用户名: 密码: 验证码:
尼古丁在吸烟导致气道慢性炎症中的独特效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:比较单纯尼古丁与烟草抽提物对培养气道上皮细胞的效应特点,并进一步了解经香烟和尼古丁诱导后的改变规律,以及相关炎性因子表达的诱导效应差异,明确尼古丁在致炎抗炎及黏液高分泌方面的功过地位;同时明确尼古丁作用的膜受体在正常气道的分布规律及表型;并进一步了解尼古丁可能存在的抗炎效应的分子机制及相关信号转导途经。为香烟成份改良提供努力方向,为尼古丁替代疗法提供理论依据,同时帮助完善对尼古丁外周作用的认识,有助于进一步拓展尼古丁的有益使用范围。
     方法:(1)体外培养人气道上皮细胞系HBE16细胞,予以不同浓度的香烟氯仿抽提物(CE)、尼古丁刺激,选取最佳作用浓度。观察刺激前后细胞的生长和增殖情况,采用ELISA技术测定各组细胞经CE、尼古丁、脂多糖(LPS)刺激后培养上清中前炎性因子肿瘤坏死因子(TNF)-α、白介素(IL)-8、IL-6及黏蛋白(MUC)5AC蛋白相对含量,real-time PCR检测细胞中上述因子的转录水平变化情况,免疫荧光化学法观察细胞中MUC5AC的表达情况。(2)以人脑胶质瘤细胞株U251细胞为阳性对照,分别设立CE组、尼古丁组,采用Western印迹分析及real-time PCR检测各细胞组中烟碱型乙酰胆碱受体(nAChRs)各亚型的表达情况,并采用相关亚型特异性siRNA转染细胞,ELISA检测转染前后细胞培养上清中TNF-α、IL-8、IL-6及MUC5AC蛋白水平的变化,real-time PCR检测上述因子在基因转录水平的变化情况。(3)进一步将细胞分为CE组、LPS组、尼古丁+CE组、尼古丁+LPS组,尼古丁+CE+α-BTX组,尼古丁+LPS+α-BTX组,以Western印迹分析各处理组细胞中磷酸化I-κBα、I-κBα蛋白的表达情况、细胞核中核转录因子(NF)-κBp65的蛋白含量;并采用pNF-κB-Luc荧光素酶报告基因质粒转染法以检测各组中NF-κB的活性;检测加入NF-κB抑制剂PDTC后对细胞TNF-α、IL-8、IL-6的蛋白及基因表达水平的影响情况;同时检测了各组细胞中细胞外信号激酶1/2(ERK1/2)、c-Jun氨基末端激酶(JNK)及p38丝裂原活化蛋白激酶(MAPK)的磷酸化蛋白表达情况,并观察细胞经单纯CE及尼古丁刺激后不同时点上述MAPK信号因子的表达及变化情况。
     结果:(1)分别选取100μg/mL的CE及20μM的尼古丁为最适作用浓度,LPS的作用浓度为10μg/mL,分为不同组孵育细胞。检测到CE、LPS刺激后细胞中TNF-α、IL-8、IL-6、MUC5ACmRNA相对含量及培养液上清中TNF-α、IL-8、IL-6、MUC5AC蛋白相对含量均有明显增加,与对照组相比,差别有统计学意义;而给予尼古丁孵育的细胞上述指标与正常对照组相比,并未见明显升高,差别无统计学意义;免疫荧光检测到MUC5AC在胞浆中的表达也较CE、LPS组弱;当尼古丁分别与CE、LPS共同作用细胞后,检测到两组细胞培养上清液中TNF-α、IL-8、IL-6蛋白及细胞中mRNA的相对含量较CE、LPS单独孵育组均有显著下降,P<0.05;尼古丁与CE、尼古丁与LPS共同孵育组中上清MUC5AC的蛋白分泌水平也有明显下降,P<0.05,差别有统计学意义,但两组细胞中MUC5AC mRNA表达与单独CE组、LPS组相比,并未有明显下降。(2)培养的人HBE16气道上皮细胞中,α1、α5、α7、β2 nAChR mRNA均有明显表达,尼古丁刺激组中上述指标的表达高于正常对照组及CE刺激组;正常组HBE16细胞、经CE及尼古丁刺激后的HBE16细胞,均未见α2、α4、β1 nAChR mRNA表达;经尼古丁刺激后,见少量α3 nAChR mRNA表达。细胞中α1、α5、α7、β2 nAChR蛋白均有明显表达,尼古丁刺激组表达的量多于未予刺激的HBE16细胞组;未予尼古丁刺激的HBE16细胞组见微弱的α2、α3、α4蛋白表达,而经尼古丁刺激后,上述的蛋白表达并不明显,两组细胞均未见有明确的β1蛋白表达。细胞转染α1 nAchR siRNA、α5nAchR siRNA后再予以尼古丁及LPS处理,检测到培养上清中TNF-α、IL-8、IL-6蛋白相对含量及细胞中mRNA表达水平与尼古丁及LPS共同孵育组中相比,差别无统计学意义,而α7 nAchR siRNA转染的细胞组经尼古丁及LPS刺激后,培养上清中上述蛋白的相对含量及细胞中mRNA相对含量与LPS、尼古丁共同刺激组相比,有明显升高。(3)CE及LPS单独刺激后,磷酸化-I-κBα蛋白及细胞核中NF-κBp65蛋白均有显著增加,与正常对照组相比,P<0.01;加入尼古丁与CE及LPS共同孵育的细胞组中,磷酸化-I-κBα及NF-κBp65均出现明显降低,与单独CE、LPS孵育组相比,差别有统计学意义,P<0.01;I-κBα蛋白的含量未见明显变化;尼古丁+CE+α-BTX组、尼古丁+LPS+α-BTX组中磷酸化-I-κBα蛋白及NF-κBp65蛋白的含量与尼古丁+CE组、尼古丁+LPS组相比有明显增加。转染荧光素酶报告质粒pNF-kB-luc后观察到,尼古丁+CE组、尼古丁+LPS组中的荧光强度值小于CE组、LPS组,差别有统计学意义,P<0.01,尼古丁+CE+α-BTX组、尼古丁+LPS+α-BTX组中的荧光强度值出现增加,与尼古丁+CE组、尼古丁+LPS组相比,P<0.01。进一步PDTC预处理细胞30min后,再分别予以CE、LPS刺激,细胞培养上清中TNF-α、IL-8、IL-6蛋白相对含量及细胞mRAN水平较与单纯CE刺激组、单纯LPS刺激组相比均有明显下降,P<0.01;尼古丁+CE组、尼古丁+LPS组中上述因子的蛋白相对含量及mRNA相对含量也较单纯CE组、单纯LPS组有明显下降;将细胞以PDTC预处理后,再分别施以尼古丁+CE、尼古丁+LPS刺激,细胞培养上清中的TNF-α、IL-8、IL-6蛋白相对含量下降更为明显,与单纯CE刺激组、单纯LPS刺激组相比,P<0.01。细胞经CE及LPS刺激后,可观察到细胞中磷酸化p38 MAPK、ERK1/2、JNK蛋白表达增多,与对照组相比,P<0.01;加入尼古丁孵育的细胞,再分别经CE及LPS刺激,检测到细胞中磷酸化ERK1/2蛋白的相对含量显著降低,分别为0.34±0.07、0.39±0.08,与单纯CE组(0.74±0.12)、LPS组(0.79±0.13)相比,差别有统计学意义,P<0.01;而p38及JNK磷酸化蛋白未见有明显减少。加入α7 nAChR特异性抑制剂α-BTX的尼古丁+CE及尼古丁+LPS组中,磷酸化ERK1/2蛋白的相对含量分别为0.59±0.11,0.63±0.13,与未加α-BTX刺激的尼古丁+CE组、尼古丁+ LPS组相比,差别有统计学意义,P<0.01;但同样对p38及JNK磷酸化蛋白的影响不大。进一步观察到HBE16细胞经CE处理后,p38MAPK、pERK1/2及pJNK蛋白的表达随时间延长而增强,6h时间点的表达水平明显高于30min时的表达水平,P<0.01;经尼古丁孵育的细胞,p38MAPK在作用30min后有表达,随着时间延长表达逐渐降低,pERK1/2在各个时间点均未见明显表达,pJNK在第30min开始表达,2h作用表达最强,在第6h表达开始降低,与2h时间点的表达量相比,差别有统计学意义,P<0.01。
