen Ralstonia solanacearum. Nature, 2002, 415(4): 497-502.
    258. Salcedo, G., Sánchez-Monge, R., Barber, D., and Díaz-Perales, A. Plant non-specific lipid transfer proteins: An interface between plant defence and human allergy. Biochimica et Biophysica Acta, 2007, 1771(6): 781-791.
    259. Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. Solution structure of plant nonspecific lipid transfer protein-2 from Rice (Oryza sativa). The Journal of Biological Chemistry, 2002, 277(38): 35267-35273.
    260. Sandt, V. S. T., Guisez, Y., Verbelen, J. P., and Vissenberg, K. Xyloglucan endotransglycosylase / hydrolase (XTH) is encoded by a multi-gene family in the primitive vascular land plant Selaginella kraussiana. Plant Biology, 2007, 9(1): 142-146.
    261. Sattler, S. E., Mene-Saffrane, L., Farmer, E. E., Krischke, M., Mueller, M. J., and DellaPenna, D. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell, 2006, 18(12): 3706-3720.
    262. Schardl, C. L., and Craven, K. D. Interspecific hybridization in plant-associated fungi and oomycetes: a review. Molecular Ecology, 2003, 12(11): 2861-2873.
    263. Schell, M. A. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annual Review of Phytopathology, 2000, 38(1): 263-292.
    264. Schlumberger, M. C., Muller, A. J., Ehrbar, K., Winnen, B., Duss, I., Stecher, B., and Hardt, W. D. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proceedings of the National Academy of Sciences. 2005, 102(35): 12548-12553.
    265. Schraml, P., Shipman, R., Stulz, P., and Ludwig, C. U. cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST). Trends in Genetics, 1993, 9(3): 70-71.
    266. Sczekan, S. R., and Joshi, J. G. Isolation and characterization of ferritin from soyabeans (Glycine max). Journal of Biological Chemistry, 1987, 262 (28): 13780-13788.
    267. Seal, S. E., Taghavi, M., Fegan, N., Hayward, A. C., and Fegan, M. Determination of Ralstonia (Pseudomonas) solanacearum rDNA subgroups by PCR tests. Phytopathology, 1999, 48(1): 115-120.
    268. Sequeira, L. Surface components involved in bacterial pathogen-plant host recognition. Journal of Cell Science, 1985, 2(supplement): 301-316.
    269. Setubal, J. C., Moreira, L. M., and da Silva, A. C. R. Bacterial phytopathogens and genome science. Current Opinion in Microbiology, 2005, 8(5): 595-600.
    270. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure, 1995, 3(2): 189-199.
    271. Sokurenko, E. V., Feldgarden, M., Trintchina, E., Weissman, S. J., Avagyan, S., Chattopadhyay, S., Johnson, J. R., and Dykhuizen, D. E. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Molecular Biology and Evolution, 2004, 21(7): 1373-1383.
    272. Sossountzov, L., Ruiz-Avila, L., Vignols, F., Jolliot, A., Arondel, V., Tchang, F., Grosbois, M., Guerbette, F., Miginiac, E., Delseny, M., Puigdomenech, P., and Kader, J. C. Spatial and temporal expression of a maize lipid transfer protein gene. Plant cell, 1991, 3(9): 923-933.
    273. Stackebrandt, E., Murray, R. G. E., and Truper, H. G. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. International Journal of Systematic Bacteriology, 1988, 38(3): 321-325.
    274. Stulemeijer, I. J. E., and Joosten, M. H. A. J. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Molecular Plant Pathology, 2008, 9: In press.
    275. Sterk, P., Booij, H., Schellekens, G. A., van Kammen, A., and de Vries, S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3(9): 907-921.
    276. Sun, J. Y., Gaudet, D. A., Lu, Z. X., Frick, M., Puchalski, B., and Laroche, A. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Molecular Plant-Microbe Interactions, 2008, 21(3):346-360
    277. Suparyono, and Pataky, J. K. Relationships between incidence and severity of Stewart's and Goss's bacterial wilts and yield of sweet corn hybrids. Crop Protection, 1989, 8(3): 363-368.
    278. Swanson, J. K., Yao, J., Tans-Kersten, J., and Allen, C. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 2005, 95(2): 136-143.
    279. Taghavi, M., Hayward, A. C., Sly, L. I., and Fegan, M. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. International Journal of System Bacteriology, 1996, 46(1): 10-15.
    280. Syder, A. J., Oh, J. D., Guruge, J. L., O'Donnell, D., Karlsson, M., Mills, J. C., Bjorkholm, B. M., and Gordon, J. I. The impact of parietal cells on Helicobacter pylori tropism and host pathology: an analysis using gnotobiotic normal and transgenic mice. Proceedings of the National Academy of Sciences, 2003, 100(6): 3467-3472.
    281. Takahashi, H., Takita, K., Kishimoto, T., Mitsui, T., and Hori, H. Ca2+ is required by clubroot resistant turnip cells for transient increases in PAL activity that follow inoculation with Plasmodiophora brassicae. Journal of Phytopathology, 2002, 150(10): 529-535.
