用户名: 密码: 验证码:
分子标记辅助改良03S的稻瘟病和褐飞虱抗性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是水稻的三大病害之一,褐飞虱是水稻生产上的首要农业害虫,两者都严重地影响了稻米生产。化学防治稻瘟病和褐飞虱不仅增加成本,而且污染环境,长期育种实践证明种植抗稻瘟病、褐飞虱水稻新品种,是防治稻瘟病和褐飞虱最经济、有效、环保的方法,而常规育种方法鉴定难、时间长、选择准确差、育种效率低,育种进展慢。利用分子标记辅助育种是解决抗性育种难题的有效途径之一。本文采用分子标记辅助选择技术,结合田间检测,改良了03S的稻瘟病和褐飞虱抗性。
     以抗稻瘟病材料福伊B(携带抗稻瘟病基因Pid2)和RF48(携带抗稻瘟病基因Pi9)作为稻瘟病抗源供体,以03S为轮回亲本,分别杂交、连续回交,构建回交导入系群体,通过目标基因的前景选择和遗传背景的分子标记辅助选择,选择抗稻瘟病而遗传背景与03S相似的新株系。以分子标记RM3辅助选择,将来源于水稻品种福伊B的抗稻瘟病基因Pid2导入两系不育系03S,该标记辅助选择的准确率达到95.24%,再结合少量的田间检测,就能育成准确度极高的抗性株;以分子标记AP5659-5、AP5930辅助选择,将来源于水稻品种RF48的抗稻瘟病基因Pi9也导入到两系不育系03S中,这两个标记比以往用于辅助育种的标记Pb8准确率高,与田间抗性检测的结果完全吻合。采用了220个较均匀分布于全基因组的SSR标记分析了亲本03S和福伊B间的多态性,共有55个SSR标记表现出多态性,多态性的比例为25%,并利用这55个SSR标记,分析了回交后代相对于轮回亲本03S的背景恢复率,结果表明在BC3F1中,背景恢复率最高可达96.40%。
     在改良褐飞虱抗性方面,分别采用了与抗褐飞虱基因Bph14, Bph15紧密连锁的SSR标记RM570、MS5对03S与B5的回交群体进行标记辅助前景选择。采用了220个较均匀分布于全基因组的SSR标记分析了亲本03S和B5间的多态性,共发现48个SSR标记表现出多态性,多态性比例达21.8%,并利用这48个SSR标记,分析了回交后代相对于轮回亲本03S的背景恢复率,结果表明在14个BC3F1群体的42个单株中,背景恢复率变化范围为81.20%-100%,平均值为93.16%,也明显高于理论值87.5%,通过背景恢复率的选择可加速抗性单株的背景恢复,使表型与轮回亲本更相似,提高育种效率和速度。
Blast and brown planthopper are destructive to the growth of rice, resulting in great loss of crop every year. Breeding and planting the rice cultivars with resistances to blast and brown planthopper is significative, not only to the rice production but also to the protection of envioroment. But the conventional breeding for developing rice cultivars with resistances to blast and brown planthopper is very difficult because of time consuming and cost. Marker Assisted Selection (MAS) gives a new way to develop the rice resistant to diseases and pests, owing to its effectiveness to identify the diseases and pest. In this thesis, we reported that the resistances of 03S to blast and brown planthopper was improved by MAS.
     The recurrent parent 03S was crossed with the blast resistance donor parents carrying Pid2 and RF48 carrying Pi9 and backcrossed to construct the backcross introgression lines for selecting new lines with both resistances to blast and the genetical background similar to the 03S. The molecular marker RM3 was used to select the blast resistance gene Pid2 in the backcross BC2F1 population derived from 03S with FuyiB, the best accurate rate is 95.24% for selection.The markers of AP5659-5 and AP5930 were used to select the blast resistance gene Pi9 in the backcross BC2F1 population derived from 03S with RF48.The results show the selecting accurate rate is 100% and much better than using the marker Pb8. Among 220 SSR markers covering 12 chromsomes,55 SSR markers were detected having polymorphism between 03S and FuyiB, then the 55 markers were used to analyse the background recovery rates of the resistant lines derived from the BC3F1 population. Among the selected lines, the maximum of the background recovery rates is 96.40%.
