用户名: 密码: 验证码:
TiO_2纳米带的制备、改性及光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以普通的工业二氧化钛粉体为前驱体,通过水热法制备了未掺杂和银元素及氮元素掺杂的二氧化钛纳米带。用扫描电镜、X射线衍射、X光电子能谱、比表面积、红外光谱等手段对产物进行表征和分析,并在紫外-可见-甲基橙体系中研究其光催化性能。
     研究表明:所制备的二氧化钛均为带状,直径多在50~300nm之间,长度可达几十微米。并且随着煅烧温度的升高,团聚现象逐渐减小,分散性越来越好。银和氮元素的引入并没有改变TiO2纳米带的整体形貌,但氮的引入对纳米带的生长有一定的抑制作用,而且银和氮元素的掺杂改性都抑制了TiO2由无定形向锐钛矿转变及由锐钛矿向金红石的相转变过程。
     水热法制备的二氧化钛纳米带在一定煅烧温度范围内,随着温度的升高,其催化活性有所提高;催化活性随煅烧时间增加而增大,3h后煅烧时间对催化活性的影响不大;催化剂用量为2 g/L,甲基橙初始浓度较低时,其光催化效果较佳。通过对银元素掺杂的二氧化钛纳米带的研究,发现银元素的掺杂存在一个最佳的掺杂量,。高于或低于此掺杂量,光催化效率均下降。在最佳负载量0.1(w/w)%时,Ag/TiO2纳米带的活性比纯TiO2纳米带高22%左右。采用前期掺银方式所制得催化剂明显优于后期掺银所制得催化剂,而且掺银二氧化钛纳米带的光催化活性优于纳米粒子。
     通过对氮元素掺杂的二氧化钛纳米带的研究,发现样品的晶化程度随着煅烧温度的升高而增大,而BET比表面积则随之减少。掺杂后的晶粒尺寸比不掺杂的要小,且掺杂浓度越高,晶粒越小,二氧化钛的比表面积则越大。氮元素的掺杂也存在一个最佳掺杂量,当n(N):n(Ti)=4:1时,所制得的N/TiO2纳米带的可见光活性较高。本文通过比较三种不同的氮前驱体制备的N/TiO2纳米带的可见光催化活性,发现以三乙胺为前驱体所制得的N/TiO2纳米带的活性较高。通过比较三种不同的方法制备N/ TiO2纳米带,发现在水热反应前引入氮元素所制得的催化剂可见光活性较高。虽然氮元素的引入提高了TiO2纳米带的可见光活性,但使TiO2纳米带紫外光催化活性有所下降。
In this article,both pure and Ag,N doped TiO2 nanobelts were prepared by hydrothermal method using industrial TiO2 power as precursors.The properties of products were characterized by SEM,XRD,XPS,BET and FTIR.The performance of TiO2 nanobelts promoting photodegradation of methyl orange was studied.
     The results show that the diameter of nanobelt was about 50nm to 300nm with a length about dozens of micron.The higher the calcination temperatures of TiO2 nanobelt,the better was the dispersed state of TiO2 nanobelts.The shape of Ag,N doped TiO2 nanobelts was not changed.Nitrogen can control the growth of TiO2 nanobelts.Both silver and nitrogen can control the process that unformed TiO2 was changed to anatase and rutile.
     In a range of calcination temperatures,The higher the calcination temperatures and the calcination time of TiO2 nanobelts,the better was the photocatalytic activity of TiO2 nanobelts.And the photocatalytic activity of TiO2 nanobelts was not changed after 3h.When the content of TiO2 nanobelt was 2g/L and the content of methyl orange was low,the photocatalytic activity of TiO2 nanobelts was the better.
     The modification of Ag doped TiO2 nanobelts was studied. The results show that there was the most appropriate doping ratio of Ag for Ag-doped TiO2 nanobelts.The photocatalytic ability of Ag -doped TiO2 nanobelts for degradation of methyl orange will deteriorate when the doping level was both higher and lower than the best value. When the doping ratio was 0.1(w/w)%, the activity of Ag-doped TiO2 nanobelts was higher than pure TiO2 nanobelts around 22%. Ag-doped TiO2 nanobelts prepared by preceding type were better than by upper type. The photocatalytic properties of Ag-doped TiO2 nanobelts were better than that of nanoparticles.
