用户名: 密码: 验证码:
聚对氨基苯磺酸修饰电极的制备及其在电分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨基苯磺酸由于其良好的环境稳定性、导电性、宽pH范围内的电化学活性,成为人们研究的热点。碳纳米管(CNT)不仅具有良好的导电性、大的比表面积、高度稳定性,而且将其用作电极修饰材料能促进反应的电子转移。本工作以聚对氨基苯磺酸为电极的主要修饰材料,研究了黄酮类药物在聚对氨基苯磺酸修饰电极上的电化学行为、碳纳米管和聚对氨基苯磺酸复合膜修饰电极对尿酸的协同催化作用、以及银掺杂聚对氨基苯磺酸修饰电极的电化学行为。
     通过电化学聚合法制备了聚对氨基苯磺酸修饰玻碳电极,分别研究了芦丁和槲皮素在该修饰电极上的电化学行为。两者均能在修饰电极上得到有效富集并产生一个灵敏氧化峰,计算了两者在修饰电极上的电化学参数ks和α。π-π键作用使得黄酮类药物在对氨基苯磺酸上吸附富集,产生灵敏的电化学信号。在优化实验条件下,建立了灵敏检测芦丁和槲皮素的电化学方法,成功用于实际样品测定。
     制备了聚对氨基苯磺酸/碳纳米管复合膜修饰电极,研究了尿酸和抗坏血酸在该修饰电极上的电化学行为。与聚氨基苯磺酸和碳纳米管单层膜修饰电极相比,两者的氧化峰电流显著增加,峰电位差达到337 mV。表明碳纳米管和聚合物产生协同增效作用。碳纳米管和聚合物二聚体发生共轭作用,提高了修饰电极的灵敏度和选择性。
     以银作为掺杂体,利用循环伏安法制成银掺杂的聚对氨基苯磺酸修饰玻碳电极,研究了该修饰电极的电化学特性及H2O2在电极上的电化学行为。在pH 7.0的PBS中,H2O2产生一灵敏还原峰,表明该修饰电极对H2O2的还原有良好的催化作用。建立了灵敏检测H2O2的电化学方法,方法用于牛奶中H2O2的测定,结果令人满意。
Poly(p-aminobenzene sulfonic acid) (PABSA) has attracted increasing attention for its good stability, high conductivity and electroactivity in broad pH band. Carbon nanotube(CNT) has the unique properties like high electrical conductivity, high specific surface area, high stability. It can promote electron transfer as electrode modifies. The electrochemical activity of flavonoids on the poly(p-aminobenzene sulfonic acid) modified electrode, the synergistic catalyst effect of CNT and poly(p-aminobenzene sulfonic acid) to uric acid and the electrochemical behavior of silver doped poly(p-aminobenzene sulfonic acid) modified electrode have been researched in this work.
     A PABSA modified glassy carbon electrode was fabricated and the electrochemical behavior of rutin and quercetin was investigated at it, respectively. Rutin and quercetin can effectively accumulate and cause a sensitive anodic peak. Flavonoids can be adsorbed to the polymer surface throughπ-πstacking between the aromatic rings and the dimers, causing an increasing signal. The charge transfer coefficient (α) and the electrode reaction rate constant (ks) were calculated. Under optimized conditions, the proposed method has been successfully applied to the determination of compound rutin tablets and quercetin in hydrolysate product of rutin.
     A PABSA/CNT composite-modified glassy carbon electrode was fabricated, in which the electrochemical behaviors of uric acid (UA) and ascorbic acid (AA) were investigated. In comparison with PABSA and CNT single layer modified electrodes, the composite-modified electrode had superior electrocatalytic activity. A dramatic enhancement of the peak current and a peak to peak separation of 337 mV was observed. The dimers interacted with the CNT byπ-πstacking and the sensitivity and selectivity of the modified electrode was increased. This indicated that the composite possessed the properties of each component with a synergistic effect.
     A silver doped PABSA modified electrode was prepared by CVs. The electrochemical behavior of H2O2 was studied by it. In a pH 7.0 PBS, a sensitive reductive peak was observed. The method was applied to the determination of H2O2 in milk with satisfactory results.
引文
[1]金利通,仝威,徐金瑞,等.化学修饰电极[M].华东师范大学出版社,第一版,3-5.