     To improve the resistance of 03S to brown planthopper, SSR markers RM570 and MS5 linking closely to brown planthopper resistance genes of Bph14 and Bph15 respectively were used to select the resistant genes in the backcross populations derived from B5(carrying the brown planthopper resistance gene Bph14 and Bph15) and 03S(the recurrent parent).48 out of 220 SSR markers covering 12 chromsomes were detected having polymorphism between 03S and FuyiB, The markers were used to analyse the background recovery rates of the resistant lines derived from the BC3F1 population. Among the selected lines, the maximum of the background recovery rates is 96.40%. The experiment results showing that the background recovery rates of the 42 resistant individuals derived from BC3F1 subpopulations vary from 81.20% to 100%, with the average of 93.16% much higher than the theoretical value 87.5%. Background selection can accelerates the recovery of the backgrounds of the lines selected for resistance, save time and enhance the efficiency for breeding.
引文
[1]钱前,程式华.水稻遗传学和功能基因组学[M].北京:科学出版社,2006.
    [2]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [3]白玉.DNA分子标记技术及其应用.安徽农业科学[J].2007,35(24):7422-7424.
    [4]侯义龙,曹同.苔藓植物与分子生物学标记技术.生态学杂志[J].2005,24(1):83-87.
    [5]周辉,赵福宽,林成,等.分子标记及其在葫芦科作物抗病育种中的应用.北方园艺[J].2005,(1):4-6.
    [6]Zhuang J-Y, Ma W-B, Wu J-L, et al. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica[J].2002,128(3):363-370.
    [7]邹喻苹.RAPD分子标记简介.生物多样性[J].1995,3(2):104-108.
    [8]邓俭英,刘忠,康德贤,等.RAPD分子标记技术在蔬菜研究中的应用.种子[J].2005,24(3):39-42.
    [9]Fjellstrom R, McClung A, Shank A. SSR Markers Closely Linked to the Pi-z Locus are Useful for Selection of Blast Resistance in a Broad Array of Rice Germplasm. Molecular Breeding[J].2006, 17(2):149-157.
    [10]唐荣华,张君诚.SSR分子标记的开发技术研究进展.西南农业学报[J].2002,15(4):106-109.
    [11]Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. TAG Theoretical and Applied Genetics[J].2006, 113(2):251-260.
    [12]冯芳君,罗利军,李荧,等.水稻InDel和SSR标记多态性的比较分析.分子植物育种[J].2005,3(5):725-730.
    [13]潘存红,王子斌,马玉银,等.InDel和SNP标记在水稻图位克隆中的应用,中国水稻科学.2007,21(5).-447-453[J].
    [14]王岩,付新民,高冠军,等.分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质.分子植物育种[J].2009,7(4):661-665.
    [15]王淑新,连林生.单核苷酸多态性作为新一代分子标记的优越性.中国畜牧兽医[J].2008,35(4):31-33.
    [16]Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. TAG Theoretical and Applied Genetics[J].2004, 108(7):1212-1220.
    [17]Jia Y, Redus M, Wang Z, et al. Development of a SNLP marker from the Pi-ta blast resistance gene by tri-primer PCR. Euphytica[J].2004,138(1):97-105.
    [18]陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报[J].2004,31(11):1309-1315.
    [19]张洁,陈学好,张海英.黄瓜遗传图谱研究进展.分子植物育种[J].2006,(z1):23-29.
    [20]杨晓明,安黎哲,党占海.豌豆遗传图谱构建及QTL定位研究进展.西北植物学报[J].2006,26(10):2159-2165.
