用户名: 密码: 验证码:
黄酮高选择性分离膜及传质机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物是广泛存在于自然界的一大类化合物,数量种类繁多,且结构类型复杂多样。根据其结构的不同,黄酮化合物具有不同的生物活性和生理作用。采用传统分离方法无法实现对结构类似化合物的精确分离,膜分离方法也存在着选择性低的不足。分子印迹膜技术是在分子印迹技术和膜分离技术上发展起来的一种新型分离技术,能够实现对黄酮类化合物分子的专一性分离。但分子印迹膜技术的制备工艺复杂,可重复性差。而将制备好的分子印迹材料填充到聚合物中制备填充膜的技术则克服了这些缺点。因此,本文采用填充膜技术通过填充已合成好的分子印迹材料后制备出在水相中能够对复杂体系中某一特定物质具有专一识别功能的高选择性分离膜,同时对膜的透过机制及传质模型进行了研究。
     依据分子印迹技术原理,以氨丙基三乙氧基硅烷为功能单体,正硅酸乙酯为交联剂,木犀草素为模板分子,制备出木犀草素分子印迹材料。然后将其大量填充到聚砜材料中,采用相转化法制备出高选择性分离膜。该选择性分离膜在0.15MPa时通量可达到170.4L/(m2·h),在298.15K时,结合量为30.3mg/g,分离系数可达10.78。对该膜进行扫描电镜测试,结果表明高选择性分离膜中存在较为规整的孔结构,且与模板分子在大小和形状上相匹配。利用Material Studio软件模拟分子之间的相互作用,结果显示模板分子与聚合物材料之间存在多氢键的协同作用,且在水和乙醇极性溶液中能形成复合物。对该膜的结合性热力学和动力学进行分析,结果显示膜内孔穴与模板分子之间的匹配性较好,在构象和能量上都有利于模板分子的分离,进而能够实现对模板分子的专一性分离。
     本文还对该选择性分离膜的选择透过性机制进行了探讨,分析了膜内可能存在的孔道形式。从Piletsky提出的“门”模型出发,提出了分子印迹平板膜传质数学模型,并认为膜的表皮层对于模板分子的分离起到了重要作用。
Flavonoids with huge diversity in the category and configuration are widespread in the nature. They have different biological and physiological activities according to their different configurations. Flavonoids with similar configuration can not be separated by traditional separation method and membrane separation technology whose selectivity is lower. Based on molecular imprinting and membrane separation technology, molecularly imprinted membrane (MIM) technology becomes one of the research issues. The prepared MIM can achieve the specific separation of flavonoids. Currently, drawbacks like complication and poor reproducibility of preparation technology have limited the broadly application of traditional molecularly imprinting membrane technology. The preparation technology of filled membrane by filling the prepared molecularly imprinted materials into the polymer overcomes these shortcomings. Therefore, the high selectively separation membrane with specific recognition and permeation performance for certain substance in complex system was prepared by filling the prepared molecularly imprinted materials according to filled membrane technology in this paper. The mechanism of membrane permeability and the mass transfer model were also studied.
     According to the molecularly imprinted technique, the luteolin molecularly imprinted materials (LUMs) were synthesized by copolymerization of aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyl orthosilicate (TEOS) as the cross-linker in the presence of luteolin as the template molecule. High selectively separation membrane (HSM) was prepared by filling large amount of LUMs in the polysulfone through phase-inversion method. The flux of HSM was 170.4L/ (m2·h) at the pressure of 0.15MPa; the binding amount of HSM was 30.3mg/g and the separation factor was 10.78 at 298.15K. The scanning electron microscope (SEM) tests of HSM showed that there were regular channels with corresponded pore sizes matched with the template molecules in the HSM. The template molecules and the LUMs could form hydrogen bonds in aqueous solution and ethanol solution according to molecular simulation technology. The analysis on binding thermodynamics and kinetics of the HSM illustrated that the channels in the HSM matched well with the template molecules both in size and structure, and it was beneficial for the separation of the template molecule in conformation and energy. So it was probable to separate the template molecules specifically.