    [2]Raoof J B, Ojani R, Sahar R N. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid[J]. Electrochimica Acta,2004,49:271-280.
    [3]Sreenivasan K. Synthesis and evaluation of multiply templated molecularly imprinted polyaniline[J]. J Mater Sci,2007,42:7575-7578.
    [4]Titretir S, Erdgdu G, Karagozler A E. Determination of Iodide Ions at Poly(3-Methythiophene)-Modified Electrode by Differential Pulse Stripping Voltammetry[J]. Journal of Analytical Chemistry,2006,61(6):592-595.
    [5]Miller L L, Mark M R. A poly-p-nitrostyrene electrode surface, potential development at conducting and electrocatalytic properties[J]. J. Am. Chem. Soc.,1978,100:3223-3231.
    [6]田玲,王宗花,张旭麟,等.聚亚甲基蓝/碳纳米管修饰电极溶出伏安法测定痕量锡[J].应用化工,2008,37(3):236-239.
    [7]田玲,王宗花,张菲菲,等.聚吖啶橙/碳纳米管修饰电极的构置及其应用[J].化学试剂,2008,30(6):401-406.
    [8]张升晖,吴康兵,胡胜水.Nafion修饰玻碳电极吸附伏安法直接测定邻氨基苯酚[J].分析科学学报,2002,18(5):373-375.
    [9]Cao X M, Luo L Q, Ding Y P, et al. Simultaneous determination of dopamine and uric acid on nafion/sodium dodecylbenzenesulfonate composite film modified glassy carbon electrode[J]. J Appl Electrochem,2009,39:1603-1608.
    [10]Pandey P C, Chauhan D S, Singh V. Poly(indole-6-carboxylic acid) and tetracyanoquinodimethane-modified electrode for selective oxidation of dopamine[J]. Electrochimica Acta,2009, (54):2266-2270.
    [11]刘法彬,袁正勇,张治民.聚苯胺复合修饰电极对抗坏血酸的电催化氧化[J].化学世界,2007,2:86-88.
    [12]马艳蓉,高作宁.聚亚甲基蓝修饰金电极对过量抗坏血酸存在下尿酸的测定[J].分析测试学报,2008,27(2):139-142.
    [13]金松子,王韬,张春煦,等.血红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].化学学报,2002,60(7):1269-1273.
    [14]]丁中华,康天放,郝玉翠.碳纳米管/壳聚糖修饰电极的制备及其对NADH的电催化氧化[J].化学研究与应用,2008,20(4):374-377.
    [15]马荣,刁训刚,张金伟,等.聚苯胺-普鲁士蓝全固态电致变色器件的制备及特性[J].材料科学与工程学报,2007,25(5):723-725.
    [16]Tarushee A, Irfran A M, Devendra K, et al. Potentiometric urea biosensor based on BSA embedded surface modified polypyrrole film[J]. Sensors and Actuators B:Chemical,2008,134:140-145.
    [17]蒋晓华,刘伟强,陈建军.DNA-过氧化聚吡咯生物复合膜传感器的分析应用[J].高等学校化学学报,2007,3:450-452.
    [18]李军,李洪坤,赵艳霞,等.肾上腺素在对氨基苯磺酸修饰玻碳电极上的电化学行为[J].分析试验室,2005,24(11):40-43.
    [19]李利军,钟亮,蔡卓,等.聚对氨基苯磺酸修饰玻碳电极不可逆双安培法测定酪氨酸[J].分析科学学报,2009,25(4):435-438.
    [20]Gao F X, Yuan R, Chai Y Q, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode[J]. J. Biochem. Biophys. Methods,2007,70:407-413.
    [21]Wu Y, Li N B, Luo H Q. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltametry at a bismuth/poly(p-aminobenzene sulfonic acid) film electrode[J]. Sensors and Actuators B:Chemical,2008,133:677-681.
    [22]Huang F, Jin G Y, Liu Y, et al. Sensitive determination of phenylephrine and chlorprothixene at poly(4-aminobenzene sulfonic acid) modified glassy carbon electrode[J]. Talanta,2008,74:1435-1441.
    [23]李茂国,王广凤,高迎春,等.纳米银修饰电极对痕量硫氰根的测定[J].理化检验-化学分册,2005,41(5):305-308.
