用户名: 密码: 验证码:
水溶性聚合物溶液中聚苯胺的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PANI)由于稳定性好、合成方便、电导率可调等优点,在电子元件、二次电池、防腐等领域有着广阔的应用前景。微/纳米结构的PANI材料在科学和技术上引起了人们广泛的关注。本文使用原位聚合的方法,选取合适的高分子作为合成PANI的模板,一方面对了解PANI的合成与组装具有重要意义;另一方面,也为聚苯胺及其他新型聚合物纳米材料的的应用开发提供了理论和实验依据。
     利用聚乙烯醇(PVA)作为软模板,首次在PVA水溶液体系中合成了由纳米片堆积而成的纳米线。实验结果表明,盐酸和苯胺单体的浓度对PANI产物的形貌有显著的影响;其他实验参数如反应温度、PVA浓度等对PANI产物形貌有一定的影响。提出了PANI在PVA水溶液中的生成与组装机理,认为,PVA分子间通过氢键形成的平行结构及其苯胺聚集体对聚苯胺纳米结构的形成起关键作用。
     首次使用可溶性淀粉作为软模板,在控制条件下合成了PANI纳米球、纳米线、微米毯等多种结构。考查了实验条件如反应温度、苯胺浓度、掺杂酸浓度、反应温度等因素对PANI形貌的影响。结果表明,苯胺/掺杂酸摩尔比对PANI形貌影响显著。提出了PANI在淀粉水溶液中的生成机理,认为在淀粉水溶液中,PANI纳米线的团聚和交联是影响最终产物形貌的重要因素:如果PANI纳米线发生团聚,则最终产物是纳米球;如果PANI纳米线发生交联,则得到微米毯。
One of the most studied inherent conducting polymers, polyaniline (PANI) has advantages over some other conducting polymers in cost-effective, good environmental stability, and the controllable conductivity adjusted by the doping/dedoping process. PANI also has promising applications in electronic devices, polymer rechargeable batteries, anticorrosion and so on. PANI with nano/micro-structure has attracted widespread interests in science and technology. Using in-situ polymerization methods, choosing appropriate polymers as soft-template to synthesize aimed polyaniline nanostructures is not only helpful to understand the mechanism of the polymerization and assembly of PANI, but also provides theoretical and experimental basises for developing PANI and other new polymeric composite materials.
     Using polyvinyl alcohol (PVA) as soft template, PANI nanofibers accumulated by nanoflakes were obtained for the first time. The influence of reaction parameters, such as reaction time, concentration of reactants, and the content of PVA on the morphology of PANI were investigated. The results indicate that the concentration of HCl and Aniline have significant effect on the morphology of PANI, while other parameters such as reaction time and content of PVA are less significant. The formation mechanism of the PANI nanofibers was proposed. The hydroxyl groups on the parallel-oriented PVA chains play a‘template’role in the assembly process.
     Soluble starch was also usd as soft template for polymerization of PANI for the first time, PANI nanostructures such as nanoparticles, nanofibers and micromats assembled by PANI nanofibers were successfully synthesized. The influences of reaction parameters on the morphology of PANI were investigated. The results indicate that the HCl/Aniline molar ratio has significant effect on the morphology of the PANI. The formation mechanism of PANI nanostructures was proposed. Crosslinking and aggregation of PANI have great influence on the morphology of PANI products. If the crosslinking predominates, the products will be micromats, while when aggregation predominates, the products will be nanoparticles.
