用户名: 密码: 验证码:
海藻对不同促生菌生长的影响及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻是生长在海洋中的低等隐花植物,由于其特殊的生长环境,营养成分与陆生植物存在很大的不同,海藻中含有一般陆生植物无法比拟的丰富的矿物元素及维生素等。目前海藻及其相关产品已被应用于多个领域。海藻可作为生物促生剂及肥料应用于有机农业中。本文以山东青岛岸边丰富的海带(Laminaria japonica)及浒苔(Entermorpha)为原材料,研究了海藻液态提取物对根际促生菌( PGPR, plant growth-promoting rhizobacteria)生长的影响,海藻有机肥生产,施用海藻有机肥对果园土壤理化性质、微生物数量、活性及种群结构的影响。
     在LB液体培养基中添加1/100、1/200、1/500、1/1000体积比例的海藻提取液,接入自生固氮菌、解钾菌、有机磷细菌、无机磷细菌四种根际促生菌,在不同的时间点测定菌液OD值。结果表明,添加海藻提取液对有机磷细菌的生长无显著影响,可以促进自生固氮菌、无机磷细菌、解钾菌的生长,不同海藻提取液添加量对自生固氮菌和无机磷细菌的生长促进作用无显著差异,1/1000的海藻提取液添加量即可收到很好的促生效果。海藻提取液对解钾菌的促生作用随海藻提取液添加量的增大而增强,以1/100的添加量效果最好。
     以山东青岛岸边的海带和浒苔为原料,通过高温发酵制作海藻有机肥,以山东烟台10年树龄的苹果园进行施肥试验,2008年秋季施肥,两种肥料的施肥量一致,分别以7.5、15、22.5kg/株三种不同的量在秋季施入果园中,正常管理,同时设不施有机肥的对照。为保持果树的产量,所有处理均施用等量化肥。次年的五月和十月采集土样。通过平板培养、测定土壤酶活性、构建微生物群落脂肪酸甲酯(FAME, fatty acid methyl ester)图谱的方法研究海藻有机肥对土壤微生物数量、活性及种群结构的影响。
     结果表明,施用海带有机肥及浒苔有机肥可以显著提高果园土壤有机质、全氮、速效磷、速效钾含量,提高土壤pH值,改良酸性土壤。海带肥的效果优于浒苔肥。
     在五月份的采样检测表明,海带有机肥及浒苔有机肥均可显著增加土壤中可培养细菌及放线菌的数量,细菌数量为对照土壤的2.81-9.30倍,放线菌数量为对照土壤的1.95-18.62倍。施用海带肥及浒苔肥对可培养真菌数量无显著影响。海带有机肥及浒苔有机肥均可显著提高土壤荧光素二乙酸酯(FDA,Fluorescein diacetate)酶及脲酶活性,FDA酶活性为对照土壤的1.25-1.88倍,脲酶活性为对照土壤的1.71-2.79倍。施用海带肥及浒苔肥对过氧化氢酶活性无显著影响。对微生物脂肪酸甲酯的分析表明,施用海带肥及浒苔肥均可显著提高微生物生物量,总的FAME的量为对照土壤的1.60-2.64倍。施用海带肥和浒苔肥可增加土壤微生物中单不饱和脂肪酸的含量比例,为对照土壤的1.14-1.64倍。对FAME数据的主成分分析表明,海带肥及22.5kg/株浒苔肥处理对土壤微生物种群结构的改变较大,而7.5kg/株及15kg/株浒苔肥对微生物种群结构的影响较小。在十月份的采样检测中,两种肥料对土壤微生物的影响已减弱。这些结果表明,施用海带有机肥和浒苔有机肥会对果园土壤质量产生有益的影响。
Seaweed is an inferior cryptogamous plant in the sea. The nutrients of seaweeds are greatly different from that of plants on land because of their particular environment. Seaweed contains rich minerals and vitamins that are much less in amount in ordinary plants on land. Seaweed and its products are now widely used in many fields. Seaweed has gained application in the field organic agriculture as biostimulants and fertilizer. In this article, the rich resources of Laminaria japonica and Entermorpha on the sealine of Tsingtao, Shandong Province are used as raw materials to study the effect of liquid seaweed extract on the growth of PGPR(plant growth-promoting rhizobacteria), the production process of seaweed organic fertilizer and the effect of the application of seaweed fertilizer on the chemical properties of orchard soil and the amount, activity and community structures of soil microorganisms.