    [24]Kannan P, John S. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode[J]. Analytical Biochemistry,2009,386:65-72.
    [25]任湘菱,唐芳琼.纳米银-金复合颗粒对葡萄糖生物传感器响应灵敏度的增强效应[J].科学技术与工程,2002,2(3):15-16.
    [26]Ghalkhani M, Shahrokhian S, Bidkorbeh F G. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticle[J]. Talanta,2009,80:31-38.
    [27]郝玉翠,康天放,刘桐坤,等.甲醛的铂微粒修饰玻碳电极伏安法测定[J].分析测试学报,2008,27(1):60-62.
    [28]孙涛,郑海涛,刘瀑,等.直接电沉积法制备纳米银修饰丝网印刷电极及其对H2O2电催化性能的研究[J].辽宁化工,2009,38(7):433-436.
    [29]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354 (6348):56-58.
    [30]Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology,2001,61:1899-1912.
    [31]Ebbesen T W, Hirua H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes[J]. Chem.Phys. Lett.,1993,209:83-90.
    [32]Henning T H, Salama F. Carbon in the universe [J]. Science,1998,282:2204-2606.
    [33]Tombler T W. Coupled electro2mechanical behavior of carbon nanotubes[J]. Nature,2000,405: 769-772.
    [34]Wong E W, Sheehan P E, Liebert C M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997,277:1971-1973.
    [35]Carroll D L, Redich P, Ajayan P M, et al. Electronic structure and localized states at carbon nanotubes [J]. Physical Review Letters,1997,78(14):2811-2814.
    [36]Rao A M, Eklund P C, Bandow S, et al. Evidence for charge transfer in doped carbon nanotubes bundles from Ramanscattering [J]. Nature,1997,388:257-259.
    [37]Bachtold A, Strunk C, Salvetat J P, ed al. Aharonov-Bohm oscillations in carbon nanotubes [J]. Nature,1999,397:673-675.
    [38]朱宏伟,吴德海,徐才录.碳纳米管[M].机械工业出版社,2002,54-55.
    [39]Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes[J]. Nature,1992,358:220-222.
    [40]Thess A, Lee R, Nikolaev P. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273: 483-487.
    [41]Cheng H M, Li F, Sun X. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons[J]. Chem. Phys. Lett.,1998,289: 602-610.
    [42]Kong J, Cassel A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chem. Phys. Lett.,1998,292:567-574.
    [43]Dang Z M, Wang L, Zhang L P. Surface functionalization of multiwalled carbon nanotube with trifluorophenyl [J]. Journal of Nanomaterials,2006(1):1-5.
    [44]Fischer J E, Chemical Doping of Single-Wall Carbon Nanotubes. Accounts of Chemical Research [J].2002,35:1079-1086.
    [45]Guo D J. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J]. Carbon,2005,43:1259-1264.
    [46]Jiang K, Eitan A, Schadler L S, et al. Selective attachment of gold nanoparticles to nitroger doped carbon nanotubes[J]. Nano Letter,2003,3(3):275-277.
    [47]Penza M, Rossi R, Alvisi M, et al. Pt-and Pd-nanoclusters functionalized carbon nanotubes networks films for sub-ppm gas sensors[J]. Sensors and Actuators B:Chemical,2008,135:289-297.
    [48]Penza M, Rossi R, Alvisi M, et al. Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications[J]. Sensors and Actuators B:Chemical,2009,140:176-184.
    [49]Kakarla R R, Byung C S, Kwang S R, et al. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles:Synthesis, morphological characteristics and electrical properties[J]. Synthetic Metals,2009,159:595-603.
    [50]郑伟玲,肖潭,朱朦琪,等.聚苯乙烯包覆多壁碳纳米管的制备及其分散性[J].物理化学学报,2009,25(11):2373-2379.
    [51]孟庆杰,张行祥.聚酯功能化碳纳米管的非等温结晶动力学[J].纺织学报,2008,29(2):1-6.
    [52]Meuer S, Braun L, Schilling T, et al. a-Pyrene polymer functionalized multiwalled carbon nanotube:Solubility, Stability and depletion phenomena[J]. Polymer,2009,50:154-160.
    [53]Kumar N A, Ganapathy H S, et al. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites[J]. European Polymer Journal, 2008,44:579-586.