     结论:(1)尼古丁在香烟所致气道黏液高分泌环节中并无过多正向效应,相反,其可能通过减少该过程中致炎因子的产生,抑制后续过度炎症反应。(2)尼古丁能减少前炎性因子及重要炎性趋化因子TNF-α、IL-8、IL-6蛋白等的产生,具有一定的抗炎功能,且证实系通过与α7 nAChR结合起降低I-κBα磷酸化的作用,从而抑制核转录因子NF-κB核转位,发挥抑制上述因子表达的效应;该过程也可能系尼古丁通过减少ERK1/2活化水平而实现。(3)尼古丁不增加黏蛋白MUC5AC的基因转录及合成,且能使炎性刺激所生成的多余黏液外分泌相对减少,从而维持气道在慢性炎性刺激下黏液的高潴留状态,形成气道黏液生成与高分泌的相对稳态。
Objective To compare the different effects of nicotine and cigarette smoke extract to the airway epithelial cells, to further explore their different expression of proinflammatory factors and mucins, to know the potency of nicotine in anti-inflammation and mucus hypersecretion in chronic airway inflammatory diseases. To identify the expression of nicotine receptor nicotinic acetylcholine receptor(nAChRs) in airway epithelial cells, to study the role of nAChRs and signal pathway in nicotine-participated events, to learn more about the effection of nicotine in the periphery system, and to provide the possibility and evidence for improvement of cigarette components, to progress the beneficial and serviceable range of nicotine.
     Methods (1)The well cultured HBE16 airway epithelial cells were exposed to serial dilutions of cigarette smoke chloroform extract(CE)、Lipopolysaccharide(LPS)、and nicotine, respectively for 24 hours, to choose the most suitable concentration for cells incubation. To measure tumor necrosis factor(TNF)-α、Interleukin(IL)-8、IL-6、and mucin(MUC)5AC protein secreted in culture medium by enzyme linked immunosorbent assay(ELISA), the levels of TNF-α、IL-8、IL-6、and MUC5AC mRNA in each cells group were detected by real-time polymerase chain reaction(PCR). Also MUC5AC prtein in cells were observed by immunofluorescence.(2)Using human neurospongioma cells line U251 as positive control, to detect the protein and mRNA expression of nAChRs and its subtypes in HBE16 airway epithelial cells before and after CE、nicotine stimulation. To measure TNF-α、IL-8、IL-6、and MUC5AC protein secretion and mRNA expression in HBE16 cells after tranfected withα1nAChR siRNA、α5nAChR siRNA、andα7nAChR siRNA by ELISA and real-time PCR, respectively.(3)HBE16 airway epithelial cells line were divided into CE group、LPS group、nicotine plus CE group、nicotine plus LPS group、nicotine, CE plusα7nAChR inhibitorα-bungarotoxin(α-BTX) group,and nicotine, LPS plusα-BTX group. Phospho-IκBα、I-κBα、and nuclear factor(NF)-κBp65 protein production in each group were assayed by western blot; The activity of NF-κB in cells were measured by transient transfection of pNF-κB-Luc reporter vector; Also the protein production and mRNA expression of TNF-α、IL-8、and IL-6 were assayed after cells pretreaed with NF-κB inhibitor Pyrrolidinedithiocarbamic acid ammonium salt(PDTC); Then the phosphosrylation of extracelluar signal-regulated kinase(ERK) protein, c-Jun N-terminal kinase(JNK) protein, and p38 mitogen activated protein kinase(MAPK) protein were assayed by western blot. The phosphoralytion of the ERK1/2、JNK、and p38MAPK protein were obsereved in different time spot after treated with CE and nicotine,respectively.