     The selective permeability mechanism of HSM and the forms of the channels in the HSM were also discussed in this paper. Considering“gate”model of Piletsky, a mathematical model of mass transfer in high selectively flat membrane was proposed to explain the law of separation, and the up-layer of the membrane was thought to play an important role in the separation process.
引文
[1]叶文峰,天然黄酮类化合物以及在食品中的应用,宜春师专学报,2000,22 (5):9~12
    [2]肖崇厚,中药化学,上海:上海科学技术出版社,1997:265~276
    [3]白海强,刘力恒,木犀草素研究进展,大众科技,2007(9):132~133
    [4]钱俊臻,黄酮类化合物提取方法的研究进展,化工文摘,2008(6):35~40
    [5] Xiao W H, Han L J, Shi B, Microwave-assisted extraction of flavonoids from Radix Astragali, Sep. Purif. Technol., 2008, (62): 616~620
    [6] Peng J Y, Fan G R, Chai Y F, et al.,Efficient new method for extraction and isolation of three flavonoids from Patrinia villosa Juss by supercritical fluid extraction and high-speed counter-current chromatography, J. Chromatogr. A, 2006, 1102(1-2): 44~50
    [7] Fu Y J, Zu Y G, Liu W, et al., Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins, J. Chromatogr. A, 2006, 1137(2-29): 145~152
    [8]项昭保,霍丹群,超声波在中草药化学成分提取中的应用,自然杂志,2005,23(5):289~291
    [9]钟宁,王佩迪,膜技术在中药提取分离、制备中的应用,安徽医药,2007,11(1):5~7
    [10]于涛,钱和,膜分离技术在提取银杏叶黄酮类化合物中的应用,无锡轻工大学学报,2004,23(6):55~58
    [11] Xu Z H, Li L, Tan S J, et al., The application of the modified PVDF ultrafitration membranes in further purification of Ginkgo biloba extraction, J. membr. Sci., 2005, 255(2): 125~131
    [12]谢秀琼,周淑芳,韩丽,现代中药制剂新技术,北京:化学工业出版社,2004,109~110
    [13] Guizard C, Bac A, Barboiu M, et al., Hybrid organic–inorganic membranes with specific transport properties: Applications in separation and sensors technologies, Sep. Purif. Technol., 2001, 25(1-3): 167~180
    [14] Tadashi U, Kenji O, Hiroshi M, et al., Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic?Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane, Macromolecules, 2002, 35(24): 9156~9163
    [15]李传峰,邵怀启,钟顺和,化学进展,2004,16(1):84~89
    [16] Christian G, Alain B, Mihail B, et al., Hybrid organic-inorganic membranes with specific transport properties applications in separation and sensors technologies, Sep. Purif. Technol., 2001, 25(1): 167~180
    [17] Liu Y L, Hsu C Y, Su Y H, et al.,Chitosan-silica complex membranes from sulfuric acid functionlized silica nanoparticles for pervaporation dehydration of ethanol-water solutions, Biomacromolecules,2005, 6(1), 368~373
    [18]姜云鹏,王榕树,纳米SiO2/PVA复合超滤膜的制备及性能研究,高分子材料科学与工程,2002,18(5):177~180
    [19]姜云鹏,王榕树,纳米SiO2/PVA复合超滤膜的制备及应用,工业水处理,2002,22(5):12~14
    [20]张裕卿,丁健,Al2O3的添加对聚砜膜性能的影响,化学工程,2000,28 (5):42~44
    [21]张裕卿,丁健,常俊石,聚砜-Al2O3复合膜处理油田含油污水,工业水处理,2000,20(2):24~26
    [22]曲云,张裕卿,具有耐污染性的SiO2/聚砜共混膜的研究,工业水处理,2006,26(7):26~29
    [23]彭春艳,黄震,赵晓燕等,填充型H—β分子筛-聚砜复合膜的制备与性能研究,包装工程,2008,29(10):28~30
    [24] Ulbricht M, Membrane separations using molecularly imprinted polymers, J. chromatogr. B, 2004, 804(1): 113~125
    [25] Wulff G, Sarhan A, Use of polymers with enzyme-analogous structures for the resolution of racemates, Angew. Chem. Int. Ed. Engl., 1972, 11(4): 341~344