    [54]Kalpana A, Singh D P, Sunil K, et al. Attachment of blomolecules(protein and DNA) to amino-functionalized carbon nanotubes[J]. New Carbon Materials,2009,24(4):301-306.
    [55]乔雷,张云怀,肖鹏,等.DNA功能化碳纳米管电极的制备及与青蒿素相互作用的研究[J].材料导报,2009,23(1):17-21.
    [56]Liu Y X, Lan D, Wei W Z. Layer-by-layer assembled DNA-functionalized single-walled carbon nanotube hybrids-modified electrodes for 2,4,6,-trinitrotoluene deiection[J]. Journal of Electroanalytical Chemistry,2009,637:1-5.
    [57]Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc.,2001,123:3838-3839.
    [58]Britton P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg.1996,41(1):121-125.
    [59]邓培红,张军,黎据难.多壁碳纳米管修饰碳黑微电极同时测定多巴胺和抗坏血酸[J].分析试验室,2009,28(1):92-95.
    [60]王宗花,王义明,罗国安,等.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响[J].高等学校化学学报,2003,24(2):236-240.
    [61]王歌云,王宗花,罗国安,等.碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定[J].分析化学,2003,31(11):1281-1285.
    [62]Wang Z H, Wang Y M, Luo G A. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J]. Analyst,2002,127(7):653-658.
    [63]Wang Z H, Wang Y M, Luo G A. A selective voltammetric method for uric acid detection atp-cyclodextrin modified electrode incorporating carbon nanotubes[J], Analyst,2002,127(10):1353-1358.
    [64]王宗花,陈相康,张菲菲,等.碳纳米管修饰电极对对氨基苯酚异构体的识别及选择性测定[J].分析测试学报,2008,27(5):531-533.
    [65]Wang Z H, Wang Y M, Luo G A. A selective voltammetric method for uric acid detection at P-cyclodextrin modified electrode incorporating carbon nanotubes[J]. Ananlyst,2002,127:1353-1358.
    [66]Xiao S F, Wang Z H, Wang Y M, Luo G. A. Voltammetric behavior of ascorbic acid at a-cyclodextrin incorporated carbonnanotubes-coated electrode[J]. Journal of Qingdao University [J], 2002,15(4):1-6.
    [67]王宗花,罗国安,肖素芳,等.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报,2003,5(24):811-813.
    [68]张菲菲,王宗花,孙锡泉,等.桑色素功能化碳纳米管修饰电极对多巴胺与抗坏血酸的电化学研究[J].材料工程,2008,10:312-315.
    [69]李泽全,李静,张云怀,等.碳纳米管-DNA生物传感器的性能及其对对苯二酚的检测[J].材料导报,2008,22(5):92-95.
    [70]杨红.中药化学实用技术[M].北京:化学工业出版社,2004,230-231.
    [71]吴立军.天然药物化学[M].人民卫生出版社,第四版,2007,180-181.
    [72]杨帆,刘艾林,杜冠华.黄酮类化合物对肿瘤多药耐药调节作用的研究进展[J].中国新药杂志,2010,19(2):109-113.
    [73]戴伦凯,谢玉如.黄酮类化合物[M].科学出版社,1983.
    [74]刘飞,高志贤,刘中文,等.分光光度法测定保健果茶中总黄酮[J].食品研究与开发,2009,30(1):118-119.
    [75]吕国红,钟晓凌,张江,等.分光光度法测定枳具子总黄酮含量的比较分析[J].食品工业科技,2009,30(12):394-396.
    [76]Pejic N, Kuntic V, Vujic Z, et al. Direct spectrophotometric determination of quercetin in the presence of ascorbic acid[J]. 11 Farmaco,2004,59:21-24.
    [77]刘焱,高智席,黄成.HPLC-CL法测定桑叶中芦丁和桑色素[J].安徽农业科学,2008,36(21):9128-9129.
    [78]Chen G, Zhang H W, Ye J N. Determination of rutin and quercetin in plants by capillary electrochemical detection[J]. Analytica Chimica Acta,2000,423:69-76.
    [79]吕元琦,李玉美,李辉信.槐花和槐米中芦丁和槲皮素的毛细管电泳分析[J].化学分析计量,2008,17(3):16-18.