    282. Takemaru, K., Harashima, S., Ueda, H., and Hirose, S. Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Molecular and Cellular Biology, 1998, 18(9): 4971- 4976.
    283. Takishima, K., Watanabe, S., Yamada, M., Suga, T., and Mamiya, G. Amino acid sequences of two nonspecific lipid transfer proteins from germinated castor bean. European Journal of Biochemistry, 1988, 177(2): 241-249.
    284. Tamura, K., Dudley, J., Nei, M., and Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
    285. Taylor, N.G. Cellulose biosynthesis and deposition in higher plants. New Phytologist, 2008, 178(2): 239-252.
    286. Thoma, S., Kaneko, Y., and Somerville, C. A non-specific lipid transfer protein from Arabidopsis thaliana is a cell wall protein. Plant Journal, 1993, 3(3): 427-436.
    287. Tian, Z. D., Liu, J., Wang, B. L., and Xie, C. H. Screening and expression analysis of Phytophthora infestans induced genes in potato leaves with horizontal resistance. Plant Cell Reports, 2006, 25(10): 1094-1103.
    288. Trevi?o, M. B., and Connell, M. A. O. Three drought-responsive members of the nonspecific lipid transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiology, 1998, 116(4): 1461-1468.
    289. Trigalet, A., and Trigalet-Demery, D. Use of avirulent mutants of Pseudomonas solanacearum for the biological control of bacterial wilt of tomato plants. Physiological and Molecular Plant Pathology, 1990, 36(1): 27-38.
    290. Tung, P. X., Hermsen, J. G. T., vander Zaag, P., and Schmeidiche, P. E. Inheritance of resistance to Pseudomonas solanacearum in tetraploid potato. Plant breeding, 1993, 111(1): 23-30.
    291. Tung, P. X., Rasco, E.T., and Zaag, P. V. Resistance to Pseudomons solanacearum in the potato: Aspects of host-pathogen-environment interaction. Euphytica, 1990, 45(1): 21-25.
    292. Ulrich, R. L., DeShazer, D., Brueggemann, E. E., Hines, H. B., Oyston, P. C., and Jeddeloh, J. A. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. Journal of Medical Microbiology, 2004, 53(11): 1053-1064.
    293. Ungerer, M. C., Johnson, L. C., and Herman, M. A. Ecological genomics: understanding gene and genome function in the natural environment. Heredity, 2007, 100(2): 178-183.
    294. Van Elsas, J. D., Kastelein, P., de Bries, P. M., and van Overbeek, L. S. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv.2 in irrigation water. Canadian Journal of Microbiology, 2001, 47(9): 842-854.
    295. van Loon, L. C. and van Strien, E. A. The families of pathogenesis related proteins, their activities, and comparative analysis of PR 1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55(2): 85-97.
    296. van Loon, L., Rep, M., and Pieterse, C. M. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006, 44(1): 135-162.
    297. Van Overbeek, L., and van Elsas, J. D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiology Ecology, 2008, Published article online.
    298. Vartanian, N., Damerval, C., and de Vienne, D. Drought-induced changes in protein patterns of Brassica napus var. oleifera roots. Plant Physiology, 1987, 84(4): 989-992.
    299. Vasse, J., Frey, P., and Trigalet, A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interactions, 1995, 8(2): 241-251.
    300. Vasse, J., Genin, S., Frey, P., Boucher, C., and Brito, B. The HrpB and HrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Molecular Plant-Microbe Interactions, 2000, 13(3): 259-267.
    301. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. Serial analysis of gene expression. Science, 1995, 270(5235): 484-487.
    302. Vinatzer, B. A., and Yan, S. Mining the genomes of plant pathogenic bacteria: how not to drown in gigabases of sequence. Molecular Plant Pathology, 2008, 9(1): 105-118.
    303. Von Bodman, S. B., Bauer, W. D., and Coplin, D. L. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology, 2003, 41(1): 455-482.
    304. von Eiff, C., Heilmann, C., Proctor, R. A., Woltz, G. Peters, and Gotz, F. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. Journal of Bacteriology, 1997, 179(15): 4706-4712.
    305. von Eiff, C., McNamara, P., Becker, K., Bates, D., Lei, X. H., Ziman, M., Bochner, B. R., Peters, G., and Proctor, R. A. Phenotype microarray profiling of Staphylococcus aureus menD and hemB mutants with the small-colony-variant phenotype. Journal of Bacteriology, 2006, 188(2): 687-693.
    306. Wang, D., Weaver, N. D., Kesarwani, M. and Dong, X. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 2005, 308(5724): 1036-1040.
    307. Wang, P., and Song, C. P. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytologist 2008, early on line.
    308. Wawrzynska, A., Lewandowska, M., Hawkesford, M. J., and Sirko, A. Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. Journal of Experimental Botany, 2005, 56(416): 1575-1590.
    309. Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., and Stead, D. E. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time fluorogenic PCR (TaqMan) assay. Applied and Environmental Microbiology, 2000, 66(7): 2853-2858.