     Results (1)100μg/mL CE、20μM nicotine、and 10μg/mL LPS were choosed as the suitable concentration for incubation. We found that 100μg/mL CE and 10μg/mL LPS could induce the TNF-α、IL-8、IL-6、MUC5AC protein and mRNA expression of the HBE16 airway epithelial cell line, P<0.05, compared with normal cells. Whereas nicotine did not cause significant TNF-α、IL-8、IL-6、MUC5AC protein and mRNA expression, there are no statistically difference when compared with CE、LPS treated cells. When cells pretreated with nicotine before CE or LPS stimulation, the expression of TNF-α、IL-8、IL-6 protein and mRNA were decreased obviously, compared with CE、LPS treated group alone; The MUC5AC protein secretion in culture supernatants in nicotine plus CE group、nicotine plus LPS group were also reduced, compared with CE or LPS treated group alone, but the mRNA expression did not showed significant difference, compared with CE or LPS treated group alone.(2)We deteced expression ofα1、α5、α7、β2 nAChR mRNA in HBE16 cells, and were higher in nicotine stimulated cells than that of in normal control HBE16 cells and CE stimulated cells,α2、α4、β1 nAChR mRNA were not found in any normal HBE16 cell、CE or nicotine treated cells. Nicotine caused a feeble expression ofα3 nAChR mRNA. Western blot assayed showedα1、α5、α7、β2 nAChR protein expression in HBE16 cells in both control or nicotine groups, and nicotine-treated cells was higher than normal control HBE16 cells, feeble expression ofα2、α3、α4 protein were detected in normal HBE16 cells, however, after nicotine stimulation, the expression were decreased. Noβ1nAChR protein was found in any HBE16 cell. Transfection of HBE16 cells withα1nAchR siRNA、α5nAchR siRNA before nicotine and LPS incubation, results showed that TNF-α、IL-8、IL-6 protein and mRNA expression had no obvious change when compared with no siRNA transfected cells. Whereas,α7 nAchR siRNA trasfected cells showed a significant upregulation of TNF-α、IL-8、IL-6 protein and mRNA expression, compared with non transfected cells in the stimulation of nicotine and LPS(.3)The phosphorylation of I-κBαprotein and NF-κBp65 protein were increased in both CE and LPS treated groups, P<0.01, compared with normal control group. Nicotine preincubation reduced the activation of phospho-I-κBαand NF-κBp65 protein by CE and LPS stimulation. The activity of NF-κB in nicotine-treated cell was lower than CE、LPS treated cells.α7 nAChR specific inhibitorα-BTX could reverse the effect of nicotine. NF-κB potent inhibitor PDTC caused a significant decrease of TNF-α、IL-8、IL-6 protein and mRNA expression. It was also showed that the phospho-ERK1/2、phospho-JNK、and phospho-p38MAPK protein in CE、LPS treated cells were increased, nicotine-treated cell did not cuase significant increase of phospho-JNK and phospho-p38MAPK, moreover, the activation of ERK1/2 were much inhibited by nicotine. We further found that nicotine-treated cells showed an increasing expression of phospho-p38MAPK in 30 min incubation, and was began to decrease during the following period, phosph-ERK1/2 did not found in whole process, phospho-JNK expressin began at 30min, the highest expression was detected at 2h, and decreased at 6h. CE-treated cell showed an increasing activation of all the three kinase in the 6h exposure.
     Conclusions (1)Nicotine did not cause excessive production and expression of mucin MUC5AC, on the contrary, it could reduce the activation of proinflammatory factors and cytokines caused by CE and LPS assault, to refrain the following more serious inflammation to a certain extent which may complicated the diseases.(2)Nicotine could decrease the expression of TNF-α、IL-8、IL-6,α7 nAChR is participated in the process, which could downregulate the phosphorylation of I-κBα, to further inhibit the nuclear translocation of NF-κB, and to affect the expression of inflammatory factors. Also , suppression of ERK1/2 phosphoralytion may play a part in it.(3)Nicotine could decrease the mucus secretion in supernatants of the cultured cells which stimulated by CE、LPS. This distinctive effect may provide the potency of nicotine to maintain the mucus over retention in airway secretory cells, then probably to form a relative stable stasis between mucus hyperproduction and hypersecretion in airways.
引文
[1] Glader P, Moller S,Lilja J, et al.Cigarette smoke extract modulates respiratory defence mechanisms through effects on T-cells and airway epithelial cells[J]. Respir Med. 2006, 100(5): 818-827.
    [2] Kuim S, Aaron JS, Nadel JA. E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC mucin expression in cultured human airway epithelial cells[J].Am J Physiol Lung Cell Mol Physiol. 2005, 289(6): L1049-L1060.
    [3] Phillips J,Kluss B,Richter A,et al.Exposure of bronchial epithelial cells to whole cigarette smoke:assessment of cellular responses[J].Altern Lab Anim. 2005, 33(3): 239-248.
    [4] Gahring LC, Rogers SW. Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells[J]. AAPS J. 2006, 7(4): E885-E894.
    [5] Fratiglioni L, Wang HX. Smoking and Parkinson's and Alzheimer's disease: a review of the epidemiological studies[J]. Behav Brain Res. 2000, 113(1-2): 117-120.