    [80]Volikakis G J, Efstathiou C E. Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrode[J]. Talanta,2000,51:775-785.
    [81]钱宗耀,李炳奇,刘红,等.芦丁的电化学伏安行为及其应用[J].电化学,2007,13(4):415-419.
    [82]He J L, Yang Y, Yang X, et al. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin[J]. Sensors and Actuators B,2006,114:94-100.
    [83]孔令蜜,李梦瑶,彭斌,等.纳米复合物修饰电极的电化学传感器检测芦丁[J].分析试验室,2009,28(2):8-11.
    [84]Xiao P, Zhao F Q, Zeng B Z. Voltammetric determination of quercetin at a multi-walled carbon nanotubes paste electrode[J]. Microchemical Journal,2007,85:244-249.
    [85]孙延一.碳纳米管化学修饰电极测定槲皮素的研究[J].襄樊职业技术学院学报,2003,2(2):22-24.
    [86]Ghica M E, Brett A M O. Electrochemical Oxidation of Rutin[J]. Electroanalysis,2005,17(4): 313-318.
    [87]Saieed P, Reza R M, Abbas D, et al. Inhibitory Effect of Ruta graveolens L. Extract on Guinea Pig Liver Aldehyde Oxidase[J]. Chem. Pharm. Bull.2006,54(1):9-13.
    [88]臧志和,曹丽萍,钟玲.芦丁‘药理作用及制剂的研究进展[J].医药导报,2007,26(7):758-760.
    [89]包晓玉,陈建国,陈欣,等.芦丁与DNA相互作用的电化学研究[J].分析试验室,2001,20(2):1-3.
    [90]孙沂,郭涛,隋因.高效毛细管电泳法同时测定红花中腺苷、、芦丁和槲皮素的含量[J].药学学报,2003,38(4):283-285.
    [91]Zu Y G, Li C Y, Fu Y J, Zhao C J. Simultaneous determination of catechin, rutin, quercetin, kaempfeol and isorhamnetin in the extract of sea buckthorn leaves by RP-HPLC with DAD[J]. J. Pharm. Biomed. Anal,2006,714-719.
    [92]杜郎宇,毛羽,许婧,等.紫外分光光度法测定藏药HEG胶囊中总黄酮的含量[J].西南民族大学学报:自然科学版,2009,35(6):1207-1209.
    [93]李利军,钟招亨,冯军,等.流动注射化学发光法测定芦丁[J].光谱学与光谱分析,2007,27(8):1625-1628.
    [94]Korbut O, Buckova M, Labuda J, et al. Voltammetric detection of antioxidative properties of flavonoids using electrically heated DNA modified carbon paste electrode[J]. Sensor,2003,3:1-10.
    [95]Zhang Y, Zheng J B. Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode[J]. Talanta,2008,77:325-330.
    [96]Wei Y, Wang G F, Li M G, et al. Determination of rutin using a CeO2 nanoparticle-modified electrode[J]. Microchim Acta,2007,158:269-274.
    [97]Hollma P C, Katan M B. Dietary flavonids:intake, health effects and bioavailability[J]. Food Chem. Toxicol.,1999,37(9):937-942.
    [98]王冲,谭赛男,陆彩玲,等.槲皮素对结肠癌的抑癌机制研究[J].山西医科大学学报,2009,40(6):504-508.
    [99]马莹莹,李英杰,刘雅静,等.分光光度法测定蒙药材多叶棘豆中槲皮素的含量[J].内蒙古民族大学学报,2010,25(1):26-28.
    [100]Zu Y G, Li C Y, Zhao C J. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn(Hippophae rhamnoides L.) leaves by RP-HPLC with DAD[J]. J. Pharm. Biomed. Anal,2006,41:714-719.
    [101]陈向前,林翠琴.高效液相色谱法测定飞扬肠胃炎片中槲皮素的含量[J].海峡药学,2009,21(6):58-59.
    [102]吕元琦,李玉美,李辉信.槐花和槐米中芦丁和槲皮素的毛细管电泳分析[J].化学分析计量,2008,17(3):16-18.
    [103]Zhang S, Dong S Q, Chi L Z, et al. Simultaneous determination of flavonoids in chrysanthemum by capillary zone electrophoresis with running buffer modifies[J]. Talanta,2008,76:780-784.