    310. White, A. J., Alison Dunn, M., Brown, K., and Hughes, M. A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. Journal of Experimental Botany, 1994, 45(12): 1885-1892.
    311. Whitehead, N. A., Barnard, A. L., Slater, H., Simpson, N. L., and Salmond, G. C. Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 2001, 25(4): 365-404.
    312. Wiens, M., Lukic, L., Muller, W. E. G., and Gamulin, V. Ubiquitins (polyubiquitin and ubiquitin extension protein) in marine sponges: cDNA sequence and phylogenetic analysis. Biological Journal of the Linnean Society, 1999, 67(1): 43-56.
    313. Wieruszeski, J. M., Bohin, A., Bohin, J. P., and Lippens, G. In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. Journal of Magnetic Resonance, 2001, 151(2): 118-123.
    314. Wijesinha-Bettoni, R., Gao, C., Jenkins, J. A., Mackie, A. R., Wilde, P. J., Mills, E. N., and Smith, L. J. Post-translational modification of barley LTP1b: the lipid adduct lies in the hydrophobic cavity and alters the protein dynamics. FEBS Letters, 2007, 581(24): 4557-4561
    315. Williams, J. S., and Cooper, R. M. Elemental sulphur is produced by diverse plant families as a component of defence against fungal and bacterial pathogens. Physiological and Molecular Plant Pathology, 2003, 63(1), 3-16.
    316. Williams, L. E., Lemoine, R. and Sauer, N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends in Plant Science, 2000, 5(7): 283-290.
    317. Williamson, L., Nakaho, K., Hudelson, B. and Allen, C., Ralstonia solanacearum race 3, biovar 2 strains isolated from geranium are pathogenic to potato. Plant Disease, 2002, 86(9): 987-991.
    318. Winstead, N. N., and Kelman, A. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology, 1952, 2(3): 628-634.
    319. Winther-Larsen, H. C., Wolfgang, M., Dunham, S., Putten, J., Dorward, D., Lovold, C., Aas, F. E.,and Koomey, M. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Molecular Microbiology, 2005, 56(4): 903-917.
    320. Wopperer, J., Cardona, S., Huber, B., Jacobi, C., Valvano, M., and Eberl, L. A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex. Applied and Environmental Microbiology, 2006, 72(2): 1579-1587.
    321. Wu, C. Q., Hu, H. H., Zeng, Y., Liang, D. C., Xie, K. B., Zhang, J. W., Chu, Z. H., and Xiong, L. Z. Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis. Journal of Integrative Plant Biology, 2006, 48(10), 1216-1224.
    322. Wydra, K., and Beri, H. Structural changes of homogalacturonan, rhamnogalacturonan I and arabinogalactan protein in xylem cell walls of tomato genotypes in reaction to Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 2006, 68(1): 41-50.
    323. Xiao, F., Tang, X., and Zhou, J. M. Expression of 35S: Pto globally activates defense-related genes in tomato plants. Plant Physiology, 2001, 126(4): 1637-1645.
    324. Xing, T., Higgins, V. J., and Blumwald, E. Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell, 1996, 8(3): 555-564.
    325. Xiong, L., Lee, M. W., Qi, M., and Yang, Y. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Molecular Plant-Microbe Interactions, 2001, 14(5): 685-692.
    326. Xu, L., Tan, A., Winslow, R., and Geman, D. Merging microarray data from separate breast cancer studies provides a robust prognostic test. BMC Bioinformatics, 2008, 9(1): 125.
    327. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., and Nishiuchi, Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and Immunology, 1995, 39(11): 897-904.
    328. Yamada, M. Lipid transfer proteins in plants and microorganisms. Plant Cell Physiology, 1992, 33(1): 1-6.
    329. Yao, J., and Allen, C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology, 2006, 188(10): 3697-3708.
    330. Yao, J., and Allen, C. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions withits tomato host. Journal of Bacteriology, 2007, 189(17): 6415-6424.
    331. Yao, Y., Martinez-Yamout, M., Dickerson, J., Brogan, A., Wright, P., and Dyson, H. Structure of the Escherichia coli quorum sensing protein SdiA: Activation of the folding switch by acyl homoserine lactones. Journal of Molecular Biology, 2006, 355(2): 262-273.
    332. Yeats, T., and Rose, J. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Science, 2008, 17(2): 191-198.
    333. Zhao, C., Avci, U., Grant, E. H., Haigler, C. H., and Beers, E. P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis andprogrammed cell death in xylem. Plant Journal, 2008, 53(3): 425-436.
    334. Zhou, D., Han, Y., Song, Y., Tong, Z., Wang, J., Guo, Z., Pei, D., Pang, X., Zhai, J., Li, M., Cui, B., Qi, Z., Jin, L., Dai, R., Du, Z., Bao, J., Zhang, X., Yu, J., Wang, J., Huang, P., and Yang, R. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. Jounal of Bacteriology, 2004, 186(15): 5138-5146.
    335. Zhu, H. and Yao, Q. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. Journal of Phytopathology, 2004, 152(10): 537-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700