用户名: 密码: 验证码:
量子点荧光探针用于猪链球菌病快速检测新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌病是由猪链球菌(SS)引起的一种人畜共患疾病,在猪链球菌的35个血清型中以2型(SS2)流行最广,致病性最强,因此发展和建立基于SS2型重要毒力因子—溶菌酶释放蛋白(MRP)的猪链球菌病快速检测新方法对于该病的检测和诊断具有重要意义。量子点作为一种新型荧光探针,在光、电、化学方面具有很多独特的优势,已经成为化学、材料科学、生命医学和环境检测方面的重要研究工具。本论文结合荧光免疫分析技术,采用量子点-MRP抗体蛋白探针和量子点-兔抗猪IgG探针对猪链球菌病进行了检测,主要研究内容及结果如下:
     1.合成了巯基乙酸修饰的CdSe/ZnS核壳量子点并制备了CdSe/ZnS量子点-MRP抗体蛋白探针,利用聚丙烯酰胺凝胶电泳和分子光谱法研究了MRP抗体蛋白与CdSe/ZnS量子点的结合机理,结果表明MRP抗体蛋白与CdSe/ZnS量子点可能通过表面配位作用结合。荧光光谱法优化了CdSe/ZnS量子点-MRP抗体蛋白探针制备的影响因素,建立了一种测定MRP抗原蛋白的新方法,其线性范围为5.0×10~(-8)~1.5×10~(-6) mol/L,线性相关系数为0.998。
     2.合成了谷胱甘肽修饰的水溶性CdTe量子点,并以EDC·HCl/Sulfo-NHS为共价偶联剂制备了基于MRP抗体蛋白的量子点荧光探针。用分子光谱、毛细管电泳、透射电子显微镜和荧光显微镜的方法对探针进行了表征,结果表明量子点探针保持着MRP抗体蛋白的生物活性和生物特异性。荧光免疫分析法对MPR抗原蛋白进行了检测,荧光强度与抗原浓度具有很好的线性关系,线性浓度范围为5.0×10~(-8)~1.5×10~(-5) mol/L。与平板计数法相比,本试验中量子点探针对猪内脏血清的检测也获得了较满意的结果。同时,试验中采用96孔板的方法进行检测,为实现猪链球菌病的高通量检测提供了重要参考依据。
     3.制备了基于兔抗猪IgG的CdTe量子点探针,并将其用于MRP抗原蛋白和猪内脏血清的检测,结果表明,该方法对浓度在2.5×10~(-7)~1.5×10~(-5) mol/L范围之间的抗原具有较好的线性检测关系。对猪内脏血清的检测,本试验的方法与平板检测法和基于MRP抗体蛋白的量子点探针的检测方法相比获得较好的一致性。同时考查了量子点探针的时间稳定性,结果表明制备的量子点探针具有较好的稳定性,为猪链球菌病检测试剂盒的制备提供了重要参考依据。
     本研究将量子点探针用于动物重大疾病领域的研究,不仅提供了新颖的、简单快速的、高通量的猪链球菌病检测方法,还为猪链球菌病检测试剂盒的制备以及量子点荧光探针用于其他动物重大疾病研究提供了重要的参考依据。
Porcine streptococcal disease which caused by Streptococcus Suis (SS) was a kind of zoonotic diseases. In the 35 different serotypes of SS, SS2 is the most pathogenic and prevalent capsular type. So, to develop a novel detection method of porcine streptococcal disease based on muramidase-released protein (MRP) antibody (an important virulence factor of SS2) is with important significance for the detection and diagnoses of the disease. As a novel fluorescent probe, quantum dots (QDs) combine of unique optical, electrical and chemical traits, and has been widely used in chemistry, materials science, biology and environmentalology. In this study, QDs-MRPAb probe and QDs-rabitt anti pig IgG probe were used for the detection and diagnosis of porcine streptococcal disease by fluorescence—linked immunosorbent assay method. The main concents and results are listed as following:
     1. Mercaptoacetic acid (MAA) capped CdSe/ZnS core/shell quantum dots and the CdSe/ZnS quantum dot-MRP antibody probe was prepared. The conjugation mechanism was studied according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and molecular Spectrometry. The factors influencing the preparation of CdSe/ZnS quantum dot-MRP antibody probe were optimized by fluorescence Spectrometry. Under the optimum conditions, the probe showed good sensitivity to MRP antigen. The calibration graph was linear in the concentration range from 5.0×10~(-8) to 1.5×10~(-6) mol/L of MRP antigen concentration, with a correlation coefficient of 0.998.