    [104]Jin J H, Kwon C H, Park W, et al. Electrochemical characterization of a glassy carbon electrode modified with microbial succinoglycan monomers and multi-wall carbon nanotubes for the detection of quercetin in an aqueous electrolyte[J]. Journal of Electroanalytical Chemistry,2008,623:142-146.
    [105]Danuta Z, Boguslaw P. Electrooxidation of quercetin at glassy carbon electrode studied by a.c. impedance spectroscopy[J]. Journal of Electroanalytical Chemistry,2009,625:149-155.
    [106]张靖,张春花,张雷.苯胺在邻氨基苯磺酸功能化的玻碳电极上聚合极其对抗坏血酸的电催化氧化[J].分析化学研究报告,2009,9:1281-1285.
    [107]Zhang W, Yang T, Yin C X, et al. An enhanced strategy using poly(m-aminobenzene sulfonic acid) nanofibers for rapid detection of DNA oxidative damage induced by hollow TiO2 nanocubes[J]. Electrochemistry Communications,2009,11:783-786.
    [108]Ashok K S, Chen S M. Electrocatalytic reduction of oxyen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes[J]. J. Mol. Catal. A:Chem., 2007,278:244-250.
    [109]Huang K J, Luo D F, Xie W Z, et al. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode[J]. Colloids Surf., B:Biointerfaces,2008,61:3176-181.
    [110]Jin G Y, Zhang Y Z, Cheng W. Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid[J]. Sens. Actuators B:Chemical, 2005,107:528-534.
    [111]Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications[M], Wiley, New York,1980.
    [112]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem,1979,101:19-28.
    [113]Lin X Q, Kang G F, Lu L P. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid bioelectrochemistry[J]. Bioelectrochemistry,2007,70(2):235-244.
    [114]Ikkala O T, Pietila L O, Passiniemi P, et al. Processible polyaniline complexes due to molecular recognition:Supramolecular structures based on hydrogen bonding and phenyl stacking[J]. Synth. Met.,1997,84:55-58.
    [115]Nematollahi D, Malakzadeh. Electrochemical oxidation of quercetin in the presence of benzenesulfinic acids[J]. Journal of Electroanalytical Chemistry,2003,547:191-195.
    [116]Jin G P, He J B, Rui Z B, et al. Electrochemical behavior and adsorptive voltammetric determination of quercetin at multi-wall carbon nanotube-modified paraffin-impregnated graphite disk electrode[J]. Electrochimica Acta,2006,51:4341-4346.
    [117]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem,1979,101:19-28.
    [118]曾恚恚,林辉概,俞汝勤.槲皮素荧光光度测定法的研究[J].分析试验室,1993,12(6):1-3.
    [119]Dryhurst G. Electrochemistry of Biological Molecules[M]. New York:Academic Press,1977.
    [120]Pachla L A, Reynolds D L, Wright D S, et al. Analytical methods for measuring uric acid in biological samples and food products[J]. J. Assoc. Off. Anal.Chem,1987,70:1-14.
    [121]Zhang L, Zhang C, Lian J Y. Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid[J]. Biosens. Bioelectron.,2008,24:690-695.
    [122]Marcela C, Rodrigue Z, Jose S, et al. Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine[J]. Sens. Actuators B:Chemical,2008,134:559-565.
    [123]孙登明,胡文娜,马伟.聚L-精氨酸修饰电极的制备及对尿酸的测定[J].应用化学,2008,25(8):913-917.
    [124]马艳蓉,高作宁.聚亚甲基蓝修饰金电极对过量抗坏血酸存在下尿酸的测定[J].分析测试学报,2008,27(2):139-142.
    [125]Premkumar J, Khoo S B. Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acid) at highly oxidized electrodes[J]. Journal of Electroanalytical Chemistry,2005,576:105-112.
    [126]Kannan, John Abraham S., Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode[J]. Analytical Biochemistry,2009,386:65-72.
    [127]Lijima S. Helical microtubles of graphite[J]. Nature,1991,354:56-58.
    [128]马曾燕,李将渊,向伟.聚吡咯/多壁碳纳米管修饰电极对多巴胺的测定[J].化学研究与应用,2008,20(12):1570-1574.