    [6] Wong D, Koo MW, Shin VY, Liu ES, Cho CH. Pathogenesis of nicotine treatment and its withdrawal on stress-induced gastric ulceration in rats.Pathogenesis of nicotine treatment and its withdrawal on stress-induced gastric ulceration in rats[J]. Eur J Pharmacol. 2002, 434(1-2): 81-86.
    [7] Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, Pe?a-Philippides JC, Koga T, Razani-Boroujerdi S, Hutt J, Campen M, Kim KC, Tesfaigzi Y, Sopori ML.Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens[J]. J Immunol. 2008, 180(11): 7655-7663.
    [8] Ouyang Y, Virasch N, Hao P, Aubrey MT, Mukerjee N, Bierer BE, Freed BM. Suppression of human IL-1beta, IL-2, IFN-gamma, and TNF-alpha production by cigarette smoke extracts[J. J Allergy Clin Immunol. 2000, 106(2): 280-287.
    [9] Hakki A, Hallquist N, Friedman H, Pross S. Differential impact of nicotine on cellular proliferation and cytokine production by LPS-stimulated murine splenocytes[J]. Int J Immunopharmacol. 2000, 22(6): 403-410.
    [10] Hallquist N, Hakki A, Wecker L, Friedman H, Pross S. Differential effects of nicotine and aging on splenocyte proliferation on the production of Th1-versus Th2-type cytokines[J]. Proc Soc Exp Biol Med. 2000, 224(3): 141-146.
    [11] Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, Matthay MA. Activation of the alpha7 nAchR reduces acid-induced actue lung injury in mice and rats[J]. Am J Respir Cell Mol Biol, 2007, 37(2): 186-192.
    [12] Giebelen IA, van Westerloo DJ, LaRosa GJ, de Vos AF, van der Poll T. Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung[J].. Shock. 2007, 28(6): 700-703.
    [13] Kalayciyan A, Orawa H, Fimmel S, Perschel FH, González JB, Fitzner RG, Orfanos CE, Zouboulis CC.Nicotine and biochanin A, but not cigarette smoke, induce anti-inflammatory effects on keratinocytes and endothelial cells in patients with Beh?et's disease[J]. J Invest Dermatol. 2007, 127(1) :81-89.
    [14] Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in supression of antimocrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine[J]. J Immunol. 2001, 167(11): 6518-6524.
    [15] Sugano N, Shimada K, Ito K, Murai SNicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation[J]. Biochem Biophys Res Commun. 1998, 252(1): 25-28.
    [16] Spoettl T, Paetzel C, Herfarth H, Bencherif M, Schoelmerich J, Greinwald R, Gatto GJ, Rogler G (E)-metanicotine hemigalactarate (TC-2403-12) inhibits IL-8 production in cells of the inflamed mucosa[J]. Int J Colorectal Dis. 2007 , 22(3): 303-312.
    [17] Luk IS, Ho J, Wong WM, Yuen ST, Luk CT, Cho CH.Influence of chronic nicotine intake and acute ethanol challenge on gastric mucus level and blood flow in rabbits[J]. Digestion. 1994, 55(6): 399-404.
    [18] Louvet B, Buisine MP, Desreumaux P, Tremaine WJ, Aubert JP, Porchet N, Capron M, Cortot A, Colombel JF, Sandborn WJ.Transdermal nicotine decreases mucosal IL-8 expression but has no effect on mucin gene expression in ulcerative colitis[J]. Inflamm Bowel Dis. 1999, 5(3): 174-181.
    [19] Pavia CS, Pierre A, Nowakowski J. Antimicrobial activity of nicotine against a spectrum of bacterial and fungal pathogens[J]. J Med Microbiol, 2000, 49(7): 675-676.
    [20] Louvet B, Buisine MP, Desreumaux P, Tremaine WJ, Aubert JP, Porchet N, Capron M, Cortot A, Colombel JF, Sandborn WJ. Transdermal nicotine decreases mucosal IL-8 expression but has no effect on mucin gene expression in ulcerative colitis[J]. Inflamm Bowel Dis. 1999, 5(3): 174-181.
    [21] Zijlstra FJ, Srivastava ED, Rhodes M, van Dijk AP, Fogg F, Samson HJ, Copeman M, Russell MA, Feyerabend C, Williams GT, et al. Effect of nicotine on rectal mucus and mucosal eicosanoids[J]. Gut. 1994, 35(2): 247-251.
    [22] Dennis PA, Van Waes C, Gutkind JS, Kellar KJ, Vinson C, Mukhin AG, Spitz MR, Bailey-Wilson JE, Yeh GC, Anderson LM, Wiest JS. The biology of tobacco and nicotine:bench to beside[J]. Cancer Epidemiol Biomarkers Prev. 2005, 14(4): 764-767.
    [23] Gahring LC, Rogers SW. Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells[J]. AAPS J, 2006, 7(4):E885-E894.
    [24] Conti-Fine BM , Navaneetham D , Lei S , Maus AD . Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity[J]? Eur J Pharmacol. 2000; 393 : 279 - 294 .
    [25] Sharma G , Vijayaraghavan S. Nicotinic receptor signaling in nonexcitable cells[J]. J Neurobiol . 2002 ; 53(4): 524 - 534 .
    [26] Fu XW, Lindstrom J, Spindel ER. Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells[J]. Am J Respir Cell Mol Biol. 2009, 41(1):93-99.
    [27] Plummer HK,,Dhar M, Schuller HM. Expresssion of the alpha7 nicotinic acetylcholine receptor in human lung cells[J]. Respir Res, 2005, 6(1): 29-37.
    [28] Wang Y, Pereira EF, Maus AD, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM. Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors[J]. Mol Pharmacol. 2001, 60(6): 1201-1209.