     2. CdTe quantum dots capped with glutathione (GSH) was prepared and the quantum dots probe based on MRP antibody were made through the conjugate material of EDC·HCl/Sulfo-NHS. Molecular Spectrometry, capillary electrophoresis (CE), transmission electron microscopy (TEM) and fluorescence microscope image results showed that the probe kept the bioactivity and bio-recognition of MRP antibody after the coupling process. In succession, the probe was carried out to detect MRP antigen by fluorescence-linked immunosorbent assay (FLISA), results depicted that the fluorescence intensity was linearly proportional to the MRP antigen concentration from5.0×10~(-8) to 1.5×10~(-5) mol/L. The determination of clinical serum samples from diseased pigs with the proposed method were satisfactory consistent with that of plate count method. Besides, 96 wells plate detection method was used in the research, which makes a promise of high-throughput diagnose.
     3. CdTe quantum dots probe based on rabbit anti pig IgG were prepared and used in the detection of MRP antigen and the clinical serum samples from diseased pigs. Linearity concentrations range from 2.5×10~(-7) to 1.5×10~(-5) mol/L of MRP antigen was observed in the FLISA study. The sensitivity for the determination of pig viscera serum with the proposed method has good consistency with that of plate count method and the CdTe quantum dot-MRP antibody probe method. Future study indicated that the probe was time stable, which could offers references for its preparation, store for future use, and the development of the detection kit.
     In conclusion, novel menthods for the rapid detection of porcine streptecoccal diseases based on quantum dots fluorescence probes were studied. The new methods hold promising potential for simple, fast and high-throughput detection of porcine streptococcal disease, also offers important references for the development of the detection kit and the application on the diagnostics and determination for animal desease of quantum dots florescent probe.
引文
1.陈洪雷,朱小波,张玉霞,夏东,李蓓芸.量子点免疫标记技术在肺癌组织芯片上的应用.武汉大学学报(医学版),2008,29(5):607-609
    2.陈良,饶海波,占红明,陈伟,何修军.有机包裹的Ⅱ-Ⅵ族半导体量子点的制备与表征.纳米材料与结构,2005,42(10):459-462
    3.陈启凡,杨冬芝,徐淑坤,曲正.微波辐射法制备水溶性CdTe量子点及其光谱学研究.光谱学与光谱分析,2007,27(4):650-653
    4.代昭,张纪梅,许世超,郭宁,尹雪莹,孙波.新型量子点修饰分子灯塔探针及其作为DNA传感器应用.现代化工,2008,28(3):47-49;51
    5.董明琪,张永久,王牟平.人-猪链球茵病的研究概况.实验动物,2008,8:45-47
    6.范红结,陆承平,唐家琪.猪链球菌2型mrp基因免疫功能片段的克隆、表达及动物试验.微生物学报,2004,44(1):54-57
    7.李耿,孙长江,韩文瑜,雷连成.猪链球菌2型溶菌酶释放蛋白功能性片段的原核表达及其免疫保护性.中国生物制品学杂志,2008,21(1):23-25
    8.李贵平,汪勇先,任非,张辉.磁性纳米微粒的制备方法及其在放射免疫分析中的初步应用.核技术,2004,27(11):828-2832
    9.李军和牛钟相.猪链球菌病研究进展.动物医学进展,2004,25(3):31-33
    10.刘天才.壳核型量子点的合成及其生物应用.[博士学位论文].武汉:华中科技大学图书馆,2006
    11.刘元臣,李凤龙,王大钊,刘杨,兰毅楠.对致病性猪链球菌病的实验室检测分析.养殖技术顾问,2008,11:146-146
    12.陆承平.猪链球菌病与猪链球菌2型.科技导报,2005,23(9):9-10
    13.权根花和许惠.猪链球菌病的研究进展.现代畜牧兽医,2007,3:50-53
    14.王海丽,王长军,陆承平,潘秀珍,唐家琪.猪链球菌2型人源分离株截短的溶菌酶释放蛋白基因的克隆及原核表达.细胞与分子免疫学杂志,2006,22(2):178-180
    15.徐力,郭轶,解仁国,庄家骐,王连英,杨文胜,李铁津.水相合成CdS纳米晶标记牛血清白蛋白.功能材料与器件学报,2003,9(2):201-204
    16.曾巧英和陆承平.猪链球菌2型溶菌酶释放蛋白诱导上皮细胞融合和凋亡.微生物学报,2003,43(3):407-412
    17.郑继平,郭桂英,韦双双,黄邓高,谢俊,季静,张兆山.猪链球菌2型溶菌酶释放因子MRP在重组沙门菌中的表达.中国兽医学报,2008,28(11):1273-1276
    18.朱建国和华修国.猪链球菌2型致病机制研究进展.中国人兽共患病杂志,200521(9):816-818
    19. Anderson R E and Chan W C W. Systematic investigation of preparing biocompatible, single, and small ZnS-Capped CdSe quantum dots with amphiphilic polymers. ACS Nano, 2008, 2 (7): 1341-1352
    20. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996,271(5251): 933-937
    21. Ballou B, Lagerholm B C, Ernst L A, Bruchez M P, Waggoner A S. Noninvasive imaging of quantum dots in mice. Bioconjug Chem, 2004, 15(1): 79-86