     1/100, 1/200, 1/500, 1/1000 proportional seaweed liquid extract was added to LB liquid medium (v/v). Four species of PGPR (plant growth-promoting rhizobacteria), Azotobacteria, organic phosphobacteria, inorganic phosphobacteria, and silicate-dissolving bacteria were inoculated to the medium and OD values were measured at different time points. The result indicates that adding seaweed liquid extract has no significant influence on the growth of organic phosphobacteria while promoting the growth of azotobacteria, inorganic phosphobacteria, silicate-dissolving bacteria. The different quantities of seaweed liquid extract added have no significantly different growth-promoting effect on azotobacteria and inorganic phosphobacteria. Adding 1/1000 proportional seaweed liquid extract would have significant growth-promoting effect. In the case of silicate-dissolving bacteria, the growth-promoting effect becomes stronger as the quantity of seaweed extract becomes greater, being best when adding 1/100 proportional seaweed extract.
     Seaweed organic fertilizer was manufactured from Laminaria japonica and Entermorpha on the sealine of Tsingtao, Shandong Province, by high-temperature fertilization. An apple orchard planted with trees 10 years old in Yantai, Shandong Province was chosen for the experiment. The fertilizer was applied in the autumn of 2008. The two species of fertilizer were applied with the same amount, each applied with three different quantities, 7.5, 15, 22.5kg/plant to the orchard. The orchard was managed as usual. The control sites with no organic manure were established at the same time. To maintain the production of apple trees, chemical fertilizer were applied to all the experimental sites with the same amount. Soil samples were collected in May and October the next year. The effect of seaweed fertilizer on the amount, activity and community structure of soil microorganisms was studied using dilution plating, measuring soil enzyme activities and forming microbial community FAME (fatty acid methyl ester) profiles.
     The result indicates that Laminaria japonica organic fertilizer and Entermorpha organic fertilizer significantly increase the contents of organic matter, total nitrogen , available K and available P in orchard soil. Laminaria japonica organic fertilizer and Entermorpha organic fertilizer can increase the soil pH value and improve the quality of acidic soil. The Laminaria japonica organic fertilizer has better effect than Entermorpha organic fertilizer.
     The analysis of soil samples collected in May indicates that Laminaria japonica organic fertilizer and Entermorpha organic fertilizer significantly increase the amounts of culturable bacteria and actinomycetes in soil. The amount of bacteria is 2.81-9.30 times higher than that in control soil. The amount of actinomycetes is 1.95-18.62 times higher than that in control soil. The application of Laminaria japonica fertilizer and Entermorpha fertilizer has no significant influence on the amount of culturable fungi. Laminaria japonica organic fertilizer and Entermorpha organic fertilizer significantly increase FDA (Fluorescein diacetate) enzyme activity and urease activity in soil. FDA enzyme activity is 1.25-1.88 times higher than that in control soil. Urease activity is 1.71-2.79 times higher than that in control soil. The application of Laminaria japonica fertilizer and Entermorpha fertilizer has no significant influence on catalase activity. The analysis of FAME indicates that both Laminaria japonica organic fertilizer and Entermorpha organic fertilizer significantly increase microbial biomass. The total FAME amount is 1.60-2.64 times higher than that in control soil. The application of Laminaria japonica fertilizer and Entermorpha fertilizer increases the relative abundance of monounsaturated fatty acids in soil microorganisms, being 1.14-1.64 times higher than that in control soil. The principal components analysis on FAME data indicates that soil microbial community structures are much changed due to the application of Laminaria japonica organic fertilizer and 22.5kg/plant Entermorpha organic fertilizer. However, 7.5kg/plant and 22.5kg/plant Entermorpha organic fertilizer have little effect on microbial community structures. Both fertilizers have much less effect on soil microorganisms in the analysis of soil samples collected in October. These results indicate that the application of Laminaria japonica organic fertilizer and Entermorpha organic fertilizer has beneficial effect on orchard soil quality.
引文
保万魁.海藻提取物与铜铁硼配施对小油菜营养特性的影响.中国农业科学院硕士学位论文. 2008.
    保万魁,王旭,封朝晖,周红梅,赵鲁.海藻提取物在农业生产中的应用. 中国土壤与肥料. 2008, 5: 12-17.
    毕明丽,宇万太,姜子绍,周桦,沈善敏.施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响.生态学报. 2010, 30(1): 0032-0042.