    [29] Zia S, Ndoye A, Nguyen VT, Grando SA.. Nicotine enhances expression of theα3,α4,α5 andα7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells[J]. Res Commun Mol Pathol Pharmacol. 1997, 97(3): 243-262.
    [30] Woolf A , Burkhart K , Caraccio T , Litovitz T . Self-poisoning among adults using multiple transdermal nicotine patches[J]. J Toxicol Clin Toxicol. 1996; 34(6): 691-698 .
    [31] Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors[J]. J Neurochem. 2004; 89(2):337–343.
    [32] de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation[J]. Br J Pharmacol. 2007, 151(7):915-929.
    [33] Jull BA, Plummer HK, Schuller HM: Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting inphosphorylation of cmyc in human small cell lung carcinoma cells and pulmonaryneuroendocrine cells[J]. Journal of Cancer Research and Clinical Oncology. 2001, 127(12): 707-717.
    [34] Nouri-Shirazi M and Guinet E. Evidence for the immunosuppressive role of nicotine on human dendritic cell function[J]. Immunology .2003,109(3): 365-373.
    [35] Park SY, Baik YH, Cho JH, Kim S, Lee KS, Han JS.Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells[J]. Cytokine. 2008, 44(1):126-134.
    [36] Takahashi HK, Iwagaki H, Hamano R, Kanke T, Liu K, Sadamori H, Yagi T, Yoshino T, Tanaka N, Nishibori M. The immunosuppressive effects of nicotine during human mixed lymphocyte reaction[J]. Eur J Pharmacol. 2007, 559(1):69-74.
    [37] Carlisle DL, Hopkins TM, Gaither-Davis A, Silhanek MJ, Luketich JD, Christie NA, Siegfried JM.Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts[J]. Respir Res. 2004, 5:27-43.
    [38] Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JMNicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells[J]. Pulm Pharmacol Ther. 2007; 20(6): 629-641.
    [39] Klapproth, H., K. Racke, I. Wessler.. Acetylcholine and nicotine stimulate the release of granulocyte-macrophage colony stimulating factor from cultured human bronchial epithelial cells[J]. Naunyn Schmiedebergs Arch. Pharmacol. 1998, 357(4): 472-475.
    [40] Pavlov VA , Wang H , Czura CJ , Friedman SG , Tracey KJ . The cholinergic anti-infl ammatory pathway: a missing link in neuroimmunomodulation[J]. Mol Med. 2003; 9(5-8): 125-134 .
    [41] Wang H , Yu M , Ochani M ,Amella CA, Tanovic M, Susaria S, Li JH, etal . Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of infl ammation[J]. Nature .2003; 421(6921): 384-388 .
    [42] Takahashi HK, Iwagaki H, Hamano R, Yoshino T, Tanaka N, Nishibori M. Effect of nicotine on IL-18-initiated immune response in human monocytes[J]. J Leukoc Biol. 2006, 80(6): 1388-1394.
    [43] Takahashi HK, Iwagaki H, Hamano R, Yoshino T, Tanaka N, Nishibori M. alpha7 Nicotinic Acetylcholine Receptor Stimulation Inhibits Lipopolysaccharide-Induced Interleukin-18 and-12 Production in Monocytes[J]. J Pharmacol Sci. 2006, 102(1):143–146.
    [44] Iho S, Tanaka Y, Takauji R, Kobayashi C, Muramatsu I, Iwasaki H, Nakamura K, Sasaki Y, Nakao K, Takahashi T. Nicotine induces human neutrophils to produce IL-8 through the generation of peroxynitrite and subsequent activation of NF-κB[J]. J Leukoc Biol. 2003, 74(5): 942-951
    [45] Sugano N, Shimada K, Ito K, Murai S. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor kappaB activaion[J]. Biolchem Biophys Res Commun. 1998, 252(1): 25-28.
    [46] Dowling O, Rochelson B, Way K, Al-Abed Y, Metz CN. Nicotine inhibits cytokine production by placenta cells via NF kappaB: potential role in pregnancy-induced hypertension[J]. Mol Med, 2007, 13(11-12): 576-583.
    [47] Summers AE, Whelan CJ, Parsons ME. Nicotinic acetylcholine receptor subunits and receptor activity in the epithelial cell line HT29[J]. Life Sci. 2003, 72(18-19): 2091-2094.
    [48] Ueno H, Pradhan S, Schlessel D, Hirasawa H, Sumpio BE.Nicotine enhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated protein kinase, NF-kappaB, and AP-1[J]. Cardiovasc Toxicol. 2006, 6(1): 39-50.
    [49] Tsai JR, Chong IW, Chen CC, Lin SR, Sheu CC, Hwang JJ. Mitogen-activated protein kinase pathway was significantly activated in human bronchial epithelial cells by nicotine[J]. DNA Cell Biol. 2005, 25(5): 312-322.
    [50] Sen R, Baltimore D.Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell. 1986, 46(5): 705-716.
    [51] Chen F, Castranova V, Shi X.New insights into the role of nuclear factor-kappaB in cell growth regulation.[J] Am J Pathol. 2001 , 159(2):387-397.
    [52] Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy[J]. Expert Opin Ther Targets. 2010, 14(1): 45-55.
    [53] Wan F, Lenardo MJ.The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives[J]. Cell Res. 2010, 20(1):24-33.
    [54] Ferreiro DU, Komives EA.Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha[J]. Biochemistry. 2010, 49(8):1560-1567.
    [55] Tang JB, Xu Y, Wang XT.Tendon healing in vitro: activation of NIK, IKKalpha, IKKbeta, and NF- kappaB genes in signal pathway and proliferation of tenocytes[J]. Plast Reconstr Surg. 2004, 113(6):1703-1711.
    [56] Yamamoto Y, Gaynor RB.IkappaB kinases: key regulators of the NF-kappaB pathway[J]. Trends Biochem Sci. 2004, 29(2):72-79.