     The modification of N-doped TiO2 nanobelts was studied. The results show that the calcination temperature was higher,the degree of crystallization was better and the specific surface area was smaller.The size of N-doped TiO2 nanobelts was smaller than pure TiO2 nanobelts.When the doping concentration was higher,the size of samples was smaller and the specific surface area was biger. there was also the most appropriate doping ratio of N for N-doped TiO2 nanobelts.When the doping ratio was n(N):n(Ti)=4:1,The photocatalytic ability of N-doped TiO2 nanobelts was the best. N-doped TiO2 nanobelts were prepared using ammonia、triethylamineas、triethanolamine as precursors.Compared to the three samples, The photocatalytic ability of N-doped TiO2 using triethylamineas as precursors was the best. The photocatalytic ability of N-doped TiO2 was the better when N was joined before hydrothermal reaction. The photocatalytic ability of N-doped TiO2 was improved under UV light,but was receded under visible light.
引文
[1]石玉龙,谢广文.二氧化钛的用途及其薄膜的制备方法[J].电机电器技术,2000(3):37~41.
    [2]任成军,钟本和,周大钊等.水热法制备高活性TiO2光催化剂的研究进展[J].稀有金属,2004,28(5):903~906.
    [3] Diebold U.Structure and properties of TiO2 surfaces [J].Appl.phy.,2003,76 (5),681~687.
    [4] R.Bacsa,J.Kiwi.Eeffet of rutile Phase on Photocatalytic properties of Nanocrystalline titania during the degradation of p-coumaric acid [J].Appl.Cata.B.,1998,(16):19~29.
    [5] O.Teruhisa.Synegism between rutile and anatase TiO2 particles in Photocatalytic Oxidation of naphthalene[J].Appl.Cata.A.,2003,244:383~391.
    [6]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999 (2):1~10.
    [7] M.D.Driessen.Photooxidition of Trichloroethylene on Pt/TiO2[J].J.Phys.Chem.B,1998,102(8):1418~1423.
    [8] K.Vinodgopal,P.V.Kamat. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films[J]. Environmental science and Technology.1995,29(3):841~845.
    [9]张洪林.难降解有机物的处理技术进展[J].水处理技术,1998,24(5):259~264.
    [10]李君文.活性炭控制引用水中有机致癌物三卤甲烷的研究进展[J].中国给水排水,1994,10(5):37~40.
    [11]安丽,顾国维.采用活性炭纤维吸附水中三氯甲烷[J].同济大学学报.1996,24(2):198~193.
    [12]戴猷元.膜萃取过程及其进展[J].膜科学与技术,1992,12(1):1~7.
    [13]马英石,吴哲仁,林志高.超声波/H2O2工艺分解水中危害性氯化有机物[J].中国给水排水,1997,23(8):12~18.
    [14] G.A.Epling , etal.Borohydride , micellar , and exciplex-enhanced dechlorination of chlorobiphenyls [J]. Environ.Sci.Technol.,1988,22:952~956.
    [15] L.J.Matheson,P.G.Tratnyek. Reductive Dechlorination of Chlorinated Methanes by Iron Metal[J].Environ.Sci.Technol.,1994,28:2043~2045.
    [16]赵毅.多氯联苯催化转移氢化脱氯的研究[J].环境化学,1994,13(4):328~330.
    [17] C.G.Schreler,M.Reinhard.Transformation of Chlorinated Organic Compounds by Iron and Manganese Powders in Buffered Water and in Landfill Leachate[J].Chemosphere,1994,29:1743~1753.
    [18] F.W.Chuang , R.A.Larson , M.S.Wessman.Zero-Valent Iron-Promoted Dechlorination of Polychlorinated Biphenyls[J].Environ.Sci.Technol.,1995,29:2460~2463.
    [19] R.Muftikian,Q.Fernando,N.Korte.A Method for Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water [J]. WaterRes,1995,29:2434~2439.
    [20] C.Grittini,M.Malcomson. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface ofa Pd/Fe Bimetallic System [J]. Environ.Sci.Technol.,1995,29:2460~2463.
    [21] Wang K,Jehng J,Hsieh Y,Chang C. The reaction Path way for heterogeneous Photocatalysis of trichloroethlylene in gas phase[J].J.Hazard.Mater.B,2002,90:63~75.
    [22] Ao C H,Lee S C.Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner [J].Chem.Eng.Sci.,2005,60:103~109.
    [23]莫测辉,李云辉,蔡全英,曾巧云,王伯光,李海芹.农用肥料中有机污染物的初步检测[J].环境科学,2005,26(3):198~202.
    [24] Matos J,Laine J,Herrmann J W.Synergy effect in the Photocatalytic degradation of Phenol on a suspended mixture of titania and active carbon [J].Appl.Catal.B,1998,18:281~291.