    陈振翔,于鑫,夏明芳,戴朝霞,孙成.磷脂脂肪酸分析方法在微生物生态学中的应用.生态学杂志. 2005, 24(7): 828-832.
    陈伟.苹果园土壤微生物类群与栽培环境关系的研究.山东农业大学博士学位论文. 2007.
    陈伟,束怀瑞.施肥对平邑甜茶根际微生物的影响.植物营养与肥料学报. 2008, 14(2): 328-333.
    丛大鹏,咸洪泉.我国海藻的开发利用价值及产业化生产.中国渔业经济. 2009, 1(27): 93-97.
    杜娟.用有机固体废弃物生产生物有机肥.中国资源综合利用. 2009, 27(9): 22-24.
    范晓.海藻作为饲料添加剂的研究和利用.饲料工业. 1991, 12(11): 14-16.
    范晓,韩丽君,周天成,娄清香,张燕霞.中国沿海经济海藻化学成份的测定.海洋与湖沼. 1995b, 26(2): 199-207.
    范晓,宋耀燧.多效植物肥——海藻提取物.海洋科学. 1987, 5: 59-62.
    范晓,严小军,韩丽君.海藻加工利用研究进展.海洋科学. 1995a, 4: 12-14.
    郭晓冬,孙锦,韩丽君,等.海藻提取物防治番茄CMV病毒效果极其机理
    研究.沈阳农业大学学报, 2006, 37(3): 313-316.
    韩丽君,范晓,房国明.海藻提取物对蔬菜种子萌芽的影响.海洋科学. 2000, 11(24): 8-10.
    韩丽君,周天成.海藻植物生长调节剂中的活性组分.海洋科学. 1999, 5: 20-22.
    胡婵娟,傅伯杰,刘国华,靳甜甜,刘宇.黄土丘陵沟壑区典型人工林下土壤微生物功能多样性.生态学报. 2009, 29(2): 727-732.
    胡江春,薛德林,马成新,王书锦.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报. 2004, 15(10): 1963-1966.
    胡君利,林先贵,尹睿,褚海燕,张华勇,王俊华,曹志洪.浙江慈溪旱作农田土壤微生物学性状的时空演变特征.应用生态学报. 2008, 19(9): 1977-1982.
    姜桥,周德庆,孟宪军,宫春波,姜文利,刘永红.我国食用海藻加工利用的现状及问题.食品与发酵工业. 2005, 5(31): 68-72.
    李秉钧.中国养殖海带不同群体的遗传变异分析及海带配子体性别性状初步定位.中国海洋大学博士学位论文. 2008.
    李娟,赵秉强,李秀英,姜瑞波.长期不同施肥制度下几种土壤微生物学特征变化.植物生态学报. 2008, 32(4): 891-899.
    李凌绪.海藻提取物的制备与抗病活性.福建农林大学硕士学位论文. 2004.
    李玫.我国红树林主要造林树种PGPR研究及应用.中国林业科学研究院博士学位论文. 2009.
    李书琴,王孝举.海藻液体肥的研究.海洋科学. 1995, 3: 4-6.
    李振高,骆永明,滕应.土壤与环境微生物研究法.北京:科学出版社. 2008.
    李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样性变化.中国农业科学. 2007, 40(8): 1712-1721.
    林启美,赵小蓉,孙焱鑫,姚军.四种不同生态系统的土壤解磷细菌数量及种群分布.土壤与环境. 2000, 9(1): 34-37.
    林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能.土壤学报. 2008, 45(5): 892-898.
    林叶.浒苔多糖提取纯化及生物活性研究.福建农林大学硕士学位论文. 2009.
    刘光崧,蒋能慧,张连弟等.土壤理化分析与剖面描述.北京:中国标准出版社. 1996.
    刘训理,王超,吴凡,薛东红,陈凯等.烟草根际微生物研究.生态学报. 2006, 26(2): 552-557.
    
    刘振宇,谢荔岩,吴祖建,等.海藻蛋白质提取物对香蕉炭疽菌的抑制作用.福建农林大学学报(自然科学版), 2006. 1.
    路克国.大型藻类在工程治理海水富营养化和抑制病原微生物中的作用.中国科学院博士学位论文. 2008.
    彭福元.土壤微生物.茶叶通讯. 1995, 4: 40-41.