    [57] Solt LA, May MJ.The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res[J]. 2008, 42(1-3):3-18.
    [58] Solt LA, Madge LA, Orange JS, May MJ.Interleukin-1-induced NF-kappaB activation is NEMO-dependent but does not require IKKbeta[J]. J Biol Chem. 2007, 282(12):8724-8733.
    [59] Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R. NF-kappaB regulation: the nuclear response[J]. J Cell Mol Med. 2009, 13(4):631-643.
    [60] Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer[J]. Cell Mol Immunol. 2009, 6(5): 327-334.
    [61] Lora JM, Zhang DM,Liao SM.et al.Tumor Necrosis Factor-αTriggers Mucus Production in Airway Epithelium through an IκB Kinaseβ-dependent Mechanism[J]. J Biol Chem. 2005, 280(43): 36510-36517.
    [62] Anto RJ,Mukhopadhyay A,Shishodia S,et al.Cigarette smoke condensate activates nuclear transcription factor-κB through phosphorylation and degradation of IκBα: correlation with induction of cyclooxygenase-2[J].Carcinogenesis. 2002, 23(9): 1511-1518.
    [63] HaeqensA,Barrett TF,Gell J,et al.Airway epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin production in vivo[J].J Immunol[J] J Immunol. 2007, 178(3):1800-1808.
    [64] Barr J, Sharma CS, Sarkar S, Wise K, Dong L, Periyakaruppan A, Ramesh GT.Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells[J]. Mol Cell Biochem. 2007, 297(1-2): 93-99.
    [65] Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, Sayyah J, Dennis PA.Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells[J].Carcinogenesis. 2005, 26(7): 1182-1195.
    [66] Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N. Nicotine inhibits the production of proinflammatory mediators in humanmonocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7[J]. Clin Exp Immunol. 2006, 146(1):116-123.
    [67] McCubreyJA,Lahair MM,Franklin RA.Reactive Oxygen species-induced activation of the MAP kinase signaling[J].Antioxid Redox Signal. 2006, 8(9-10): 1775-1789
    [68] Lee K,Esselman WJ.Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways[J].Free Radic Biol Med. 2002, 33(8):1121-1132.
    [69] Zhong CY,Zhon YM,Douglas GC,et al.MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferaton and squamous metaplasia in the lungs of rats[J]. Carcinogenesis,2005, 26(12): 2187-2195
    [70] Matrix metalloproteinase/epidermal growth factor receptor/mitogen-activated protein kinase signaling regulate fra-1 induction by cigarette smoke in lung epithelial cells[J]. Am J Respir Cell Mol Biol.,2005, 32(1): 72-81.
    [71] Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways[J]. J Immunol. 2008 181(2):1536 -1547.
    [72] Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages[J]. J Cell Physiol. 2008, 214(1): 27-37.
    [73] Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes[J]. FASEB J. 2006;20 (12):2093–2101.
    [74] Bose C, Zhang H, Udupa KB, Chowdhury P.Activation of p-ERK1/2 by nicotine in pancreatic tumor cell line AR42J: effects on proliferation and secretion[J]. Am J Physiol Gastrointest Liver Physiol. 2005, 289: G926-G934.
    [75] Walker A, Udupa KB, Chowdhury P.Mitogenic and functional responses by nicotine and hydrogen peroxide in AR42J cells: a comparative study[J]. Tob Induc Dis. 2008,4: 5-12
    [76] Wang Y, Wang Z, Zhou Y, Liu L, Zhao Y, Yao C, Wang L, Qiao Z. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells[J]. Int J Biochem Cell Biol. 2006, 38(2): 170-182.
    [77] Grozio A, Catassi A, Cavalieri Z, Paleari L, Cesario A, Russo P. Nicotine, lung and cancer[J]. Anticancer Agents Med Chem. 2007, 7(4): 461-466.
    [78] Chen RJ, Ho YS, Guo HR, Wang YJ.Long-term Nicotine Exposure-Induced Chemoresistance is Mediated by Activation of Stat3 and Downregulation of ERK1/2 via nAChR and beta-AR in Human Bladder Cancer Cells[J]. Toxicol Sci. 2010 Jan 27.
    [79] Park SY, Baik YH, Cho JH, Kim S, Lee KS, Han JS.Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells[J]. Cytokine. 2008, 44(1):126-134.
    [80] Hamano R, Takahashi HK, Iwagaki H, Yoshino T, Nishibori M, Tanaka NStimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes[J]. Shock. 2006, 26(4):358-364.
    [81] Xu Y, Zhang Y, Cardell LO. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways[J]. Respir Res. 2010,11(1):13.
    [82] Gubbins EJ, Gopalakrishnan M, Li J.alpha7 nAChR-mediated activation of MAP kinase pathways in PC12 cells[J]. Brain Res. 2010 Mar 6.
    [83] Tsai JR, Chong IW, Chen CC, Lin SR, Sheu CC, Hwang JJ. Mitogen-activated protein kinase pathway was significantly activated in human bronchial epithelial cells by nicotine[J]. DNA Cell Biol. 2006, 25(5):312-322.
    [84] Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P.Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation [J]. Cell Prolif. 2008, 41(6): 936-959.
    [85] Scott DA, Martin M.Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases[J]. World J Gastroenterol. 2006, 12(46):7451-7459.
    [1] Woolf A , Burkhart K , Caraccio T , Litovitz T . Self-poisoning among adults using multiple transdermal nicotine patches. J Toxicol Clin Toxicol. 1996; 34(6): 691-698.
    [2] Grando SA, Kawashima K, Wesster I. Introduction:the non-neuronal cholinergic-system in humans.Life Sci. 2003, 72(18-19): 2009-2012.