引文
[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger., Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene (CH)n , J. Chem. Soc. Chem. Commun., 1977, 578
    [2] A. G. MacDiarmid,“Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture), Angew. Chem. Int. Ed. 2001, 40, 2581-2590
    [3]赵文元,王亦军,功能高分子材料,化学工业出版社,2008,57
    [4]王建国,王德海,邱军等,功能高分子材料,华东理工大学出版社,2006,192-193
    [5] W. S. Huang, B. D. Humphrey, A. G. MacDiarmid. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Commun. Faraday. Trans., 1986, 82, 2385-2400
    [6] H. Letheby., On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc., 224, 161:1862
    [7] J. C. Chiang, A. G. MacDiarmid.‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime, Synth Met., 1986,13:193
    [8] http://nobelprize.org/nobel_prizes/chemistry/laureates/2000/index.html
    [9] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56?58
    [10]何天白,胡汉杰,功能高分子与新技术,化学工业出版社,2001,83-84
    [11] W. R. Heineman, H. J. Wieck, A. M. Yacynych, Polymer film chemically modified electrodes as a potentiometric sensor, Anal. Chem., 1980, 52, 345-346
    [12] L, Dan, J. X. Huang, R. B. Kaner, Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications, Acc. Chem. Res., 2009, 1, 135-145
    [13] (a)J. X. Huang, S. Virji, B. H. Weiller, etc., Polyaniline: Facile synthesis and chemical sensors, J. Am. Chem. Soc., 2003, 125(2), 314-315; (b) A. K. Ajay, D. N. Srivastava, Microtubular conductometric biosensor for ethanol detection,Biosens. Bioelectron.,2007, 23, 281-284; (c) Z. Matharu, G. Sumana, S. K. Arya, etc., Polyaniline Langmuir-Blodgett film based cholesterol biosensor, Langmuir, 2007,26, 13188-13192
    [14] K. Arora, N. Prabhakar, S. Chand, etc., Ultrasensitive DNA hybridization biosensor based on polyaniline, Biosens. Bioelectron, 2007, 5, 203-207
    [15] Y. Fan, X. T. Chen, A. D. Trigg, C. H. Tung, etc., Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps, J. Am. Chem. Soc., 2007,17, 5437-5443
    [16] W. Yan, X. M. Feng, X. J. Chen, W. H. Hou, J. J. Zhu, A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material, Biosens. Bioelectron, 2008, 7, 925-931
    [17] (a)Z. Q. Gao, S. Rafea, L. H. Lim, Detection of nucleic acids using enzyme-catalyzed template- guided deposition of polyaniline, Adv Mater, 2007,4, 602; (b)K. Arora, N. Prabhakar, S. Chand,B. D. Malhotra, Escherichia coli genosensor based on polyaniline, Anal. Chem., 2007, 16, 6152-6158
    [18] J. X. Huang, S. Vriji, B. H. Weiller, etc., Nanostructured polyaniline sensors, J. Chem. Eur., 2004, 10(6), 1315-1319
    [19] (a)S. Virji, J. X. Huang, R. B. Kaner, etc., Polyaniline nanofibre gas sensors: Examination of reponse mechanisms, Nano. Lett., 2004, 4, 491-496; (b) X. Li, Y. Gao, J. Gong, etc. Polyaniline/Ag Composite Nanotubes Prepared through UV Rays Irradiation via Fiber Template Approach and their NH3 Gas Sensitivity, J. Phys. Chem. C, 2009, 1, 69-73
    [20] H. L. Wang, R. J. Romero, B. R. Mattes, etc., Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber, J. Polym. Sci. part B. Polym. Phys., 2000, 38(1), 194-204
    [21] C. O. Baker, B. Shedd, P. C. Innis, Monolithic Actuators from Flash-Welded Polyaniline Nanofibers, Adv. Mater. 2008, 20, 155–158
    [22] (a) E. Smela, W. Lu, B. R. Mattes, Polyaniline actuators: Part 1. PANI(AMPS) in HCl, 2005, 151(1), 25-42; (b)E. Smela, B. R. Mattes, Polyaniline actuators Part 2. PANI(AMPS) in methanesulfonic acid, Synth. Met., 2005, 151, 43–48
    [23] W. G. Li, C. L. Johnson, H. L. Wang, Preparation and characterization of monolithic polyaniline-graphite composite actuators, Polymer, 2004, 45(14), 4769-4775
    [24] H. H. Zhou, H. Chen, S. L. Luo, the effect of the polyaniline morphology on the performance of the polyaniline supercapacitors, J solid state electrochem, 2005, 9, 574-580
    [25]何天白,胡汉杰,功能高分子与新技术,化学工程出版社,2001,80-81
    [26] A. J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials, J. Phys. Chem. B.,2001, 105, 8475-8491