    [25]李明玉,熊林,陈芸芸,张娜,张渊明,尹华.光/电/化学催化降解水中酸性大红3R染料的研究[J].中国科学B,2005,35(2):l44~150.
    [26]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996,4(3):l~18.
    [27] Sunada K,Kikuchi Y,Hashmoto K,Fujishima A.Bactericidal and detoxification effects of TiO2 thin film Photocatalysts[J].Environ.Sci.Technol.,1998,32(5):726~728.
    [28] Wei C,Lin W,Zainal Z,Willianls N E,Zhu K,Kruzic A P.Bactericidal activity of TiO2 Photocatalyst in aqueous media:toward a solar assisted water disinfection system [J]. Environ.Sci.Technol.,1994,28(5):934~938.
    [29] Huang M,Tso E,Datye A K,Prairie M R,Stange B M.Removal of silver in photographic processing waste by TiO2-based photocatalysis [J].Environ.Sci.Technol.,1996,30(10):3084~3088.
    [30] J.Peral,X.Domenech,D.F.Ollis.Hetergeneous photocatalysis for purification,decontamination and deodorization of Air [J].J.Chem.Technol.Biotechnol.1997,70:117~140.
    [31] Sun B,Vorontsov A V,Smimiotis P G.Role of Platinum deposited on Ti02 Phenol photocatalytic Oxidation[J],Langmuir.2003,19:3151~3156.
    [32] Facchin G, Carturan G. Sol-Gel Synthesis and Characterisation of TiO2-Anatase Powders Containing Nanometric Platinum Particles Employed as Catalysts for 4-Nitrophenol Photodegradation[J]. J.Sol-Gel Sci.Technol.,2000,18 (1):29~59.
    [33]史月萍,杨祝红,冯新等.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报,2003,24(9):663~668.
    [34] Hyung Mi Sung-Suh, Jae Ran Choi,etal.Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J]. Journal of Photochemistry and Photobiology A,Chemistry 2004(163):37~44.
    [35] Grzybowska B, Sloczynski J, Grabowska R. Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia–titania catalysts[J]. Appl Catal A,2002, 230:1~10.
    [36] Di Paola A, Garcia- lopez E, Ikeda S. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 [J].Catal.Today, 2002,75: 87~93.
    [37]李越湘,王添辉,彭绍琴.Eu3+,Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004,20( 12):1434~1439.
    [38] Litter M I,Navio J A.Potacatalytic properties of iron-doped titania semiconductors [J].J.photochem.photobio.A:Chem.1996,98:171~181.
    [39] Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics.J.Phys.Chem.,1994,98(51):13669~13679.
    [40] Asahi R, Morikawa T, Ohwaki T, etal. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J].Science, 2001, 293(5528) : 269~271.
    [41] Umebayashi T, Yamaki T S, Tanaka S, etal. Visible light-induced degradation of methylene blue on S-doped TiO2[J].ChemistryLetter, 2003, 32(4) : 310~311.
    [42] Khan SUM, Al-Shahry M, Ingler Jr. W B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J].Science,2002, 297(5590) : 2243~2244.
    [43] Zhao Wei, Ma Wanhong, ZhaoTincai, etal. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation[J].Journal of the American Chemistry Society, 2004, 126(15) : 4782~4783.
    [44] Umebayashi T,Yamaki T,Itoh H ,Asai K.Band gap narrowing of titanium dioxide by sulfur doping.Appl.Phys.lett.,2002,81(3):454~456.
    [45] Hattori A,Tada H.High photocatalytic activity of F-doped TiO2 film on glass[J].J.Sol-Gel Sci.Technol.,2001,22(1-2):47~52
    [46] Wei H Y,Wu Y S,Lun N,etal,Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J].J. Mater.Sci.,2004,39(4),1305~1308.
    [47] SakataniY, NunoshugeJ., Ando H.,etal,Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2[J]. Chem.Lett.,2003,32(12),1156~1157.
    [48]孙红旗,程友萍,金万勤,徐南平.镧、碳共掺杂TiO2的制备及其可见光催化性能[J].化工学报,2006,57(7),1570~1574.
    [49] Liu H Y,Gao L.(Sulfur,nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst [J].J.Am.Ceram.Soc.,2004,87(8),1582~1584.
    [50] S.Iijima.Helical Microtubules of Graphitic Carbon [J].Nature, 1991.354:56-58.