    [3] Tomizawa M, Casida JE. Selective Toxicity of Neonicotinoids Attributable to Specificity of Insect and Mammalian Nicotinic Receptors. Amlu Rev Entomol. 2003, 48: 339-364。
    [4] Gallowitsch-Puerta M, Tracey KJ. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci. 2005, 1062: 209-219.
    [5] Wang H,Yu M,Ochani M et al.Nicotinic-acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.Nature,2003,421:384
    [6] Howard KP,Madhu D,Hildegard MS. Expression of theα-7nicotinic acetylcholine receptor in human lung cell.Respiratory Research, 2005,6:29
    [7] Li XW, Wang H. Non-neuronal nicotinicα-7 receptor,a new endothelial target for revascellarization Life Sci. 2006, 78(16): 1863-1870.
    [8] Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T.Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol. 2009, 183(10):6681-6688.
    [9] Murata Y, Itoh J, Han Y,et al.The invivo effect of nicotine on both Th1 and Th2 type response in murine models of inflammatory desease. Gastrointestinal Function. 2000,18: 81.
    [10] Osborne-Hereford AV, Rogers SW, Gahring LC. Neuronal nicotinic alpha7 receptors modulate inflammatory cytokine production in the skin following ultraviolet radiation. J Neuroimmunol. 2008, 193(1-2):130-139.
    [11] Kalayciyan A, Orawa H, Fimmel S, Perschel FH, González JB, Fitzner RG, Orfanos CE, Zouboulis CC.Nicotine and biochanin A, but not cigarette smoke, induceanti-inflammatory effects on keratinocytes and endothelial cells in patients with Beh?et's disease. J Invest Dermatol. 2007, 127(1):81-89.
    [12] Shemer, Y., Sarov I. Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect. Immun.1985, 48: 592–596.
    [13] Nuorti JP, Butler JC, Farley MM, Harrison LH, McGeer A, Kolczak MS, Breiman RF. Cigarette smoking and invasive pneumococcal disease. N. Engl. J. Med. 2000, 342(10): 681–689.
    [14] Kalayoglu MV, Libby P, Byrne GI. Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA. 2002, 288(21): 2724–2731.
    [15] Leinonen M, Saikku P. Interaction of Chlamydia pneumoniae infection with other risk factors of atherosclerosis. Am. Heart J. 1999,138(5 Pt 2): S504–S506.
    [16] Smieja, M, Leigh R, Petrich A, Chong S, Kamada D, Hargreave FE, Goldsmith CH, Chernesky M, Mahony JB. Smoking, season,and detection of Chlamydia pneumoniae DNA in clinically stable COPD patients. BMC Infect. Dis. 2002, 2:12.
    [17] Matsunaga KT,Klein W, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine. J. Immunol. 2001, 167(11): 6518–6524.
    [18] Prasse A, Stahl M, Schulz G, Kayser G, Wang L, Ask K, Yalcintepe J, Kirschbaum A, Bargagli E, Zissel G, Kolb M, Müller-Quernheim J, Weiss JM, Renkl AC.Essential role of osteopontin in smoking-related interstitial lung diseases. Am J Pathol. 2009, 174(5):1683-1691..
    [19] Sun X, Ritzenthaler JD, Zheng Y, Roman J, Han S.Rosiglitazone inhibits alpha4 nicotinic acetylcholine receptor expression in human lung carcinoma cells throughperoxisome proliferator-activated receptor gamma-independent signals. Mol Cancer Ther. 2009, 8(1): 110-118.
    [20] Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P.Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif. 2008, 41(6):936-59.
    [21] Grozio A, Catassi A, Cavalieri Z, Paleari L, Cesario A, Russo P.Nicotine, lung and cancer. Anticancer Agents Med Chem. 2007, 7(4): 461-466.
    [22] Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, Matthay MA.Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats. Am J Respir Cell Mol Biol. 2007, 37(2): 186-192.
    [23] Su X, Matthay MA, Malik AB.Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol. 2010, 184(1):401-410.
    [24] Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, Larosa GJ, Miller EJ, Tracey KJ, Al-Abed Y.Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007, 35(4):1139-1144.
    [25] Wongtrakool C, Roser-Page S, Rivera HN, Roman J. Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor. Am J Physiol Lung Cell Mol Physiol. 2007, 293(3):L611-L618.
    [26] Yamodo IH, Chiara DC, Cohen JB, Miller KW.Conformational changes in the nicotinic acetylcholine receptor during gating and desensitization.Biochemistry. 2010 , 12;49(1):156-165.
    [27] Yu KD, Liu Q, Wu J, Lukas RJ.Kinetics of desensitization and recovery from desensitization for human alpha4beta2-nicotinic acetylcholine receptors stably expressed in SH-EP1 cells.Acta Pharmacol Sin. 2009, 30(6):805-881.
    [28] Sheffield EB, Quick MW, Lester RAJ. Nicotinic acetylcholine receptor subunit mRNA expressin and channel function in medial habenula neurons. Neuropharmacol. 2000, 39: 2591-2603.
    [29] Voitenko SV, Bobryshev AY, Skok VI. Intracellular regulation of neuronal nicotinic cholinoreceptors. Neurosci Behav Physio. 2000, 30 (1): 19-25.
    [30] Lynn Wecker ,Xiang Guo ,Anthony Rycerz M et al . Cyclic AMP2 Chiodini FC , Tassonyi E , Hulo S et al . Modulation of synaptic transmission by nicotine and nicotinic antagonists in hippocampus. B rain Res B ull ,1999 ;48 (6) :623-628.
    [31] Papke RL, Kem WR, Soti F, López-Hernández GY, Horenstein NA.Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine. J Pharmacol Exp Ther. 2009, 329(2): 791-807.
    [32] Wang H. Modulation by nicotine on muscarinic Mike A ,Castro NG,Albuquerque EX. Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampus neurons. B rain Res. 2000, 882 (1-2) :155-168.