    22. Baums C G, Da S L M, Goethe R. Occurrence and diagnostic relevance of virulence-associated factors in streptococcus suis. Dtsch Tierarztl Wochenschr, 2003, 110(9): 378-381
    23. Mattoussi H, Mauro M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. Self-assembly of CdSe-ZnS quantum dots bioconjugates using an engineered recombinant protein. J Am Chem Soc, 2000, 122(49): 12142-12150
    24. Bruchez M J, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998,281(5385): 2013-2015
    25. Cai W B and Chen X Y. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med, 2008, 49(Suppl 2): 113S-128S
    26. Chan W C W and Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018
    27. Chan W C W, Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie S M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol, 2002, 13(1): 40-46
    28. Chanter N, Jones P W, Alexander T J L. Meningitis in pigs caused by streptococcus suis—a speculative review. Vet Microbiol, 1993, 36(1-2): 39-55
    29. Charland N, Jacques M, Lacouture S, Gottschalk M. Characterization and protective activity of a monoclonal antibody against a capsular epitope shared by streptococcus suis serotypes 1, 2 and 1/2. Microbiology, 1997, 143(11): 3607-3614
    30. Chatterjee D K and Zhang Y. Multi-functional nanoparticles for cancer therapy. Sci Technol Adv Mater, 2007, 8(1-2): 131-133
    31. Chen C, Peng J, Xia H S, Yang G F, Wu Q S, Chen L D, Zeng L B, Zhang Z L, Pang D W, Li Y. Quantum dots-based irnmunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30(15): 2912-2918
    32. Chen L D, Liu J, Yu X F, He M, Pei X F, Tang Z Y, Wang Q Q, Pang D W, Li Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials, 2008,29(31): 4170-4176
    33. Costa-Fernandez J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. Trends Anal Chem, 2006, 25(3): 207-218
    34. Cui D X, Tian F, Coyer S R, Wang J, Pan B F, Gao F, He R, Zhang Y. Effects of antisensemyc-conjugated single-walled carbon nanotubes on HL-60 cells. J Nanosci Nanotechnol, 2007, 7(4-5): 1639-1646
    35. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B, 1997, 101(46): 9463-9475
    36. Danek M, Jensen K F, Murray C B, Bawendi M G. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem Mater, 1996, 8(1): 173-180
    37. Del'Arco A E, Santos J L, Bevilacqua P D, Faria J E, Guimaraes W V. Swine infection by streptococcus suis: a retrospective study. Arq Bras Med Vet Zootec, 2008, 60(4): 878-883
    38. Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. JPhys Chem B, 2007, 111(41): 12024-12031
    39. Desnica-Frankovic I D, Furic K, Desnica U, Dubcek P, Buljan M, Bernstorff S. Complementary application of Raman scattering and GISAXS in characterization of embedded semiconductor QDs. Superlattices Microstruct, 2008, 44(4-5): 385-394
    40. Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots-characterization, preparation and usage in biological systems. Int J Mol Sci, 2009,10(2): 656-673
    41. Du D, Chen S Z, Song D D, Li H B, Chen X. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron, 2008, 24(3): 475-479
    42. Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    43. Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078-1081
    44. Feng H T, Law W S, Yu L J, Li S F. Immunoassay by capillary electrophoresis with quantum dots. J Chromatogr A, 2007, 1156(1-2): 75-79
    45. Fu A H, Gu W W, Larabell C, Alivisatos A P. Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol, 2005,15(5): 568-575
    46. Freitas R O, Quivy A A, Morelhao S L. Growth and capping of InAs/GaAs quantum dots investigated by X-ray bragg-surface diffraction. J Appl Phys, 2009, 105(3): 036104:1-036104:3