    [27] G. Mengoli, M. M. Musiani, S. Vakcher, Studies of Zn|ZnX2|polyaniline batteries. I. X.=Cl and Br, J. Appl. Electrochem., 1987, 17, 515-524
    [28] A. F. Diaz, J. L. Castillo., A polymer electrode with variable conductivity: polypyrrole, J. Chem. Soc. Chem. Commun.,1980,397
    [29] L. W. Shachlette, R. L. Elsenbaumer, R. R. Chance etc., Electrochemical doping of poly-(p-phenylene) with application to organic batteries, J. Chem. Soc. Chem. Commun.,1982,361
    [30] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen., Plastic Solar Cells, Adv. Funct. Mater., 2001, 11:15
    [31] S. X. Tan, J. Zhai, B. F. Xue, M. X. Wan, etc.,Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells, Langmuir, 2004, 20, 2934-2937
    [32] L. Guo, L.Y. Liang, C. Chen, M. T. Wang, etc., Electron transport in solid-state dye-sensitized solar cells based on polyaniline, Acta Physica Sinica, 2007, 7, 4270-4276
    [33] N. Ikeda, K. Teshima, T. Miyasaka, Conductive polymer–carbon–imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells, Chem. Commun., 2006, 16, 1733-1735
    [34] Z. R. Liu, J. R. Zhou, H. L. Xue, etc., Polyaniline/TiO2 solar cells, Synth. Met., 2006, 9-10, 721-723
    [35] C. H. Yang, T. C. Yang, Self-doped polyaniline-modified anode for polymer light-emitting diode, J. Phys. Chem. Solids. , 2008, 2-3, 769-774
    [36] C. H. Yang, Y. K. Chih, Molecular assembled self-doped polyaniline interlayer for application in polymer light-emitting diode, J. Phys. Chem. B, 2006, 39, 19412-19417
    [37] J. Jang, J. Ha, K. Kim, Organic light-emitting diode with polyaniline -poly(styrene sulfonate) as a hole injection layer, Thin Sol. Films., 2008,10, 3152-3156
    [38] C. C. Chen, S. R. Hwang, W. H. Li, etc., Enhanced electroluminescence of polymer light-emitting diodes with direct polyaniline synthesized anodes, Polym. J. , 2002,4,271-274
    [39] Y. R. Yeh, H. T. Hsiao, C. G. Wu, The application of in-situ prepared polyaniline film as a hole blocking layer in polymeric organic light emitting diode, Synth. Met., 2001, 1-3, 1651-1652
    [40] P. Saini, V. Choudhary, B. P. Singh, etc., Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding, Mater. Chem. Phys., 2009, 2-3, 919-926
    [41] K. Lakshmi, H. John, K. T. Mathew, etc., Microwave absorption, reflection and EMI shielding of PU-PANI composite, Acta Mater., 2009, 2, 371-375
    [42] X. L. Jing, Y. Y. Wang, B. Y. Zhang, Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings, J. Appl. Polym. Sci. , 2005, 5, 2149-2156
    [43] Y. P. Duan, S. H. Liu, H. T. Guan, Investigation of electromagnetic characteristics of polyaniline composites, J. Compos. Mater., 2006, 12, 1093-1104
    [44] N. C. Das, S. Yamazaki, M. Hikosaka, T. K. Chaki, etc. , Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline-ethylene vinyl acetate composites, Polym. Int., 2005,2,256-259
    [45] R. S. Biscaro, M. C. Rezende, R. Faez, Reactive doping of PAni-CSA and its use in microwave absorbing materials, Polymer. Adv. Tech., 2009, 1, 29-34
    [46] S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon, Synth. Met., 2008, 6, 251-256
    [47] K. H. Wu, T. H. Ting, G. P. Wang, C. C. Yang, etc., Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2-40 GHz, Synth. Met., 2008, 17-18, 688-694
    [48] D. A. Makeiff, T. Huber, Microwave absorption by polyaniline-carbon nanotube composites, Synth. Met., 2006,7-8,497-505
    [49] L. Cecchetto, D. Delabouglise , J.P. Petit, On the mechanism of the anodic protection of aluminium alloy AA5182 by emeraldine base coatings: Evidences of a galvanic coupling, Electrochim Acta, 2007, 52, 3485–3492
    [50] L. Zhong, H. Zhu, J. Hu, S. H. Xiao, F. X. Gan, A passivation mechanism of doped polyaniline on 410 stainless steel in deaerated H2SO4 solution, Electrochim Acta, 2006, 51, 5494–5501
    [51] R. H. Yin, X. B. Ji, H. J. Wang, etc.,Preparation and radiation modification of anticorrosion polyaniline films synthesized by electropolymerizing on zinc-electroplated steel , Acta Metall. Sin.,2007,3,273-280