    [21]吴晓雷,贺超英.大豆遗传图谱的构建和分析.遗传学报[J].2001,28(11):1051-1061.
    [22]袁玲.SSR分子标记丰富水稻遗传图谱的方法.农业与技术[J].2004,24(6):90-92,107.
    [23]陆含,朱世华,周书军,等.浙贝母4品种及5种贝母遗传多样性的rapd分析.宁波大学学报:理工版[J].2009,22(1):44-47.
    [24]Roh, Mark, De, et al. Identification of Tsuga Germplasm by Morphological Characters and RAPDMarkers.应用与环境生物学报[J].2007,13(2):145-151.
    [25]景建洲,张勇,李东亮,等.利用RAPD分子标记分析玉米种质遗传多样性.中国农学通报[J].2006,22(12):405-408.
    [26]林旗华.DNA分子标记在枇杷种质鉴定中的应用.现代园艺[J].2008,(11):22-23.
    [27]曾淇,昝逢刚,李明芳,等.分子标记技术在荔枝研究中的应用.热带作物学报[J].2009,(4):544-550.
    [28]赵谦,杜虹,庄东红.ISSR分子标记及其在植物研究中的应用.分子植物育种[J].2007,5(F11):123-129.
    [29]曹乃倩,刘桂茹,杨学举.小麦抗白粉病基因定位及分子标记辅助育种综述.中国农学通报[J].2007,23(7):482-486.
    [30]程计华,李云昌,梅德圣,等.几种农作物细胞质雄性不育恢复基因的定位和分子标记研究进展.植物学通报[J].2006,23(6):613-624.
    [31]孟凡娟,李景富,许向阳,等.番茄抗病虫基因定位的分子标记研究进展.分子植物育种[J].2004,2(2):287-293.
    [32]许凤华,涂香明,李顺德,等.抗稻瘟病基因Pi-3的定位.云南农业大学学报[J].2007, 22(1):138-140.
    [33]张素梅,蒋玉宝,刘保申.分子标记技术在玉米基因定位上的研究进展.生物技术[J].2006,16(6):80-83.
    [34]杨随庄.小麦抗旱的分子标记基因定位和基因工程研究进展.中国农学通报[J]I 2007,23(4):59-63.
    [35]杨文才,陈佳,张晓敏,等.番茄疮痂病病原菌分类、抗性遗传和分子标记辅助选择进展.中国农业科学[J].2007,40(2):283-290.
    [36]曹士亮.分子标记辅助选择在玉米育种中的应用进展.作物杂志[J].2008,(6):107-109.
    [37]潘学彪,陈宗祥,左示敏,等.以分子标记辅助选择育成抗条纹叶枯病水稻新品种“武陵粳1号”.作物学报[J].2009,35(10):1851-1857.
    [38]李春鑫,许为钢.小麦白粉病抗病基因分子标记开发及应用研究进展.中国农学通报[J].2009,(10):53-58.
    [39]杨喆,刘丽君,高明杰,等.大豆高蛋白基因分子标记及其在大豆育种中的应用.大豆科学[J].2008,27(2):186-189.
    [40]邓启云,袁隆平,梁凤山,等.野生稻高产基因及其分子标记辅助育种研究.杂交水稻[J].2004,19(1):6-10.
    [41]黄廷友,李仕贵,王玉平,等.分子标记辅助选择改良蜀恢527对白叶枯病的抗性.生物工程学报[J].2003,19(2):153-157.
    [42]金素娟,柳武革,朱小源,等.利用分子标记辅助选择改良温敏核不育系gd-8s的稻瘟病抗性.中国水稻科学[J].2007,21(6):599-604.
    [43]陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23b的稻瘟病抗性.中国水稻科学[J].2008,(1):23-27.
    [44]Liu, Liu X, Smith, et al. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. TAG Theoretical and Applied Genetics[J].2002, 104(6):1042-1048.