    47. Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004,22(8): 969-976
    48. Gao X H, Yang L A, Petros J A, Marshall F F, Simons J W, Nie S M. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol, 2005,16(1): 63-72
    49. Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychrmiller A, Weller H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B, 2002,106(29): 7177-7185
    50. Georges J, Arnaud N, Parise L. Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: application to the determination of the fluorescence quantum yield of rhodamine 6G. Appl Spectrosc, 1996,50(12): 1505-1511
    51. Goldman E R, Clapp A R, Anderson G P, Uyeda H T, Mauro J M, Medintz I L, Mattoussi H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem, 2004, 76(3): 684-688
    52. Gottschalk M, Higgins R, Jacques M, Mittal K R, Henrichsen J. Description of 14 new capsular types of streptococcus suis. J Clin Microbiol, 1989, 27(12): 2633-2635
    53. Gottschalk M, Higgins R, Jacques M, Beaudoin M, Henrichsen J. Characterization of six new capsular types (23 through 28) of streptococcus suis. J Clin Microbiol, 1991, 29(11): 2590-2594
    54. Gottsehalk M. Lebrun A, Wisselink H, Dubreuil J D, Smith H, Vecht U. Production of virulence-related proteins by Canadian strains of streptococcus suis capsular type 2. Can J Vet Res, 1998, 62(1): 75-79
    55. Haleis A, Alfa M, Gottschalk M, Bernard K, Ronald A, Manickam K. Meningitis caused by streptococcus suis serotype 14, North America. Emerg Infect Dis, 2009, 15(2): 350-352
    56. Han M Y, Gao X H, Su J Z, Nie S M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol, 2001, 19(7): 631-635
    57. Higgins R, Gottschalk M, Boudreau M, Lebrun A, Henrichsen J. Description of six new capsular types (29-34) of streptococcus suis. J Vet Diagn Invest, 1995, 7(3): 405-406
    58. Hines M A and Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J Phys Chem, 1996,100(2): 468-471
    59. Hu D H, Han H Y, Zhou R, Dong F, Bei W C, Jia F, Chen H C. Gold (III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of actinobacillus pleuropneumoniae. Analyst, 2008, 133(6): 768-773
    60. Hu D H, Wu H M, Liang J G, Han H Y. Study on the interaction between CdSe quantum dots and hemoglobin. Spectrochim Acta, Part A, 2008, 69 (3): 830-834
    61. Hua X F, Liu T C, Cao Y C, Liu B, Wang H Q, Wang J H, Huang Z L, Zhao Y D. Characterization of the coupling of quantum dots and immunoglobulin antibodies. Anal Bioanal Chem, 2006, 386(6): 1665-1671
    62. Huang X Y, Weng J F, Sang F M, Song X T, Cao C X, Ren J C. Characterization of quantum dot bioconjugates by capillary electrophoresis with laser-induced fluorescent detection. J Chromatogr A, 2006, 1113(1-2): 251-254
    63. Huang Y T, Teng L J, Ho S W, Hsueh P R. Streptococcus suis infection. J Microbiol Immunol Infect, 2005, 38(5): 306-313
    64. Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol, 2003, 21(1): 47-51
    65. Jayagopal A, Russ P K, Haselton F R. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjugate Chem. 2007, 18(5): 1424-1433
    66. Jiang W, Singhal A, Kim B Y S, Zheng J, Rutka, J T, Wang C, Chan W C W. Assessing near-infrared quantum dots for deep tissue, organ, and animal imaging applications. J Assoc Lab Autom, 2008,13(1): 6-12
    67. Jin Y H, Lohstreter S, Pierce D T, Parisien J, Wu M, Hall C, Zhao J X. Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater, 2008, 20(13): 4411-4419
    68. Jing H B, Jing Y, Jie W, Yuan Y, Li Z, Liu X K, Zheng Y L, Wei K H, Zhang X M, Geng H R, Qing D, Feng S Z, Yang R F, Cao W C, Wang H L, Jiang Y Q. Proteome analysis of streptococcus suis serotype 2. Proteomics, 2008, 8(2): 333-349
    69. Ju-Nam Y and Lead J R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ, 2008, 400(1-3): 396-414