    [52] A. T. Ozyilmaz, Electropolymerization of poly (aniline-co-o-anisidine) on copperand its anticorrosion properties, J. Phys. D: Appl. Phys., 2008, 6
    [53] L. Cecchetto, D. Delabouglise, J. P. Petit, On the mechanism of the anodic protection of aluminium alloy AA5182 by emeraldine base coatings - Evidences of a galvanic coupling, Electrochim Acta, 2007, 11, 3485-3492
    [54] S. Sathiyanarayanan, S. S. Azim, G. Venkatachari, Preparation of polyaniline-Fe2O3 composite and its anticorrosion performance, Synth. Met., 2007, 18-20, 751-757
    [55] S. Radhakrishnan, C. R. Siju, D. Mahanta, S. Patil, G. Madras, Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings, Electrochim Acta., 2009, 4, 1249-1254
    [56] M. R. Anderson, B. R. Mattes, H. Reiss,P. B. Kaner, conjugated polymer films for gas separartion, Science, 1991,252,1412-1415
    [57] G. Illing, K. Hellgardt, R. J. Wakeman, preparation and characterization of polyaniline based membranes for gas separation, J. Membr. Sci., 2001, 184,69-78
    [58] (a)M. R Anderson,B. R. Mattes,H. Reiss,R. B. Kaner. Conjugated polymer-films for gas separations. Science,1991,252:1412-1415. (b) G. Illing,K. Hellgardt,R. J. Wakeman, A Jungbauer. Preparation and Characterization of polyaniline membranes for gas separation, J. Membr. Sci.,2001,184, 69-78. (c) A. Stolarczyk,M. Lapkowski. Investigation of gas separation on polyaniline laminar composite membranes. Synth. Met., 2001,121:1385-1386. (d) G. Illing,K. Hellgardt,M. Schonet,R. J. Wakeman,A. Jungbauer. Towards ultrathin polyaniline films for gas separation. J. Membr. Sci., 2005, 253:199-208.
    [59] B. Kim, V. Koncar, C. Dufour, Polyaniline-coated PET conductive yarns: Study of electrical, mechanical, and electro-mechanical properties, J. Appl. Polym. Sci. , 2006, 3, 1252-1256
    [60] D. Bowman, B. R. Mattes, Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications, Synth. Met., 2005, 1-3, 29-32
    [61] C. H. Yang, T. L. Wang, Y. T. Shieh, Molecular assembled crosslinked self-doped polyaniline nano-thin films in application of electrochromic devices, Electrochem. Commun. 2009, 2, 335-338
    [62] Q. Zeng, A. McNally, T. E. Keyes, Forster, RJ, Redox induced switching dynamics of a three colour electrochromic metallopolymer film, Electrochim.Acta, 2008, 24, 7033-7038
    [63] X. Y. Zhang, W. J. Goux, S. K. Manohar, Synthesis of Polyaniline Nanofibers by“Nanofiber Seeding”, J. Am. Chem. Soc. 2004, 126, 4502–4503.
    [64] X. Y. Zhang, S. K. Manohar, Polyaniline nanofibers: chemical synthesis using surfactants, Chem. Commun. 2004, 2360–2361.
    [65] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner,Y. Yang, Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory, Nano Lett.2005, 5,1077–1080.
    [66] D. Li, Y. N. Xia, Nanomaterials: Welding and patterning in a flash, Nat. Mater. 2004, 3, 753–754.
    [67] (a)C. R. Martin, L. S. V. Dyke, Z. Cai, W. Liang, Template synthesis of organic microtubules, J. Am. Chem. Soc. 1990,112, 8976–8977. (b) R. M. Penner, C. R. Martin, Controlling the morphology of electronically conductive polymers, J. Electrochem. Soc. 1986, 133, 2206–2207. (c)C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994, 266, 1961–1966. (d) C. R. Martin, Template Synthesis of Electronically Conductive Polymer Nanostructures, Acc. Chem. Res. 1995, 28, 61–68. (e)C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater. 1996, 8, 1739–1746.
    [68] C. G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 1994, 264, 1757–1759.
    [69] (a)C. W. Wang, Z. Wang, M. K. Li, H. L. Li, Well-aligned polyaniline nano-fibril array membrane and its field emission property, Chem. Phys. Lett. 2001, 341, 431–434. (b) Z. Wang, M. A. Chen, H.L. Li, Mater. Sci. Eng. A, 2002, 328, 33–38. (c) S. M. Yang, K. H. Chen, Y. F. Yang, Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane, Synth. Met. , 2005, 152, 65–68.