    [45]白俊艳,张勤,贾小平.标记辅助导人的原理与应用,遗传[J],2007,29(3):259-264.
    [46]白俊艳,张勤,贾小平.标记辅助导入中不同前景和背景选择方法的比较.遗传学报[J].2006,33(12):1073-1080.
    [47]刘占领,雷财林,程治军,等.水稻稻瘟病抗性基因定位与克隆研究进展.作物杂志[J].2007,(3):16-19.
    [48]Jeung J, Kim B, Cho Y, et al. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. TAG Theoretical and Applied Genetics[J].2007,115(8):1163-1177.
    [49]Ballini E, Morel J-B, Droc G, et al. A Genome-Wide Meta-Analysis of Rice Blast Resistance Genes and Quantitative Trait Loci Provides New Insights into Partial and Complete Resistance. Molecular Plant-Microbe Interactions[J].2008,21(7):859-868.
    [50]洪建民,童贤明,徐福寿.中国水稻病害及其防治[M].上海:上海科学出版社,2006.
    [51]Project IRGS. The map-based sequence of the rice genome. Nature[J].2005,436(7052):793-800.
    [52]Zenbayashi-Sawata K, Ashizawa T, Koizumi S. Pi34-AVRPi34:a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. Journal of General Plant Pathology[J].2005,71(6):395-401.
    [53]Feng S, Wang L, Ma J, et al. Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready markers. Chinese Science Bulletin[J].2007, 52(7):903-911.
    [54]Liang-Ying Dai, X-L L, Y-H X. Recent Advances in Cloning and Characterization of Disease Resistance Genes in Rice. Journal of Integrative Plant Biology[J].2007,49(1):112-119.
    [55]Lee S-K, Song M-Y, Seo Y-S, et al. Rice Pi5-Mediated Resistance to Magnaporthe oryzae Requires the Presence of Two CC-NB-LRR Genes. Genetics[J].2009,181(4):1627-1638.
    [56]Zhou B, Qu S, Liu G, et al. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions[J].2006,19(11):1216-1228.
    [57]汪旭升,吴为人,金谷雷,等.水稻全基因组R基因鉴定及候选RGA标记开发.科学通报[J].2005,50(11):1085-1089.
    [58]Keiko Hayashi HY. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. The Plant Journal[J].2009,57(3):413-425.
    [59]Qu S, Liu G, Zhou B, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes an NBS-LRR Protein and is a Member of a Multigene Family in Rice. Genetics[J].2006,172:1901-1914.
    [60]Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance. The Plant Journal[J].2006,46(5):794-804.
    [61]Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics[J].2007,177(3):1871-1880.
    [62]李洪亮.利用MAS技术培育寒区抗稻瘟病水稻品种空育131 (Pil/Pi2) [D].黑龙江大学,硕士.2009.
    [63]王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择.作物学报[J].2004,30(12):1259-1265.
    [64]刘士平,李信,汪朝阳,等.利用分子标记辅助选择改良珍汕97的稻瘟病抗性.植物学报:英文版[J].2003,45(11):1346-1350.
    [65]刘洋,徐培洲,张红宇,等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用.中国农业科学[J].2008,41(1):9-14.
    [66]陈红旗.分子标记辅助聚合3个稻瘟病抗性基因[D].扬州大学,硕士.2005.
    [67]李进波,夏明元,戚华雄,等.水稻抗褐飞虱基因Bph14和Bph15的分子标记辅助选择.中国农业科学[J].2006,39(10):2132-2137.
    [68]康霞云.褐飞虱的发生特点及防治技术.现代农业科技[J].2008,(16):140-140.
    [69]孙立宏.水稻品种抗褐飞虱基因的定位及分子标记辅助选择[D].南京农业大学,硕士.2005.
    [70]鄂志国,程本义,焦桂爱,等.水稻褐飞虱抗性基因的鉴定及利用现状.植物保护学报[J].2008,35(3):279-284.