    [26] Vlatakis G, Andersson L I, Müller R, et al., Drug assay using antibody mimics made by molecular imprinting, Nature, 1993, 361(6413): 645~647
    [27] Whitecome M J, Esther M, Villar P, et al., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 1995, 117(27): 7105~7111
    [28] Ers?z A, Denizli A, Senerí, et al., Removal of phenolic compounds with nitrophenol-imprinted polymer based onπ–πand hydrogen-bonding interactions, Sep. Purif. Technol., 2004, 38(2): 173~179
    [29]张裕卿,秦震,马振容,新型硅质吸附剂的合成及对黄酮的选择分离,天津大学学报,2007,40(4):411~415
    [30] Zhang Y Q, Zhen Q, Tu Z Y, Study of the preparation of flavone imprinted silica microspheres and their molecular recognition function, Chem. Eng. Technol., 2007, 30(8): 1014~1019
    [31] Borivoj K, Jan V, Vojtech A, et al, Determination of isoflavones in soybean food and human urine using liquid chromotography with electrochemical detection, J. Chromatogr. B, 2004, 806(2): 101~111
    [32] Bossi A, Bonini F, Turner A P F, et al., Molecularly imprinted polymers for the recognition of proteins: the state of the art, 2007, 22 (6): 1131~1137
    [33] Ge Y, Turner A P F, Too large to fit? Recent developments in macromolecular imprinting, Trends Biotechnol., 2008, 26 (4): 218~224
    [34] Bergmann N M, Peppas N A, Molecularly imprinted polymers with specific recognition for macromolecules and proteins, Prog. Polym. Sci., 2008, 33(3): 271~288
    [35]姜忠义,喻应霞,吴洪,分子印迹聚合物膜的制备及其应用,膜科学与技术,2006,26(1):78~84
    [36] Ulbricht M, Belter M, et al., Novel molecular imprinted polymer (MIP) composite membrane via controlled surface and pore functionalizations, Desalination, 2002, 149(1-3): 293~295
    [37] Hilal N, Kochkodan V., Surface modified microfiltration membrane with molecularly recognising properties, J. Membr. Sci., 2003, 213(1-2): 97~113
    [38] Yoshikawa M, Yonetani K, Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution, Desalination, 2002, 149(1-3): 287~292
    [39] Kobayashi T, Wang H Y, Fujii N, Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments, Anal. Chim. Acta, 1998, 365(1): 81~88
    [40] Piletsky S A, Panasyuk T L, Piletskaya E V, et al., Receptor and transport properties of imprinted polymer membranes-a review, J. Membr. Sci., 1999, 157(2): 263~278
    [41] Sergeyeva T A, Piletsky S A, Piletska E V, et al., In situ formation of porous molecularly imprinted polymer membranes, Macromolecules, 2003, 36(19): 7352~7357
    [42] Jiang Z, Yu Y, Wu H, Prepration of CS/GPTMS Hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers, J. Membr. Sci., 2006, 280(1-2): 876~882
    [43] Takeda K, Uemura K, Kobayashi T, Hybrid molecular imprinted membranes having selectivity and separation behavior to targeted indole derivatives, Anal. Chim. Acta, 2007, 591 (1): 40~48
    [44] Faizal C K M, Kikuchi Y, Kobayashi T, Scaffold membranes for selective adsorption ofα-tocopherol by phase inversion covalently imprinting technique, J. Membr. Sci., 2008, 322(2): 503~511
    [45] Faizal C K M, Kikuchi Y, Kobayashi T, Molecular imprinting targeted forα-tocopherol by calyx resorcarenes derivative in membrane scaffold prepared by phase inversion, J. Membr. Sci., 2009, 334 (1-2):110~116