    [70] (a)C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science 1994, 266, 1961–1966. (b) C. R. Martin, Template Synthesis of Electronically Conductive Polymer Nanostructures, Acc. Chem. Res. 1995, 28, 61–68. (c) C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater. 1996, 8, 1739–1746.
    [71] (a)H. J. Qiu, M. X.Wan, B. Matthews, L. M. Dai, Conducting Polyaniline Nanotubes by Template-Free Polymerization, Macromolecules. 2001, 34,675–677. (b) J. Liu, M. X. Wan, Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method, J. Mater. Chem. , 2001, 11, 404–407. (c) Y. Z. Long, Z. J. Chen, P. Zheng, N. L. Wang, Z. M. Zhang, M. X. Wan, Low-temperature resistivities of nanotubular polyaniline doped with H3PO4 and beta-naphthalene sulfonic acid, J. Appl. Phys. 2003, 93, 2962–2965. (d) Z. X. Wei, M. X. Wan, Synthesis and characterization of self-doped poly(aniline-co-aminonaphthalene sulfonic acid) nanotubes, J. Appl. Polym. Sci., 2003, 87, 1297–1301.
    [72] Z. M. Zhang, Z. X. Wei, M. X. Wan, Nanostructures of Polyaniline Doped with Inorganic Acids, Macromolecules., 2002, 35, 5937–5942.
    [73] (a)Y. Z. Long, Z. J. Chen, P. Zheng, N. L. Wang, Z. M. Zhang, M. X. Wan, J.Appl. Phys. 2003, 93, 2962–2965. (b) M. X. Wan, J. C. Li, Formation mechanism of polyaniline microtubules synthesized by a template-free method, J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 2359– 2364. (c) Y. Z. Long, Z. J. Chen, N. L. Wang, Z. M. Zhang, M. X. Wan, Phys. B: Condens. Matter., 2003, 325, 208–213.
    [74] K. Huang, M. X. Wan, Self-Assembled Polyaniline Nanostructures with Photoisomerization Function, Chem. Mater., 2002, 14, 3486–3492.
    [75] Z. M. Zhang, Z. X. Wei, M. X. Wan, Nanostructures of Polyaniline Doped with Inorganic Acids, Macromolecules., 2002, 35, 5937–5942.
    [76] D. Wang, F. Caruso., Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies, Adv. Mater. 2001, 13, 350-253
    [77] G. A. Ozin, Nanochemistry: Synthesis in diminishing dimensions, Adv.Mater., 1992, 4, 612-649
    [78] J. M. Liu, S. C. Yang, Novel colloidal polyaniline fibrils made by template guided chemical polymerization, J. Chem. Soc.Chem. Commun., 1991, 1529–1531.
    [79] X. F. Lu, Y. H.Yu, L.Chen,etc., Poly(acrylic acid)-guided synthesis of helical polyaniline microwires, Polymer, 2005,46,5329
    [80] R. Gangopadhyay, A. De, G. Ghosh, Polyaniline-poly (viyl alcohol) conducting composite: material with easy processability and novel application potential, Synth. Met., 2001,123, 21-31
    [81] P. Ghosh, S. K. Siddhanta, A. Chakrabarti, Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium, Eur.Polym. J., 1999, 35, 699-710
    [82] B. Datta, G. B. Schuster, DNA-Directed Synthesis of Aniline and 4-Aminobiphenyl Oligomers: Programmed Transfer of Sequence Information to a Conjoined Polymer Nanowire, J. Am. Chem. Soc., 2008, 130 (10), 2965–2973
    [83] Y. F. Ma, J. M. Zhang, G. J. Zhang, H. X. He, Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates, J. Am. Chem. Soc., 2004, 126 (22), 7097–7101
    [84] C. G. Li, S. P. Pang, G. W. Xie, etc., Synthesis of radially aligned polyaniline dendrites, Polymer, 2006, 47, 1456-1459
    [85] Y. Zhu, D. Hu, M. X. Wan, etc., Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline, Adv. Mater., 2007,19, 2092-2096
    [86] J. S. Wang, J. X. Wang, Z. D. Dai, etc., Formation of Polyaniline Nanofibers in present of PVA: A Morphological Study, J. Phys. Chem. C, accepted
    [87] J. X. Huang, R. B. Kaner, A General Chemical Route to Polyaniline Nanofibers, J. Am. Chem. Soc., 2004, 126, 851–855.