    [129]Liu J Y, Tian S G, Knoll W G. Properties of Polyaniline/Carbon Nanotube Multilayer Films in Neutral Solution and Their Application for Stable Low-Potential Detection of Reduced β-Nicotinamide[J]. Langmuir,2005,21:5596-5599.
    [130]Agui L, Pena F C, Yanez S P, et al. Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes[J]. Electrochim. Acta,2007,52:7946-7952.
    [131]Xu F, Gao M N, Wang L, et al. Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model[J]. Talanta, 2001,55:329-336.
    [132]Huang K J, Luo D F, Xie W Z, et al. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode[J]. Colloids Surf., B:Biointerfaces,2008,61:176-181.
    [133]樊雪梅,王书民,董文举.聚对氨基苯磺酸修饰电极测定对苯二酚[J].商洛学院学报,2009,23(2):46-48.
    [134]Kumar S A, Chen S M. Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins(FAD, FMN, RF) films and their use as electrochemical sensors:A new potent electroanalysis of NADH and NAD+. Sensors and Actuators B,2007,123:964-977.
    [135]Zhou L, Ye G R,Yuan R, A capacitive sensor based on molecularly imprinted polymers and poly(p-aminobenzene sulfonic acid) film for detection of pazufloxacin mesilate[J]. Science in China Series B:Chemistry,2007,50(4):547-553.
    [136]董文举,樊雪梅.聚对氨基苯磺酸修饰电极测定尿酸[J].分析试验室,2007,26(2):6-9.
    [137]王宗花,陆捷,闫永臣,等.L-色氨酸功能化多壁碳纳米管的制备与表征[J].分析测试学报,2007,26(1):62-65.
    [138]Lin X Q, Kang G F, Lu L P. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid[J]. Bioelectrochemistry,2007,70:235-244.
    [139]He J B, Jin G P, Chen Q Z, et al. A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid[J]. Analytical Chimica Acta,2007,585:337-343.
    [140]Hu G Z, Ma Y G, Guo Y, et al. Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode[J]. Electrochim. Acta,2008,53:6610-6615.
    [141]官杰,王宗花,辛福言,等.碳纳米管与曲拉通X-100协同增敏Cu2+与二溴羟基苯基荧光酮显色反应的机理研究[J].青岛大学学报,2009,24(1):85-89.
    [142]徐雪松.四氯化钛法快速检测双氧水[J].中国卫生检验杂志,2003,13(4):526-526.
    [143]李艳辉,刘全军,刘瑞侠,等.二甲基联苯胺检测植物叶片中H202方法的改良[J].西北植物学报,2008,28(5):1063-1068.
    [144]魏得良,李河冰.分光光度计快速检测明胶中H202残存量[J].明胶科学与技术,2001,21(1):31-33.
    [145]He X S, Hu C G, Liu H, et al. Building Ag nanoparticle 3D catalyst via Na2Ti3O7 nanowires for the detection of hydrogen peroxide[J]. Sensors and Actuators,2010,144:289-294.
    [146]冷鹏,李其云,郑岩,等.纳米金修饰玻碳电极对甲醛的电催化氧化[J].化学分析计量,2006,15(2):24-26.
    [147]郝玉翠,康天放,刘桐珅,等.甲醛的铂微粒修饰玻碳电极伏安法测定[J].分析测试学报,2008,27(1):60-62.
    [148]Safavi A, Maleki N, Farjami E. Electrodeposited silver nanoparticle on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide[J]. Electroanalysis,2009,21(13):1533-1538.
    [149]都君华,李伟善,李红.甲醛在聚苯胺修饰分散铂电极上的电催化氧化[J].华南师范大学学报,2003,4:78-82.
    [150]李靖.聚吡咯-铂纳米复合材料对氧还原的电催化性能研究[J].上海第二工业大学学报,2009,26(4):312-314.
    [151]郑娇红,朱伟,王丹,等.掺铂/聚3-甲基噻吩修饰电极研究氨酪酸对大鼠脑纹状体中单胺类神经递质影响[J].分析化学研究报告,2008,36(10):1316-1320.
    [152]He X S, Hu C G, Liu H, et al. Building Ag nanoparticle 3D catalyst via Na2Ti3O7 nanowires for the detection of hydrogen peroxide[J]. Sensors and Actuators B:Chemical,2010,144:289-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700