    70. Kaijzel E L, Snoeks T J A, Buijs J T, van der Pluijm G, Lowik C W G M. Multimodal imaging and treatment of bone metastasis. Clin Exp Metastasis, 2009, 26(4): 371-379
    71. Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta, 2007, 71(4): 1494-1499
    72. Kim H, Achermann M, Balet L P, Hollingsworth J A, Klimov V I. Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc, 2005,127(2): 544-546
    73. Kim J, Kim K S, Jiang G, Kang H G, Kim S J, Kim B S, Park M H, Hahn S K. In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers, 2008, 89(12): 1144-153
    74. Kim J H, Kong W H, Kim H J, Sco S W. Limitation of Q dot as an in vivo cell tracer. Tissue EngRegener med, 2009, 6(1-3): 307-312
    75. Koleilat G I, Levina L, Shukla H, Myrskog S H, Hinds S, Pattantyus-Abraham A G, Sargent E H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2008, 2(5): 833-840
    76. Kovalenko M V, Heiss W, Shevchenko E V, Lee J S, Schwinghammer H, Alivisatos A P, Talapin D V. SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. J Am Chem Soc, 2007, 129(37): 11354-11355
    77. Lee L Y, Hu J Y, Ong S L, Ng H Y, Wong S W, Feng Y Y, Tan X L. Alternative immunofluorescent labeling of cryptosporidium parvum in water samples using semiconductor quantum dots. Water Environ Res, 2008, 80(8): 725-731
    78. Liang J G, Zhang S S, Ai X P, Ji X H, He Z K. The interaction between some diamines and CdSe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc, 2005, 61(13-14): 2974-2978
    79. Liu J, Zhao W, Fan R L, Wang W H, Tian Z Q, Peng J, Pang D W, Zhang Z L. Investigation of the nonspecific interaction between quantum dots and immunoglobulin G using Rayleigh light scattering. Talanta, 2009, 78(3): 700-704
    80. Liu M C, Shi G Y, Zhang L, Cheng Y X, Jin L T. Quantum dots modified electrode and its application in electroanalysis of hemoglobin. Electrochem Commun, 2006, 8(2): 305-310
    81. Liu T C, Wang J H, Wang H Q, Zhang H L, Zhang Z H, Hua X F, Cao Y C, Zhao Y D, Luo Q M. Bioconjugate recognition molecules to quantum dots as tumor probes. J Biomed Mater Res Part A, 2007, 83(4): 1209-1216
    82. Lun S C and Willson P J. Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 streptococcus suis. J Microbiol Meth, 2004, 56(3): 401-412
    83. Ma Q, Song T Y, Yuan P, Wang C, Su X G. QDs-labeled microspheres for the adsorption of rabbit immunoglobulin G and fluoroimmunoassay. Colloid Surf B-Biointerfaces, 2008, 64(2): 248-254
    84. Marquette C A and Blum L J. State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron, 2006,21(8): 1424-1433
    85. Maysinger D, Behrendt M, Lalancette-Hebert M, Kriz J. Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett, 2007, 7(8): 2513-2520
    86. Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005,4(6): 435-446
    87. Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538-544
    88. Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc, 1999, 121(35): 8122-8123
    89. Mulder W J M, Koole R, Brandwijk R J, Storm G, Chin P T K, Strijkers G J, Donega C D M, Nicolay K, Griffioen A W. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett, 2006, 6(1): 1-6
    90. Murcia M J, Shaw D L, Long E C, Naumann CA. Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Opt Commun, 2008, 281(7): 1771-1780
    91. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993,115(19): 8706-8715
    92. Murphy C J. Optical sensing with quantum dots. Anal Chem, 2002, 74(19): 520A-526A
    93. Pan B F, Cui D X, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Dendrimermodified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res, 2007, 67(17): 8156-8163