    [88] J. X. Huang, R. B. Kaner, Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study, Angew. Chem. Int. Ed., 2004, 43, 5817–5821.
    [89] X. Y. Zhang, R. Chan-Yu-King, A. Jose, S.K. Manohar, Nanofibers of polyaniline synthesized by interfacial polymerization, Synth. Met., 2004, 145, 23–29.
    [90] J. X. Huang, S. Virji, B. H. Weiller, R. B. Kaner, A General Chemical Route to Polyaniline Nanofibers, J. Am. Chem. Soc., 2003, 125, 314–315.
    [91] (a)N. R. Chiou, A. J. Epstein, Polyaniline Nanofibers Prepared by Dilute Polymerization, Adv. Mater., 2005, 73, 1679–1683. (b) N. R. Chiou, A. J. Epstein, A Simple Approach to Control the Growth of Polyaniline Nanofibers, Synth. Met., 2005, 153, 69–72.
    [92] X. Y. Zhang, W. J. Goux, S. K. Manohar, Synthesis of Polyaniline Nanofibers by“Nanofiber Seeding”, J. Am. Chem. Soc., 2004, 126, 4502–4503.
    [93] W. G. Li, H. L. Wang, Oligomer-Assisted Synthesis of Chiral Polyaniline Nanofibers, J. Am. Chem. Soc.,2004, 126, 2278–2279.
    [94] X. M. Feng, G. Yang, Q. Xu, W. H. Hou, J. J. Zhu, Self-Assembly of Polyaniline/Au Composites: From Nanotubes to Nanofibers, Macromol. Rapid Commun., 2006, 27, 31–36.
    [95] R. C. Y. King, F. Roussel, Morphological and electrical characteristics of polyaniline nanofibers, Synth. Met., 2005, 153, 337–340.
    [96] Z. H. Mo, W. Qiu, X. C. Yang, J. Yan, Z. D. Gu, Morphological characterization and kinetics study of polyaniline film formation by emulsion polymerization, J Polym Res., 2009, 16, 39–43
    [97] E. B. Flink, K. S. Suslick, , Science, 1990, 3,1439
    [98] X. L. Jing, Y. Y. Wang, D. Wu, J. P. Qiang, Sonochemical synthesis of polyaniline nanofibers, Ultrason. Sonochem., 2007, 14, 75–80.
    [99] H. Liu, X. B. Hu, J. Y. Wang, R. I. Boughton, Structure, Conductivity, and Thermopower of Crystalline Polyaniline Synthesized by the Ultrasonic Irradiation Polymerization Method, Macromolecules, 2002, 35 (25), 9414–9419
    [100] X. L. Jing, Y. Y. Wang, D. Wu, L. She, Y. Guo, Polyaniline nanofibers prepared with ultrasonic irradiation, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1014–1019.
    [101] S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, J. G. Story, M. F. Bertino, Radiolytic Synthesis of Polyaniline Nanofibers: A New Templateless Pathway, Chem. Mater., 2005, 17, 227–229.
    [102] S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino, One-Pot Synthesis of Polyaniline?Metal Nanocomposites, Chem. Mater., 2005, 17, 5941–5944.
    [103] L. K. Werake, J. G. Story, M. F. Bertino, S. K. Pillalamarri, F. D. Blum, Photolithographic synthesis of polyaniline nanofibres, Nanotechnology., 2005, 16, 2833–2837.
    [104] (a)D. M. Mohilner, R. N. Adams, W. J. Argersinger, Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode, J. Am. Chem. Soc., 1962, 84 (19), 3618-3622, (b) J. Bacon, R. N. Adams, Anodic oxidations of aromatic amines.III. Substituted anilines in aqueous media, J. Am. Chem. Soc., 1968, 90 (24), 6596-6599?