    漆良华,张旭东,彭镇华,周金星.湘西北退化侵蚀地植被恢复区土壤养分、微生物与酶活性的典范相关分析.林业科学. 2008, 9(44): 1-6.
    单体锋.海带、裙带菜和羊栖菜的遗传分析.中国科学院博士学位论文. 2009.
    石学连.浒苔多糖的化学组分及生物学活性的初步研究.中国科学院硕士学位论文. 2009.
    苏华.三种海洋红藻和两株放线菌次级代谢产物研究.中国科学院博士学位论文. 2009.
    隋战鹰.海藻肥料的应用前景.生物学通报, 2006, 41(11).
    孙杰.海藻提取物的化学成分和生物活性的研究及其应用.中国科学院博士学位论文. 2006.
    孙锦,韩丽君,于庆文.海藻提取物(海藻肥)在蔬菜上的应用效果研究.土壤肥料. 2006, 2: 47-50.
    孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道,等.长期施肥对土壤微生物的影响及其在养分调控中的作用.应用生态学报, 2004, 15: 1907-1910.
    田耀华,冯玉龙.微生物研究在土壤质量评估中的应用.应用与环境生物学报. 2008, 14(1): 132-137.
    王冬梅,王春枝,韩晓日,张旭东,邹德乙,刘小虎.长期施肥对棕壤主要酶活性的影响.土壤通报. 2006, 37: 263-267.
    王国文.我国主要海带栽培品种的性状评价与遗传学分析.中国农业科学院硕士学位论文. 2009.
    王强.海藻液肥生物学效应及其应用机理研究.浙江大学硕士学位论文. 2003.
    吴江.海藻肥的开发及市场前景.世界农业. 2003, 3: 46.
    徐大伦.浒苔主要化学组分的分析及多糖活性的研究.中国海洋大学硕士学位论文. 2004.
    殷培杰,孙军德,石星群,李培军.微生物菌剂在鸡粪有机肥料堆制发酵中的应用.微生物学杂志. 2004, 24(6): 43-46.
    张奇春,王雪芹,时亚南,王光火.不同施肥处理对长期不施肥区稻田土壤微生物生态特性的影响.植物营养与肥料学报. 2010, 16(1): 118-123.
    张淑梅,李忠红.浅议中国海藻开发利用.水产科学. 2001, 4(20): 35-37.
    张智芳.浒苔多糖提取工艺及其降血脂和抗肿瘤功能研究.福建医科大学硕士学位论文. 2009.
    赵鲁.海藻提取物与Mn,Zn配施对生菜营养特性的影响.中国农业科学院硕士学位论文. 2008.
    赵满兴,周建斌,陈竹君,杨绒.有机肥中可溶性有机碳、氮含量极其特性. 生态学报. 2007, 27(1): 397-403.
    赵自国.三种大型海藻的早期发育研究.东北师范大学博士学位论文. 2008.
    中国科学院南京土壤研究所微生物室编著.土壤微生物研究法.北京:科学出版社, 1985.
    钟礼云.浒苔系列产品生理功能活性研究.福建医科大学硕士学位论文. 2008.
    周二峰,宋秀红,胡国强,马丽清.天然有机海藻肥的功效及应用前景.安徽农业科学. 2007, 35(9): 2671, 2775.
    周红梅.海藻提取物对石灰性土壤磷及小油菜品质的影响.中国农业科学院硕士学位论文. 2006.
    Avidano L, Gamalero E, Paolo Cossa G, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 2005, 30: 21-33.
    B??th E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry. 2003, 35: 955-963.
    Bardgett R D, Lovell R D, Hobbs P J, Jarvis S C. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 1999, 31: 1021-1030.
    Bending G D, Turner M K, Jones J E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbialcommunities. Soil Biology & Biochemistry. 2002, 34: 1073-1082.
    Blume E, Bischoff M, Reichert J M, Moorman T, Konopka A, Turco R F. Surface and substrate microbial biomass, community structure and metabolic activity as a function of soil depth and season. Applied Soil Ecology, 2002, 20: 171-181.
    B?hme L, Langer U, B?hme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment. 2005, 109: 141-152.
    Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: phospholipids fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1998, 35: 265-278.
    Bradley K, Drijber R A, Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry. 2006, 38: 1583-1595.
    Brussaard L, de Ruiter P C, Brown G G. Soil biodiversity for agricultural sustainability. Agricultural Ecosystems and Environment. 2007, 121: 233-244.