    [71]李信.应用分子标记辅助选择改良水稻对稻瘟病、稻褐飞虱的抗性[D].华中农业大学,硕士.2004.
    [72]何忠全,张志涛.“九五”水稻主要病虫害综合防治技术研究进展.西南农业大学学报[J].1998,20(5):377-383.
    [73]KENNEDY GG, GOULD F, DEPONTI OMB, et al. Ecological, Agricultural, Genetic, and Commercial Considerations in the Deployment of Insect-resistant GermplasmEnvironmental Entomology. Environmental Entomology[J].1987,16(2):327-338.
    [74]杨海元.两个野生稻来源的抗褐飞虱基因的遗传分析和分子标记定位[D].武汉大学,博士.2004.
    [75]Padgham DE. The influence of host-plant on the development of the adult brown planthopper, Nilaparvata lugens (Stal) (Hemiptera:Delphacidae), and its significance in migration. Bulletin of Entomological Research [J].1983,73:117-128.
    [76]Athwal DS, Pathak MD, Bacalangco EH, et al. Genetics of Resistance to Brown Planthoppers and Green Leafhoppers in Oryza sativa L. Crop Science[J].1971, 11(5):747-750.
    [77]Yong-Hee Jeon, Sang-Nag Ahn, Hae-Chune Choi, et al. Identification of a RAPD marker linked to a brown planthopper resistance gene in rice. Euphytica[J].1999,107:23-28.
    [78]Sharma PN, Ketipearachchi Y, Murata K, et al. RFLP/AFLP mapping of a brown planthopper (Nilaparvata lugens Stal) resistance gene Bphl in rice. Euphytica[J].2003,129(1):109-117.
    [79]Kazumasa Murata, Manabu Fujiwara, Chukichi Kaneda, et al. RFLP mapping of a brown planthopper (Nilaparvata lugens Stal) resistance gene bph2 of indica rice introgressed into a japonica breeding line'Norin-PL4'. Genes & Genetic Systems[J].1998,73(6):359-364.
    [80]孙立宏,王春明,苏昌潮,等.水稻抗褐飞虱基因bph2的SSR定位和标记辅助选择.遗传学报[J].2006,33(8):717-723.
    [81]A. Lakshminarayana, Khush GS. New genes for resistance to the brown planthopper in rice. Crop Science[J].1977,17(1):96-100.
    [82]G. S. Sidhu, Khush GS. Linkage relationships of some genes for disease and insect resistance and semidwarf stature in rice. Euphytica[J].1977,28:233-237.
    [83]鄢慧民,覃瑞,金危危,等.Bph3在栽培稻和药用野生稻中的BAC-FISH比较物理定位.植物学报:英文版[J].2002,44(5):583-587.
    [84]Mitsuhiro Kawaguchi, Kazumasa Murata, Takashige Ishii, et al. Assignment of a Brown Planthopper (Nilaparvata lugens Stal) Resistance Gene bph4 to the Rice Chromosome 6. Breeding Science[J].2001,51(1):13-18.
    [85]Khush Gurdev S, M Rezaul Karim, Angeles ER. Genetics of resistance of rice cultivar ARC10550 to Bangladesh brown planthopper biotype. Journal of Genetics[J].1985,64:121-125.
    [86]Anwarul Kabis, Khush GS. Genetic Analysis of Resistance to Brown Planthopper in Rice (Oryza sativa L.). Plant Breeding[J],1988,100(1):54-58.
    [87]Hiroshi Nemoto, Ryoichi Ikeda, Kaneda C. New genes for resistance to brown planthopper, Nilaparvata lugens Stal, in rice. Japanese Journal of Breeding[J].1989,39:23-28.
    [88]K. MURATA, M. FUJIWARA, H. MURAI, et al. Bph9, a dominant brown planthopper resistance gene, is located on the long arm of rice chromosome 12. Rice Genetics Newsletters[J].2000, 17:84-86.