    [105] I. D. Norris, M. M. Shaker, F. K. Ko, etc., Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals. 2000, 114, 109-114
    [106] H. X. He, C. Z. Li, N. Tao, Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method, Appl. Phy. Lett., 2001, 78: 811-813
    [107] J. X. Huang, J. A. Moore, J. H. Acquaye, R. B. Kaner, Mechanochemical Route to the Conducting Polymer Polyaniline, Macromolecules, 2005, 38 (2), 317–321
    [108] X. T. Zhang, J. Zhang, R. M. Wang, Z. F. Liu, Preparation ofpolyaniline/multiwalled carbon nanotube composite by novel electrophoretic route, Carbon., 2008, 46, 1727–1735
    [109] J. Jang, J. Bae, M. Choi, etc., Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon, 2005, 43, 2730-2736
    [110] L. P. Heng, X. Y. Wang, J. Zhai, etc., Fabrication of stable polyaniline foams and their photoelectric conversion behaviors, Chem. Phys. Chem. 2008, 9, 1559– 1563
    [111] L. Ma, W. Lu, M. Y. Gan, C. Chen, etc., Effect of a constant magnetic field (0.4 T) on orientation microstructure of polyaniline, Acta Chim. Sinica, 2008, 10, 1259-1264
    [112] (a) L. X. Zhang , L. J. Zhang , M. X. Wan, Y. Wei, Polyaniline micro/nanofibers doped with saturation fatty acids, Synth. Met., 2006, 156, 454–458, (b) L. J. Zhang, M. X. Wan, Y. Wei, Nanoscaled Polyaniline Fibers Prepared by Ferric Chloride as an Oxidant, Macromol. Rapid Commun. 2006, 27, 366–371
    [113] H. Ding, M. Wan, Y. Wei., Controlling the Diameter of Polyaniline Nanofibers by Adjusting the Oxidant Redox Potential, Adv. Mater. 2007, 19, 465–469
    [114] (a)N. Gospodinova, P. Mokreva, L. Terlemezyan., Stable aqueous dispersions of polyaniline, J Chem Soc Chem Commun 1992, 923. (b)J. Stejskal, P. Karatochvil, N. Gospodinova, etc., Polyaniline dispersions: preparation of spherical particles and their light-scattering characterization,Polymer 1992, 33, 4857.
    [115] H. Nokhchii, H. Jyodai, S. Matsuzawa, Formation of poly(vinyl alcohol)-iodine complexes in solution, J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1701-1709
    [116] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres, Macromolecules, 2008, 41, 3530-3536
    [117] L. J. Zhang, M. X. Wan, self-assembly of polyaniline-from nanotubes to hollow microspheres, Adv. Funct. Mater., 2003, 13, 815-820
    [118] J. X. Huang, R. B. Kaner. A General Chemical Route to Polyaniline Nanofibers, J. Am. Chem. Soc., 2004, 126 (3), 851-855
    [119] H. J. Ding, M. X. Wan, Y. Wei. Adv. Mater., 2007, 19, 465
    [120] M. M. Ayad, E. A. Zaki, Synthesis and Characterization of Polyaniline Films Using Fenton Reagent, J. Appl. Polym. Sc., 2008,, 110, 3410–3419
    [121] M. Trchov, I. Ednkov, E. N. Konyushenko, J. Stejskal, P. Holler, G. iri-Marjanovi, Evolution of Polyaniline Nanotubes: The Oxidation of Aniline inWater, J. Phys. Chem. B, 2006, 110 (19), 9461-9468
    [122] (a) J. Stejskal, A. Riede, D. Hlavat, J. Proke, M. Helmstedt, P. Holler, The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline, Synth. Met ., 1998, 96, 55-61; (b) P. N. Adams, A. P. Monkman, Characterization of high molecular weight polyaniline synthesized at -40 C using a 0.25:1 mole ratio of persulfate oxidant to aniline, Synth. Met ., 1997, 87, 165–169
    [123] (a)I. Sapurina, A. Riede, J. Stejskal, In-situ polymerized polyaniline films 3 film formation, Synth Met., 2001, 123, 503-507; (b) A. Jano.ˇsevi′c, G. C. Marjanovic, B. Marjanovi′c, P. Holler, M. Trchov′a, J. Stejskal, Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes, Nanotechnology., 2008, 19, 135606 -135614
    [124] J. Stejskal, I. Sapurina, On the origin of colloidal particles in the dispersion polymerization of aniline, J. Colloid Interface Sci., 2004, 274, 489–495,
    [125] J. Stejskal , J. Proke? , M. Trchová, Reprotonation of polyaniline: A route to various conducting polymer materials, Reactive & Functional Polymers,. 2008, 68, 1355–1361
    [126] (a)S. Quillard, G. Louarn, S. Lefrant, A.G. MacDiarmid, Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases, Phys. Rev. B, 1994, 50, 12496. (b)M. Trchov, I. ednkov, E. N. Konyushenko, J. Stejskal, P. Holler, and G. iri-Marjanovi, Evolution of Polyaniline Nanotubes: The Oxidation of Aniline in Water, J. Phys. Chem. B,. 2006, 110, 9461. (c) M. Cochet, G. Louarn, S. Quillard, M.I. Boyer, J.P. Buisson, S. Lefrant, Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis, J. Raman Spectrosc., 2000, 31, 1029.
