用户名: 密码: 验证码:
住宅小区室外热环境的实测与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市人口的快速增长导致了住房需求的急剧膨胀,住宅小区的建设得以快速发展。由于住宅区建筑物密度大,人口相对密集,高强度的人为活动消耗大量的能源造成了人为热的排放,下垫面性质改变引起的不同区域的温度差异,建筑布局不合理引起的风速死区,这些都会引起区域内微热环境的变化,导致热岛效应的产生。小区热岛效应不仅会影响居住者室外热舒适,还不同程度地影响到建筑能耗。因此,小区热环境的研究具有重要的意义并日益受到重视。本文以重庆市某小区作为研究对象,采用现场实测和数值模拟相结合的研究方法,全面了解和评价了该小区热环境特征,获得建筑区域内温度分布及气流形式并提出了改善措施。重点研究了以下内容:
     首先,在比较了前人对城市气候和建筑局部微气候的研究方法和研究模型之后,提出采用CFD用于建筑小区热环境的模拟,并建立了模拟计算所需的三维物理模型。
     其次,对沙坪坝雅豪丽景小区的热环境进行了全面测试,得到了小区夏季热环境特征,主要包括空气温湿度、下垫面表面温度、建筑表面温度、小区不同区域风速及风向的逐时变化规律,并着重讨论了空气温度的影响因素,以及不同下垫面热工特性的差异。
     第三,对人为排热量进行了初步调查和分析,包括交通排热量和居民生活排热量。交通排热量的调查以雅豪丽景小区外的道路作为研究对象,通过调查车流量、车型及车速,计算出小区外道路长度汽车排热量。居民生活排热量以重庆大学东村片区建筑群作为研究对象,主要统计其用电量和天然气用量,分类计算获得居民生活排热量的具体数值。
     第四,利用实测和调查所获得的数据作为边界条件,采用PHOENICS模拟了小区热环境,总结了小区内部空气温度场、风场和压力场的分布特征,并将模拟结果与实测结果进行对比分析以确定方案的可行性。
     最后,通过三种优化方案分别进行模拟,并将三个方案的模拟结果与小区现状模拟值进行比较,分析下垫面绿化、人为排热以及建筑布局等因素对小区热环境的影响大小,并提出了改善微热环境的几点建议。
The rapid development of economy and urbanization create great pressure on population of developing counties, which leads to rapid expansion of demand for housing, as a result, the development of house industry becomes the focus to resolve the need of materialization for urban living. Considering the hyper-dense buildings and people in the residential districts, large quantities of human activities in dwelling district consume a volume of energy and release anthropogenic heat, as well as the temperature inhomogeneity caused by the change of properties of underlying surface, and the low wind speed resulted from unreasonable layout of buildings, Thus the change of regional thermal environment is generated and small-scale heat islands is formed ultimately. The heat islands not only bring on human discomfort in outdoor environment, but also, affect the building energy consumption. Therefore, the thermal environment around buildings is of great importance and has attracted more and more attention. In this paper, a residential area in Chongqing district was chose as object. A comprehensive measurement combined with numerical simulation was carried out in the research, the thermal environment characteristics of this district were obtained and evaluated, and the distribution of the thermal parameters in this space was predict through simulation, then the improvement measures were proposed. Several issues were studied in this paper:
     Firstly, based on the comparison of the previous research methods and models on the macro-climate and the microclimate, The CFD method was put forward for the simulation of thermal environment in residential district, and the three-dimensional physical and numerical model adapting to simulation was established.
     Secondly, a comprehensive measurement was carried out in the Yahaolijing residential district, the outdoor microclimate characteristic in the summer was obtained, including the change rule of air temperature and relative humidity, the surface temperature of underlying and constructions, the wind speed and direction in different regions by the time. Then the analysis was focused on the impact of air temperature, and the different thermal characteristic of underlying surface.
     Thirdly, anthropogenic heat emission was investigated and analyzed primarily, including the heat caused by transport and human activities. The transport heat emission was gained from the street outside the Yahaolijing residential district, according to investigate the traffic flow and the vehicle type as well as the speed, the quantity of heat from the vehicle can be calculated. The anthropogenic heat released by human living was gained from the building group located in Chongqing University, of which the electricity and the gas consumption were obtained and calculated respectively.
     Fourthly, the data from the measurement and investigated were used as the boundary condition of PHOENICS for the outdoor thermal environment simulation. The distribution characteristic of air temperature field, the wind field and the pressure field was summed up. The difference of the calculated and measured values were compared and analyzed so as to determine whether the approach was available.