    [89]苏昌潮,翟虎渠,王春明,等.利用SSR定位籼稻品种Kaharamana中抗褐飞虱基因Bph9.遗传学报[J].2006,33(3):262-268.
    [90]Lihong Sun, Changchao Su, Chunming Wang, et al. Mapping of a Major Resistance Gene to the Brown Planthopper in the Rice Cultivar Rathu Heenati. Breeding Science[J].2005,55(4):391-396.
    [91]J. W. Chen, L. Wang, X. F. Pang, et al. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stal) resistance gene bph19(t). Molecular Genetics and Genomics[J].2006,275(4):321-329.
    [92]T. Ishii, D. S. Brar, D. S. Multani, et al. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome Res.[J].1994,37(2):217-221.
    [93]K, K. Jena, J. U. Jeung, J. H. Lee, et al. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L). Theoretical and Applied Genetics[J].2006,112:288-297.
    [94]K. Renganayaki, Allan K. Fritz, S. Sadasivam, et al. Mapping and Progress toward Map-Based Cloning of Brown Planthopper Biotype-4 Resistance Gene Introgressed from Oryza officinalis into Cultivated Rice, O. sativa. Crop Science[J].2002,42:2112-2117.
    [95]Z. Huang, G. He, L. Shu, et al. Identification and mapping of two brown planthopper resistance genes in rice. Theoretical and Applied Genetics[J].2001,102:929-934.
    [96]Du B, Zhang W, Liu B, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences[J]. 2009,106(52):22163-22168.
    [97]HAIYUAN YANG, XIANG REN, QINGMEI WENG, et al. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stal) resistance gene. Hereditas[J].2002, 136:39-43.
    [98]刘国庆,颜辉煌,傅强,等.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报[J].2001,46(5):738-742.
    [99]李容柏,李丽淑,韦素美,等.普通野生稻(Oryza rufipogon Griff.)抗稻褐飞虱新基因的鉴定与利用.分子植物育种[J].2006,4(3);365-371.
    [100]Fuentes J, Correa-Victoria F, Escobar F, et al. Identification of microsatellite markers linked to the blast resistance gene Pi-l(t) in rice. Euphytica[J].2008,160(3):295-304.
    [101]张冬梅,石振华,林歧,等.一个假定的稻瘟病菌RhoGEF蛋白参与营养生长和产孢过程的调控.中国农学通报[J].2009,(11):161-164.
    [102]雷财林,王久林,毛世宏,等.籼稻品种窄叶青8号抗稻瘟病基因分析.遗传学报[J].1997,24(1):36-41.
    [103]Smith JR., Leong SA. Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity. TAG Theoretical and Applied Genetics[J].1994,88(8):901-908.
    [104]Dellaporta S, Wood J, Hicks J. A plant DNA minipreparation:Version Ⅱ. Plant Molecular Biology Reporter[J].1983,1(4):19-21.
    [105]J. HUGO, COTA-SANCHEZ KR, KUMARY UBAYASENA. Ready-to-Use DNA Extracted with a CTAB Method Adapted for Herbarium Specimens and Mucilaginous Plant Tissue. Plant Molecular Biology Reporter[J],2006,24(2):161-167.
    [106]Liu G L, G Lu Zeng, L Zeng Wang. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Molecular Genetics and Genomics[J].2002, 267(4):472-480.
    [107]Fjellstrom RM, Anna Shank A. SSR Markers Closely Linked to the Pi-z Locus are Useful for Selection of Blast Resistance in a Broad Array of Rice Germplasm. Molecular Breeding[J].2006, 17(2):149-157.
    [108]X. W. Chen, S. L, J. C. Xu, et.al. Identification of Two Blast Resistance Genes in a Rice Variety, Digu. Journal of Phytopathology[J].2004,152(2):77-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700