    [46] Wang X J, Xu Z L, Feng J L, et al., Molecularly imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue imprinting strategy, J. Membr. Sci., 2008, 313(1-2): 97~105
    [47] Zhang Y Q, Xiang L, Zhang Y H, et al., Study on preparation of composite membrane with molecular recognizing property and its selective permeance mechanism, Sep. Purif. Technol., 2009, 65(2):130~136
    [48] Zhang Y Q, Gao X Q, Wang Y L, et al., Study on the build of channels in accurate seperation membrane and its selective mechanism, J. Membr. Sci., 2009, 10.1016/j.memsci.2009.04.035
    [49] Hattori K, Yoshimi Y, Sakai K., Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization, J. Membr. Sci., 2004, 233(1-2): 169~173
    [50] Joshi V P, Kulkarn M G, Mashelkar R A, et al., Enhancing adsorptive separations by molecularly imprinted polymers: Role of imprinting technology and system parameters, Chem. Eng. Sci., 2000, 55(9): 1509~1522
    [51] Van der Ent E M, van`t Riet K, Keurenties J T F, et al., Design criteria for dense permeation-selective membranes for enantiomer seperations, J. Membr. Sci, 2001, 185(2): 207~221
    [52] Sellergren B, Shea K J, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, J. Chromatogr. A, 1993, 635(1): 31~49
    [53] Piletsky S A, Alcock S, Turner A P F, Molecular imprinting: at the edge of the third millennium, Trends Biotechnol., 2001, 19(1): 9~12
    [54]杨座国,手性分子印迹聚合物及其复合膜制备的研究,上海:化工理工大学,2005:74~84
    [55] Wulff G, Molecular imprinting in cross-linked materials with the aid of molecular template-a way towards artificial antibodies, Angew. Chem. Int. Ed. Engl., 1995, 34(17): 1812~1832
    [56] Takeuchi T, Dobashi A, Kimura K, Molecular imprinting of biotin derivatives and its application to competitive binding assay using nonisotopic labeled ligands, Anal. Chem., 2000, 72(11): 2418~2422
    [57] Piletsky S A, Piletska E A, Karim K, et al., Custom synthesis of molecular imprinted polymers for biotechnological application: Preparation of a polymer selective for tylosin, Anal. Chim. Acta, 2004, 504(1):123~130
    [58] Chianella I, Karim K, Piletska EV, et al., Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: Adsorbent for abacavir, Anal. Chim. Acta, 2006, 559(1): 73~78
    [59] Yoshida M, Hatate Y, Uezu K, et al., Chiral-recognition polymer prepared by surface molecular imprinting technique, Colloids Surf. A, 2000,169(1-3): 259~ 269
    [60]李萍,戎非,朱馨乐等,右旋邻氯扁桃酸分子印迹聚合物的制备及结合特性研究,高分子学报,2003(5):724~727
    [61]李萍,胡濬喆,林盕降龋曰煨诼缺馓宜嵛0宓姆肿佑〖>酆衔锏?制备及拆分性能研究,化学学报,2003,61(11):1885~1889
    [62]中华人民共和国国家技术监督局,GB19587-2004,中华人民共和国国家标准,北京:中国标准出版社,2005-04-01
    [63]殷开梁,邹定辉,杨波等,Materials Studio软件涉及力场中氢键的研究,计算机与应用化学,2006,23(12):1335~1340
    [64]郑水林,粉体表面改性,北京:中国建材出版社,1995,70~71
    [65]沈德言,红外光谱法在高分子研究中的应用,上海:科学出版社,1982,77~104
    [66] Gregg S J, Sing K S W, Adsorption surface area and porosity,London: Academic press, 1982, 3~12
    [67] Vlatakis G, Andersson L I, Muller R, et al., Drug assay using antibody mimics made by molecular imprinting, Nature, 1993, 361(18): 645~647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700