    Cavigelli M A, Robertson G P, Klug M K. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant and Soil, 1995, 170: 99-113.
    Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry. 2007, 39: 2971-2976.
    Crecchio C, Curci M, Mininni R, Ricciuti P, Ruggiero P. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biology and Fertility of Soils, 2001, 34: 311-318.
    Crouch I J, Beckett R P, Van Staden J. Effect of seaweed concentrate on the growth and mineral nutrition of nutrient stress lettuce. Journal of Applied Phycology. 1990, 2: 269-272.
    Crouch I J, Van Staden J. Commercial seaweed products as biostimulants inhorticulture. Journal of Home and Consumer Horticulture. 1994, 1: 19-76.
    Denef K, Zotarelli L, Boddeyd R M, Six J. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology & Biochemistry, 2007, 39, 1165-1172.
    Dierksen K P, Whittaker G W, Banowetz G M, Azevedo M D, Kennedy A C, Steiner J J, Griffith S M. High resolution characterization of soil biological communities by nucleic acid and fatty acid analyses. Soil Biology & Biochemistry, 2002, 34: 1853-1860.
    Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15: 3-11.
    Drijber R A, Doran J W, Parkhurst A M, Lyon D J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology & Biochemistry, 2000, 32: 1419-1430.
    Gao G, Chang C. Changes in CEC and particle size distribution of soils associated with long-term annual application of cattle feed lot manure. Soil Science, 1996, 161: 115-120.
    Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57: 2351-2359. Gil-Sotres F, Trasar-Cepeda C, Leiros M C, Seoane S. Different approaches to evaluating soil quality using biochemical properties. Soil Biology & Biochemistry, 2005, 37: 877-887. Glendining M J, Poulton P R, Powlson D S. The relationship between inorganic N in soil and the rate of fertilizer N applied on the broadback wheat experiments. Applied Biology, 1992, 30, 95-102. Griffiths B S, Ritz K, Ebblewhite N, Dobson G. Soil microbial community structure: effect of substrate loading rates. Soil Biology & Biochemistry. 1999, 31: 145-153. Haslam S F I, Hopkins D W. Physical and biological effects of kelp (seaweed) added to soil. Applied Soil Ecology. 1996, 3: 257-261. Jenkinson L, Bai Q Y, Beck T, Beese F. The effects of biocidal treatments on metabolism in soil:Ⅳ. The decomposition of fumigated organisms in soil. Soil Biology & Biochemistry, 1976, 8: 203-208.
    Kandeler E, Luxh?i J, Tscherko D, Magid J. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology & Biochemistry, 1999, 31: 1171-1179.
    Lagomarsino A, Moscatelli M C, Di Tizio A, Mancinelli R, Grego S, Marinari S. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecological Indicators. 2009, 9: 518-527.
    Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology & Biochemistry, 2003, 35: 1451-1466.
    Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Applied Soil Ecology. 2009, 42: 166-175.
    Mancuso S, Azzarello E, Mugnai S, Briand X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water tolerance in potted Vitis vinifera plants. Advances in Horticultural Science. 2006, 20: 156-161.
    Marinari S, Mancinelli R, Campiglia E, Grego S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators. 2006, 6: 701-711.
    Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology & Biochemistry. 2003, 35: 453-461.
    Meriles J M, Vargas Gil S, Conforto C, Figoni G, Lovera E, March G J, Guzmán C A. Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil & Tillage Research. 2009, 103: 271-281.
    Mugendi D N, Nair P K R, Mugwe J N, O’Neil M K, Woomer P L. Calliandra and Leucaena alley cropped with maize. Part 1. Soil fertility changes and maize production in the sub-humid highlands of Kenya. Agroforest System. 1999, 46: 39-50.
    Mulbry W, Westhead E K, Pizarro C, Sikora L. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology. 2005, 96: 451-458.
    Nazih N, Finlay-Moore O, Hartel P G, Fuhrmann J J. Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biology & Biochemistry, 2001, 33: 693-696.
    Pankhurst C E, Ophel-Keller K, Doube B M, Gupta V V S R. Biodiversity of soil microbial communities in agricultural systems. Biodiversity Conservation, 1996, 5(2): 197-209.
    Peacock A D, Mullen M D, Ringelberg D B, Tyler D D, Hedrick D B, Gale P M, White D C. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology & Biochemistry. 2001, 33: 1011-1019.