     Finally, three optimization options were given to simulate the regional thermal environment and compared with the present condition respectively. Then the influence of main parameters such as vegetation, anthropogenic heat emission and the layout of buildings on the thermal environment was analyzed. Ultimately, several advices of improving the thermal environment were put forward.
引文
[1] STEEMERS Urban thermal diversity(keynote speech)[R]. China: Chongqing, Intemational Conference in Sustainable Development on Building and Environment, set2. 2003-10.
    [2] A. H. Rosenfeld, H. Akbari, Mitigation of urban heat islands: materials, utility programs, updates [J]. Energy and Buildings. 1995, 22:55-65.
    [3] Murakami, R. Oo’ka, CFD analysis of wind climate from human scale to urban scale[J]. Journal of Wind Engineering and Industrial Acronymic. 1999, 81:57-81.
    [4]荻岛·理等,改良?建築-都市-土壌連成系モデル(AUSSSM)による都市高温化の構造解析第2報数値実験による都市高温化要因の定量化[J].日本建築学会訐画系論文集, 2002. 3, No. 553:91-98.
    [5] D. T. Mihailovic. A resistance representation of schemes to evaporation from bare and partly plant covered surface for use in atmosphere models [J]. . Journal of Applied Meteorology, 1993, 32(6):1038-1053.
    [6] H. N. Swaid, et al. Thermal effects of artificial heat sources and shaded ground areas in the urban canopy layer. Energy and Buildings [J], 1990, 15 (16):253-261.
    [7] A. J. Arnifield. Street design and canyon solar access. Energy and Buildings [J], 1990, 14(2): 117-131.
    [8] P. Cellier. An operational model for predicting minimum temperature near the soil surface under clear sky conditions [J]. Journal of Applied Meteorology, 1993, 32 (5):871-883.
    [9] R. Knowles. Solar access and urban form [J]. AIA Journal, 1980, 15 (2):42-49.
    [10]李灿,李念平,高峰,乐地.住区微热环境测试方法[J].建筑科学. 2007, 23(8):61~65.
    [11] Bonan , Gordon B. Microclimates of a suburban Colorado (USA) landscape and implications for planning and design [J] . Landscape and Urban Planning (Amsterdam) , 2000 , 49 (3) :97~114.
    [12] Tadahisa Katayama, Akio Morikama, Shoichi Masuda. Investigation on the formation of thermal environment in an urban canyon [J]. Journal of Architecture, Planning and Environment Engineering (Transactions of AIJ) No. 372, 1987.
    [13] Bourbia F, Awbi HB. Building cluster and shading in urban canyon for hot dry climate: PartⅠ:Air and surface temperature measurements [J] . Renewable Energy , 2004 , 29 (2) :249~262.
    [14] Theodore Stathopoulos, Hanqing Wu, John Zacharias. Outdoor human comfort in an urban climate[J] . Building and Environment , 2004 , 39 :297~305.
    [15] Xianting Li , Zhen Yu , Bin Zhao , et al . Numerical analysis of outdoor thermal environment around buildings [J]. Building and Environment , 005 , 40 :853~866.
    [16] Li XF, Zhang ZQ, Lin BR, Zhu YX. Experimental researches on the outdoor microclimatic characteristics of a residential building cluster [J]. ENERGY AND ENVIRONMENT, VOLS 1 AND 2: 1148-1153, 2003.
    [17] Sonne, Jeffrey K. ; Vieira, Robin K. Cool neighborhoods: The measurement of small scale heat islands [J]. Proceedings ACEEE Summer Study on Energy Efficiency in Buildings. v1, 2000, p 1307-1318.
    [18] M. A. Atwater. The radiation budget for polluted layers of the urban environment [J]. Journal of Applied Meteorology, 1971, 10(2):205-214.
    [19] H. N. Swaid. Prediction of urban air temperature variation using the analytical [J] CTTC model. Energy and Buildings, 1990, P313-324.
    [20] Elnahls MM, Williamson TJ. An improvement of the CTTC model for predicting urban air temperatures [J]. Energy and Buildings 1997; 27:41–9.
    [21] Negrao Cezar OR Integration of computational fluid dynamics with building thermal and mass flow simulation [J]. Energy and Buildings, 1998; 28:155–65.
    [22] Bojic M, Lee M, Yik F. Flow and temperature outside a high-rise residential building due to heat rejection by its air-conditioners [J]. Energy and Buildings 2001; 33:737–51.