    94. Parak W J, Pellegrino T, Plank C. Labelling of cells with quantum dots. Nanotechnology, 2005,16(2): R9-R25
    95. Pathak S, Cao E, Davidson M C, Jin S, Silva G A. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci, 2006, 26(7): 1893-1895
    96. Pellegrino T, Manna L, Kudera S, Liedl T T, Koktysh D, Rogach A L, Keller S, Radler J, Natile G, Parak W J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett, 2004, 4(4): 703-707
    97. Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc, 1997,119(30): 7019-7029
    98. Peng Z A and Peng X G. Formation of high quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001,123(1): 183-184
    99. Pinaud F, Michalet X, Bentolila L A, Tsay J M, Doose S, Li J J, Iyer G, Weiss S. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials, 2006, 27(9): 1679-1687
    100. Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J Phys Chem, 1993, 97(46): 11999-12003
    101. Rasmussen S R, Aarestrup F M, Jensen N E, Jorsal S E. Associations of streptococcus suis serotype 2 ribotype profiles with clinical disease and antimicrobial resistance. J Clin Microbiol, 1999, 37(2): 404-408
    102. Riu J, Maroto A, Rius F X. Nanosensor in environmental analysis. Talanta, 2006, 69(2): 288-301
    103. Rogach A L, Katsikas L, Kornowski A, Su D, Eychmiiller A, Weller H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsenges Phys Chem, 1996, 100(11): 1772-1778
    104. Robertson I D and Blackmore D K. Occupational exposure to streptococcus suis type 2. Epidemiol Infect. 1989, 103(1): 157-164
    105. Rosenthal S J. Bar coding biomolecules with fluorescent nanocrystals. Nature Biotechnol, 2001, 19(7): 621-622
    106. Segura M. Streptococcus suis: an emerging human threat. J Infect Dis, 2009, 199(1): 4-6
    107. Shen J Z, Xu F, Jiang H Y, Wang Z H, Tong J, Guo P J, Ding S Y. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Anal Bioanal Chem, 2007, 389(7-8): 2243-2250
    108. Smith A M, Gao X H, Nie S M. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol, 2004, 80(3): 377-385
    109. Smith A M, Ruan G, Rhyner M N, Nie S M. Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng, 2006, 34(1): 3-14
    110. Smith H E, Vecht U, Gielkens A L, Smits M A. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein(muramidase-released protein)of streptococcus suis type 2.Infect Immun,1992,60(6):2361-2367
    111.Song B,Wang G L,Tan M Q,Yuan J L.A europium(Ⅲ) complex as an efficient singlet oxygen luminescence probe,J Am Chem Soc,2006,128(41):13442-13450
    112.Song X T,Li L,Chan H F,Fang N H,Ren J C.Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium.Electrophoresis,2006,27(7):1341-1346
    113.Staats J J,Feder I,Okwumabua O,Chengappa M M.Streptococcus suis:past and present.Vet Res Commun,1997,21(6):381-407
    114.Swildens B,Stockhofe-Zurwieden N,Van Der Meulercular J,Wisselink H J,Nielen M,Niewold T A.Intestinal translocation of streptococcus suis type 2 EF~+ in pigs.Vet Microbiol,2004,103(1-2):29-33
    115.Talapin D V,Rogach A L,Kornowski A,Haase M,Weller H.Highly Luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylaminetrioctylphosphine oxide-trioctylphospine mixture.Nano Lett,2001,1(4):207-211
    116.Tanke H J,Dirks R W,Raap T.FISH and immunocytochemistry:towards visualising single target molecules in living cells.Curt Opin Biotechnol,2005,16(1):49-54
    117.Taylor J R,Fang M M,Nie S M.Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles.Anal Chem,2000,72(9):1979-1986
    118.Tholouli E,Sweeney E,Barrow E,Clay V,Hoyland J A,Byers R J.Quantum dots light up pathology,J Pathol,2008,216(3):275-285
    119.Unni C,Philip D,Smitha S L,Nissamudeen K M,Gopchandran K G.Aqueous synthesis and characterization of CdS,CdS:Zn~(2+) and CdS:Cu~(2+) quantum dots.Spectrochim Acta A Mol Biomol Spectrosc,2009,72(4):827-832