    [127] (a) R. Ganesan, A. Gedanken, Organic–inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems, Nanotechnology, 2008,19, 435709, (b) J. B. Yin, X. P. Zhao, X. Xia, L. Q. Xiang, Y. P Qiao, Electrorheological fluids based on nano-fibrous polyaniline, Polymer., 2008, 49, 4413–4419
    [128] (a)Y. Kieffel, J. P. Travers, A. Ermolieff, D. Rouchon, Thermal aging of undoped polyaniline: Effect of chemical degradation on electrical properties, J. Appl. Polym. Sci., 2002, 86, 395. (b) X. Q. Lin, H. Q. Zhang, In situ external reflection FTIR spectroelectrochemical investigation ofpoly(o-phenylenediamine) film coated on a platinum electrode, Electrochim. Acta 1996, 41, 2019. (c) I. Sapurina, A. Yu. Osadchev, B. Z. Volchek, etc., In-situ polymerized polyaniline films: 5. Brush-like chain ordering, Synth. Met. 2002, 129, 29
    [129] (a) C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem Mater, 1996, 8, 1739. (b) L. J. Zhang, M. X.Wan, Chiral polyaniline nanotubes synthesized via a self-assembly process, Thin Sol. Films, 2005; 477:24.
    [130] J. P. Pouget, M. E. Jozefowicz, A. J. Wpstein, X. Tang, A. G. MacDiarmid, X-ray structure of polyaniline, Macromolecules, 1991;24:779.
    [131]淀粉的化学与工艺学(starch chemistry and technology), R L惠斯特勒,J N贝密勒, E F帕斯卡尔著,闵大全,杨家顺,高天舜张陆等译,中国食品出版社,1987,1-3
    [132]张友松,变性淀粉生产与应用手册,中国轻工业出版社, 1999,1-3
    [133]张力田,变性淀粉(第二版),华南理工大学出版社,1999,7-8
    [134] T. K. Sarma, A Chattopadhyay, Reversible Encapsulation of Nanometer-Size Polyaniline and Polyaniline?Au-Nanoparticle Composite in Starch, Langmuir, 2004, 20 (11), 4733-4737
    [135] Q. Y. Lu, F. Gao, S. Komarneni, A Green Chemical Approach to the Synthesis of Tellurium Nanowires, Langmuir, 2005, 21, 6002-6005
    [136] W. Shi, P. F. Liang, D. T. Ge, J. X. Wang, Q. Q. Zhang, Starch-assisted synthesis of polypyrrole nanowires by a simple electrochemical approach, Chem. Commun., 2007, 2414–2416
    [137] R.L.惠斯特勒,J.N.贝密勒,E.F.帕斯卡尔,淀粉的化学与工艺学,中国食品出版社,190-191,1987,10
    [138] W. Banks, C. T. Greenwood,The conformation of amylose in neutral, aqueous salt solution,Carbohydr. Res.,1986,7,349-356
    [139] W. Banks, C. T. Greenwood,The Conformation of Amylose in Dilute Solution ,Staerke,1971,23,300-314
    [140] M. Kodama, H. Noda, T. Kamata,Conformation of amylose in water. I. Light-scattering and sedimentation-equilibrium measurements,Biopolymers,1978,17,985-1002
    [141] J. Stejskal, I. Sapurina, M. Trchova′, etc., The genesis of polyaniline nanotubes, Polymer, 2006, 47, 8253-8262.
    [142] J. S. Tang, X. B. Jing, B. C. Wang, F. S. Wang, Infrared spectra of solublepolyaniline, Synth. Met. 1988, 24, 231-238.
    [143] C. Q. Zhou, J. Han, G. P. Song, R. Guo, Polyaniline Hierarchical Structures Synthesized in Aqueous Solution: Micromats of Nanofibers, Macromolecules, 2007, 40 (20), 7075-7078
    [144]张力田,变性淀粉(第二版),华南理工大学出版社,1999,2-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700