    [23]赵福云,汤广发,刘娣.住宅小区风环境数值模拟[J].暖通空调, 2005, 35(1), 120-125.
    [24]汤广发,赵福云,周安伟.城市住宅小区风环境数值分析[J].湖南大学学报. (自然科学版). 2003, 30(2):86-90.
    [25]邓天福,李灿,李景广,韩继红.小区风环境数值模拟方法[J].绿色建筑大会论文. 2008, 02-03.
    [26]杨杰,涂光备,易伟雄,等.香港地区高层住宅单体建筑风压系数的研究[J].暖通空调, 2004, 34 (8), 62-65.
    [27]马剑,程国标,毛亚郎.基于CFD技术的群体建筑风环境研究[J].浙江工业大学学报. 2007, 35(3):351-354.
    [28]王菲,肖勇全.应用PHOENICS软件对建筑群风环境的模拟和评价[J].山东建筑工程学院学报. 2005, 20(5):39-42.
    [29]唐毅,孟庆林.广州高层住宅小区风环境模拟分析[J].西安建筑科技大学学报(自然科学版). 2001, 33(4):352-360.
    [30]胡晓峰,周孝清,卜增文,毛洪伟.基于室外风环境CFD模拟的建筑规划设计[J].建筑与结构设计. 2004, 14-17.
    [31]王珍吾,高云飞,孟庆林,赵立华,金玲.建筑群布局与自然通风关系的研究[J].建筑科学. 2007, 23(6):24-27.
    [32]陈恩水.居住区气温变化模型及应用[J]. ENVIRONMENTAL SCIENCE. 1998, 3.
    [33]孙越霞,卢建津,董文志,张于峰.基于CTTC和STTC模型的城市热岛分析[J].煤气与热力. 2005, 25(5):11-17.
    [34]林波荣,李莹,赵彬,朱颖心.居住区室外热环境的预测、评价与城市环境建设[J].城市环境与城市生态.第15卷l期. 2002年2月:41-43.
    [35] Li XF, Zhu YX, Li XT, Yan QS. Numerical prediction of microclimate in residential building cluster [J]. ENERGY AND ENVIRONMENT, VOLS 1 AND 2: 1143-1147, 2003.
    [36] Zhao FY, Tang GF, Zhang L, Liu D, Zhou AW. Numerical simulation of thermal environment in urban residential district [J]. VENTILATING AND AIR CONDITIONING. VOLS 1 AND 2: 273-279, 2003.
    [37] Zhao FY, Tang GF, Zhang L. Visualization of thermal environment in urban residential district [J]. ENERGY & ENVIRONMENT. 73-77, 2003.
    [38]高云飞,程建军,王珍吾.理想风水格局村落的生态物理环境计算机分析[J].建筑科学. 2007, 23(6):19-23.
    [39] D. A. Hartz, , L. Prashad, B. C. Hedquist , J. Golden, A. J. Brazel. Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions [J]. Remote Sensing of Environment. 104 (2006) 190–200.
    [40] Min Li, Su-hong Liu, Hui-zhen Zhou, Xiang Li, Pei-juan Wang. The Temperature Research of Urban Residential Area with Remote Sensing [J]. International Geoscience and Remote Sensing Symposium. 2005, p1514-1517.
    [41] Ferreira A D, Sousa A C M , Viegas D X. Prediction of building interference effects on pedestrian level comfort [J]. J of Wind Eng and Industrial Aerodynamics, 2002, 90 (4/5) : 305-319.
    [42] Yoshida Shinji, Murakami S, Ooka R, et al. CFD prediction of thermal comfort in microscale wind climate [A]. The 3rd Int Symp on Computational Wind Eng [C]. 2000. 27-30.
    [43] Marialena Nikolopouloua, Spyros Lykoudis. Thermal comfort in outdoor urban spaces: Analysis across different European countries [J]. Building and Environment 41 (2006) 1455–1470.
    [44]林波荣,李晓锋,朱颖心.太阳辐射下建筑外微气候的实验研究-建筑外表面温度分布及气流特征[J].太阳能学报. 2001, 22(3):327-333.
    [45]邢永杰,沈天行,刘芳.太阳辐射下不同地表覆盖物的热反应及对城市热环境的影响[J].太阳能学报. 2002, 23(6):717-720.
    [46]卢军,赵炎.对缓解城市热岛效应措施的实验分析[J].绿色与智能建筑文集4. 2008,433-437.