    Pennanen T. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH― a summary of the use of phospholipid fatty acids, Biolog? and 3H-thymidine incorporation methods in field studies. Geoderma. 2001, 100: 91-126.
    Ponge J F. Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil. 1991, 138: 99-113.
    Rasool R, Kukal S S, Hira G S. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil & Tillage Research. 2007, 96: 64-72.
    Rathore S S, Chaudhary D R, Boricha G N, Ghosh A, Bhatt B P, Zodape S T, Patolia J S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany. 2009, 75: 351-355.
    Ritchie N J, Schutter M E, Dick R P, Myrold D D. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 2000, 66: 1668-1675.
    Rudrappa L, Purakayastha T J, Singh D, Bhadraray S. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Tillage Research, 2006, 88, 180-192.
    Rupérez P. Mineral content of edible marine seaweeds. Food Chemistry. 2002, 79: 23-26.
    Russo R O, Beryln G P. The use of organic biostimulants to help low inputs. Journal of Sustainable Agriculture. 1990, 1: 9-42.
    Schjonning P, Elmholt S, Munkholm L J, Debosz K. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agriculture, Ecosystems & Environment, 2002, 88, 195-214.
    Schnürer J, Rosswall T. Fluorescein Diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology. 1982, 43: 1256-1261.
    Schroth G, Oliver R, Balle P, Gnahoua G M, Kanchanakanti N, Leduc B, Mallet B, Peltier B, Zech W. Alley cropping with Gliricidia sepium on high base status soil following forest clearing: effects on soil conditions, plant nutrition and crop yields. Agroforest System. 1995, 32: 261-276.
    Shisanya C A, Mucheru M W, Mugendi D N, Kung’u J B. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya. Soil & Tillage Research. 2009, 103: 239-246.
    Simmons B L, Coleman D C. Microbial community response to transition from conventional to conservation tillage in cotton fields. Applied Soil Ecology. 2008, 40: 518-528.
    Shishido M, Sakamoto K, Yokoyama H et al. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation. Soil Biology & Biochemistry. 2008, 40: 1460-1473.
    Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 2001, 67: 4742-4751.
    Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 2001, 67: 2284-2291.
    Stark C, Condron L M, Stewart A, Di H J, O’Callaghan M. Influence of organic and mineral amendments on microbial soil properties and processes. Applied Soil Ecology. 2007, 35: 79-93.
    Stark C H, Condron L M, O’Callaghan M, Stewart A, Di H J. Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralization resulting from farm management history and organic matter amendments. Soil Biology & Biochemistry. 2008, 40: 1352-1363.
    Tian G, Kang B T, Brussaard L. Mulching effect of plant residues with chemically contrasting composition of maize growth and nutrients accumulation. Plant Soil. 1993, 153: 179-187.
    Tu C, Ristaino J B, Hu S. Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biology & Biochemistry. 2006, 38: 247-255.
    Wang D, Sun J, Du D, Sun L, Chen Z, Xue C. Degradation of extraction from seaweed and its complex with rare earths for organophosphorous pesticides. Journal of Rare Earths. 2007, 25: 93-99.
    Wu T Y, Schoenau J J, Li F M, Qian P Y, Malhi S S, Shi Y C, Xue F L. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil Tillage Research, 2004, 77, 59-68.
    Yang C M, Yang L Z, Ouyang Z. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma, 2005, 124, 133-142.
    Yao H, He Z, Wilson M, Campbell C. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing landuse. Microbial Ecology. 2000, 40: 223-237.
    Zaady E, Groffman P M, Shachak M. Litter as a regulator of N and C dynamics in macrophytic patches in Negev desert soils. Soil Biology & Biochemistry. 1996, 28: 39-46.
    Zaman M, Di H J, Cameron K C. A field study of gross rates of N mineralization and nitrification and their relationships to microbial biomass and enzyme activities in soils treated with dairy effluent and ammonium fertilizer. Soil Use Manage. 1999, 15: 188-194.
    Zak J C, Willig M R, Moorhead D L, Wildman H G. Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 1994, 26: 1101-1108.
    Zelles L, Bai Q Y, Rackwitz R, Chadwick D, Beese F. Determination of phospholipids- and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biology and Fertility of Soils. 1995, 19: 115-123.
    Zhang Q C, Wang G H, Yao H Y. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments. Journal of Environmental Sciences. 2007, 19: 55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700