    120.Van de Beek D,Spanjaard L,De Gans J.Streptococcus suis meningitis in the netherlands.J Infect,2008,57(2):158-161
    121.Vecht U,Wisselink H J,Jellema M L,Smith H E.Identification of two proteins associated with virulence of streptococcus suis type 2.Infect Immum,1991,59(9):3156-3162
    122.Walling M A,Novak J A,Shepard J R E.Quantum dots for live cell and in vivo imaging.Int J Mol Sci,2009,10(2):441-491
    123.Wang H Z,Wang H Y,Liang R Q,Ruan K C.Detection of tumor marker CA125 in ovarian carcinoma using quantum dots.Acta Biochim Biophys Sin(Shanghai),2004, 36(10): 681-686
    124. Wertheim H F L, Nghia H D T, Taylor W, Schultsz C. Streptococcus suis: an emerging human pathogen. Clin Infect Dis, 2009,48(5): 617-625
    125. Wu J, Wang G L, Jin D Y, Yuan J L, Guan Y F, Piper J. Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging, Chem Commun (Camb), 2008, 3: 365-367
    126. Wu T, Chang H T, Tan C, Bei W C, Chen H C. The orphan response regulator RevSC21 controls the attachment of streptococcus suis serotype 2 to human laryngeal epithelial cells and the expression of virulence genes. FEMS Microbiol Lett, 2009, 292(2): 170-181
    127. Wu X Y, Liu H I, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P. Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2003, 21(1): 41-46
    128. Wu Z F, Zhang W, Lu C P. Immunoproteomic assay of surface proteins of streptococcus suis serotype 9. FEMS Immunol Med Microbiol, 2008, 53(1): 52-59
    129. Xie H Y, Xie M, Zhang Z L, Long Y M, Liu X, Tang M L, Pang D W, Tan Z, Dickinson C, Zhou W Z. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug Chem, 2007, 18(6): 1749-1755
    130. Xiong Z H, Wei C D, Yang J, Peng J P, Xu X Y, Wang Y, Jin Q. Comparative analysis of whole genome structure of streptococcus suis using whole genome PCR scanning. Sci China C Life Sci, 2008, 51(1): 21-26
    131. Xue X H, PanJ, Xie H M, Wang J H, Zhang S. Fluorescence detection of total count of escherichia coli and staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta, 2009, 77(5): 1808-1813
    132. You X G, He R, Gao F, Shao J, Pan B F, Cui D X. Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology, 2007, 18(3): 035701:1-035701:5
    133. Yu W W and Peng X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed Engl, 2002, 41(13): 2368-2371
    134. Yu W W, Qu L H, Guo W Z, Peng X G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater, 2003, 15(14): 2854-2860
    135. Yu W W, Chang E, Falkner J C, Zhang J, Al-Somali A M, Sayes C M, Johns J, Drezek R, Colvin V L. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc, 2007, 129(10): 2871-2879
    136. Yuan J P, Guo W W, Yin J Y, Wang E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta, 2009, 77(5): 1858-1863
    137. Yuan J L, Wang G L, Majima K, Matsumoto K. Synthesis of a new terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay, Anal Chem, 2001, 73 (8): 1869-1876
    138. Zhang B B, Liu X H, Li D N, Tian H, Ma G P, Chang J. Preparation of multi-color quantum dots and its application to immunohistochemical analysis. Chin Sci Bull, 2008, 53(13): 2077-2083
    139. Zhang L H, Shang L, Dong S J. Sensitive and selective determination of Cu~(2+) by electrochemiluminescence of CdTe quantum dots. Electrochem Commun, 2008, 10(10): 1452-1454
    140. Zheng Y G, Gao S J, Ying Y J. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater, 2007, 19(3): 376-380
    141. Zhou M and Ghosh I. Current trends in peptide science quantum dots and peptides: a bright future together. Biopolymers, 2007, 88(3): 325-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700