    [51]付敏,原鲜霞,马紫峰.Ti02纳米管制备及其应用研究进展[J].化工进展,2005,24(1):42~46.
    [52] C.A.Foss Jr.,G.L.Hornyak,J.A.Stockert,C.R.Martin.Template-Synthesized Nanoscopic Gold Particles:Optical Spectra and the Eeffects of Particle Size and Shape[J].J.Phys.Chem, 1994,98:2961~2971.
    [53] P.Hoyer.Formation of a titanium dioxide nanotube array[J].Langmuir, 1996,12:411~413.
    [54]李晓红等.TiO2纳米管的模板法制备及表征[J].高等化学学报,2001,22(1):130~132.
    [55] Michailowski A,etal.Hight regular anatase nanotube anays fabricated in porous anodic templates[J] Chenical Physics letter,2002,349:1~5.
    [56] J.H.Jung,H.Kobayashi,K.J.C.van Bommel etal.Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template[J].Chem.Mater., 2002,14(4):1445~1447.
    [57] D.W.Gong,C.A.Grimes,O.K.Varghese,W.Hu,R.S.Singh,Z.Chen,E.C.Dickey.titanium dioxide nanotube array prepared by anodic oxidation[J].J.Mater Res., 2001,169:3331-3334.
    [58]赖跃坤,孙岚,左娟等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063~1066.
    [59] Q.H.Zhang,L.Gao,J.Sun,S.Zheng.Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals[J].Chem.Mater.,2002,2:226~227.
    [60] Z.R.Tian,J.A.Voigt,J.Liu,M.Bonnie,H.F.Xu.Large oriented array and continuous films of TiO2-based nanotubes[J].J.Am.Chem.Soc,2003,125:12384~12385.
    [61] Y.Lei,L.D.Zhang.Fabrication,characterization,and Photoluminescence ProPerties of highly odered Ti02 nanowires array[J].J.Mater.Res.,2001,16:1138~1140.
    [62] Zhang X Y,Zhang L D,Chen W,Meng G W,Zheng M J,Zhao L X.Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays[J].Chem Mater.,2001,13(8):2551~2515.
    [63] Lei Y,Zhang L D,Meng G W,Li G H,Zhang X Y,Liang C H,Chen W,Wang S X.Preparation and photoluminesecence of highly ordered Ti02 nanowire arrays[J].Appl.Phys.Lett,2001,78:1124~1127.
    [64] Miao Z,Xu D,Ouyang J,Guo G,Zhao X,Tang Y.Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires[J].Nano.Lett,2(7):717-720.
    [65] Zhang Y X,Li G H,Jin Y X,Zhang Y,Zhang J,Zhang L D.Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J].Chem.Phys.Lett.,2002,365:300-304.
    [66] Yuan Z Y,Colomer J F,Su B L.Titanium dioxide nanoribbons[J].Chem.Phys.Lett.,2002,363:362~366.
    [67] Zhu Y,Li H,Koltypin Y,Hacohen Y R,Gedanken A.synthesis of titania whiskers and nanotubes[J].Chem.commun.,2001,2616~2617.
    [68] Suzuki Y,Yoshida R,Yoshikawa S.Syntheses of TiO2(B) nanowires and TiO2anatase nanowires by hydrothermal and post-heat treatments[J].J.Solid State Chem.,2005,178:2179 ~2185.
    [69]黄在银.TiO2纳米带的水热合成表征及光催化性能[J].广西民族学院学报,2005,11(4):117~120.
    [70]焦正,吴明红,施利毅,李珍,王艳丽.AFM电化学阳极氧化制备二氧化钛纳米线[J].无机化学学报,2004,11(20):1325~1328.
    [71] Y.X.Liu,K.Tsuru,H.Satoshi,A.Osaka.In vitro bioactive nano-crystalline TiO2 layers grown at glass-coating/titanium interface[J].J.Ceram.Soc.Jpn.,2004:112:452~457.
    [72] Y.X.Liu,K.Tsuru,H.Satoshi,A.Osaka.Potassium titanate nanorod arrays grown on titanium substrates and their in vitro bioactivity[J].J.Ceram.Soc.Jpn.,2004,112:634-640.
    [73]夏晓红,罗永松,梁英,贾志杰.超声法制备TiO2纳米棒及其光催化性质的研究[J].电子元件与材料,2007,26(1):20~22.
    [74]马国斌,朱健民,章闻奇,王牧,闵乃本.二氧化钛纳米棒阵列的取向研究[J].中国体视学与图像分析,2006.11(4):243~245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700