    [47] Bansal N K.Effect of exterior suface color on the thermal performance of buildings [J].Building and Environment, 1992, 27(1): 31-37.
    [48]周淑贞等.城市气候学导论[M].上海:华东师范大学出版社, 1985.
    [49]文远高,连之伟.居住区绿化的降温效应与建筑节能[J].住宅科技. 2003, 6:46-48.
    [50]陈宏.通过建筑外壁绿化改善城市热环境的研究[J].新建筑. 2002, 6:79-80.
    [51]李娟.建筑物绿化隔热与节能[J].暖通空调. 2002, 32(3):22-23.
    [52] E. J. Oh, H. W. Lee, A. Kondo, A. Kaga, K. Yamaguchi. Micro-climate prediction in a residential development region using a numerical model [J]. Ecological Modelling. 177 (2004) 283–295.
    [53] LIU Shuli. Adding analysis of urban heat island effect in the GIS system and applying them in urban planning [J], Journal of chongqing University-Eng, and Vol. 2 Special Issue October, 2003, and China.
    [54]柳孝图.城市物理环境与可持续发展[M].东南大学出版社.
    [55]谢浩.住宅建筑组群的自然通风设计研究[J].房材与应用. 2005, 33(183):57-60.
    [56]赵炎,卢军,王金沙.建筑布局对小区热环境影响的模拟分析[J].绿色与智能建筑文集4. 2008, 462-467.
    [57] R. Giridharan, S. S. Y. Lau, S. Ganesan. Nocturnal heat island effect in urban residential
    [58] developments of Hong Kong[J]. Energy and Buildings. 37 (2005) 964–971.
    [59]王莺.重庆地区住宅建筑设计与气候[D].重庆大学硕士论文. 2003.
    [60] Toshiaki, I. , and S. Kazuhiro, Impact of anthropogenic heat on urban climate in Tokyo[J], Atmospheric Environment, 1999, 33, 3897 3909.
    [61] David J. Sailor, Lu Lu. A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas [J]. Atmospheric Environment 38 (2004) 2737-2748.
    [62]佟华,刘辉志,桑建国,胡非.城市人为热对北京热环境的影响[J].气候与环境研究. 2004, 9(3):409-421.
    [63] Hongli Fan, David J. Sailor. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes[J]. Atmospheric Environment 39 (2005) 73–84.
    [64]蒋维楣,陈燕.人为热对城市边界层结构影响研究[J].大气科学. 2007, 31(1):37-47.
    [65]何晓凤,蒋维楣,陈燕,刘罡.人为热源对城市边界层结构影响的数值模拟研究[J].地球物理学报. 2007, 50(1):74-82.
    [66]胡汪洋.城市建筑小区内区域微热环境的数值模拟分析[D].西安交通大学硕士学位论文. 2004.
    [67] R Watkins etc, The balance of the annual heating and cooling demand within the London urban heat island[J]. Building Service Engineering Research&Technology, 2002, Vol. 23, No. 4, P207-213.
    [68] R Aguiar etc, Climate change impacts on the thermal performance of Portuguese buildings[J]. Results of the SIAM study, Building Service Engineering Research&Technology, 2002, Vol. 23, No . 4, P223-231.
    [69] M. N. Assimakopoulos, G. Mihalakakou, H. A. Flocas. Simulating the thermal behaviour of a building during summer period in the urban environment [J]. Renewable Energy 32 (2007) 1805–1816.
    [70]田喆.城市热岛效应分析及其对建筑空调采暖能耗的影响的研究[D].天津大学博士学位论文. 2005.
    [71]李先庭,李莹,陈玖玖.城市化对住宅建筑空调负荷的影响[J].暖通空调. 2002, 32(2): 79-81.
    [72] L. O. Myrup. A numerical model of the urban heat island[J]. Journal of Applied Meteorology, 1969, 27(6):123-127.
    [73] Y. Delage, etal. Numerical studies of heat island circulations[J]. Boundary Layer Meteorology, 1970, 1(2):201-209.
    [74] M. A. Awater. Urbanization and pollution effects on the thermal structure in four climate regimes[J]. Journal of Applied Meteorology, 1977, 16(9):888-895.
    [75] T. Honjo, et al. Simulation of thermal effects of urban green areas on their surrounding areas[J]. Energy and buildings, 1991, 16:443-446.
    [76]陈材侃.计算流体力学[M].重庆出版社. 1992.
    [77]村上周三. CFD与建筑环境设计[M].中国建筑工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700