    [33] Alkondon M , Pereira EF, Almeida LE et al. Nicotine at concentra2 tions found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology . 2000, 39 (13): 2726-2739.
    [34] Khiroug L, Giniatullin R, Sokolova E, et al . Imaging of intracellu2 lar calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells. B r J Pharmacol. 1997, 122 (7): 1323-1332
    [35] Khiroug L ,Sokolova E ,Giniatullin R et al . Recovery from desensi2 tization of neuronal nicotinic acetylcholine receptors of rat chromaf2 fin cells is modulated byintracellular calcium through distinct second messengers. J Neurosci. 1998, 18 (7) :2485-2466
    [36] Fenster CP,W hitworth TL,Sheffield EB et a1. Upregulation of surface ct4 8z nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.J Neurosci.1999, 19(12): 4804-4814.
    [37] Fernández Nievas GA, Barrantes FJ, Antollini SS. Modulation of nicotinic acetylcholine receptor conformational state by free fatty acids and steroids. J Biol Chem. 2008, 283(31): 21478-21486.
    [1] Wanner A.perspectives: role of the airway circulation in drug therapy. J Aerosol Med. 1996, 9: 19-23.
    [2] Lozewicz S, Wells C, Gomez E, Ferguson H, Richman P, Devalia J, Davies RJ. Morphological integrity of the bronchial epithelium in mild asthma.Thorax. 1990, 45:12-15.
    [3] Berger P, Laurent F, Begueret H, Perot V, Rouiller R, Raherison C, Molimard M, Marthan R, Tunon-de-Lara JM.Structure and function of small airways in smokers: relationship between air trapping at CT and airway inflammation Radiology. 2003, 228:85-94.
    [4] Thorley AJ, Tetley TD.Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007, 2: 409-428.
    [5] Cosio MG, Guerassimov A. Chronic obstructive pulmonary disease: inflammation of small airways and lung parenchyma. Am J Respir Crit Care Med. 1999, 160: S21-S25.
    [6] Bartlett JA, Fischer AJ, McCray PB Jr. Innate immune functions of the airway epithelium. Contrib Microbiol. 2008, 15: 147-163.
    [7] Hiemstra PS.Epithelial antimicrobial peptides and proteins: their role in host defence and inflammation. Paediatr Respir Rev.2001, 2:306-310.
    [8] Halliwell B, Gutteridge JM, Cross CE.Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992, 119: 598-620.
    [9] Bove PF, van der Vliet A.Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Radic Biol Med. 2006, 41: 515-527.
    [10] Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 2003, 8: 39-49.
    [11] Rahman I.Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets. Curr Drug Targets Inflamm Allergy. 2002, 1: 291-315.
    [12] MacNee W.Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol. 2001, 429: 195-207.
    [13] Wang H,Liu X,Umino T, Sk?ld CM, Zhu Y, Kohyama T, et al.Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol. 2001, 25: 772-779.
    [14] Glader P,Moller S,Lilja J,et al.Cigarette smoke extract modulates respiratory defence mechanisms through effects on T-cells and airway epithelial cells. Respir Med. 2006, 100: 818-827.
    [15] Luppi F,Aaribiou J,Wetering SV. Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione. Respir Res. 2005, 6: 140-146
    [16] Konga DB, Kim Y, Hong SC, Roh YM, Lee CM, Kim KY, Lee SM. Oxidative stress and antioxidant defenses in asthmatic murine model exposed to printer emissions and environmental tobacco smoke.J Environ Pathol Toxicol Oncol. 2009, 28: 325-340.
    [17] Baginski TK,Dabbagh K,Satjawatcharaphong C,et al.Cigarette Smoke Synergistically Enhances Respiratory Mucin Induction by Pro-inflammatory Stimuli.Am J Respir Cell Mol Biol. 2006, 35: 165-174.
    [18] Borchers MT,Wesselkamper S,Wert SE.Monocyte inflammation augments acrolein-induced Muc5ac expression in mouse lung. Am J Physiol. 1999, 277: L489-L497.
    [19] Borchers MT,Carty MP,Leikauf GD.Regulation of human airway mucins by acrolein and inflammatory mediators[J].Am J physiol Lung Cell Mol Physiol. 1999, 276: L549-L555.
    [20] Fukano Y,Yoshimura H,Yoshida T.Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system. Exp Toxicol Pathol. 2006, 57: 411-418.
    [21] Zheng S,Byrd AS,Fischer BM,et al.Regulation of MUC5AC expression by NAD(P)H:quinone oxidoreductase 1. Free Radic Biol Med. 2007, 42:1398-1408.
    [22] MacNee W, Rahman I. Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med. 2001. 7:61-66.
    [23] Li, N., M. Hao, R. F. Phalen, W. C. Hinds, A. E. Nel. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 2003, 3: 250-265.
    [24] Marano F, Boland S, Bonvallot V, Baulig A,Baeza-Squiban A. Human airway epithelial cells in culture for studying the molecular mechanisms of the inflammatory response triggered by diesel exhaust particles. Cell Biol Toxicol. 2002, 18:315-320.
    [25] Al-Humadi, NH, Siegel PD, Lewis DM, Barger MW, Ma JY, Weissman DN, Ma JK. Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure. Environ. Health Perspect. 2002, 110: 349-353.
    [26] Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fisher BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol. 1999; 276: L835-L843.
    [27] Voynow JA, Fischer BM, Malarkey DE, Burch LH, Wong T, Longphre M, Ho SB, Foster WM. Neutrophil elastase induces mucus cell metaplasis in mouse lung.Am J Physiol Lung Cell Mol Physiol. 2004, 287: L1293-L1302.
    [28] Koo JS, Kim YD, Jetten AM, Belloni P, Nettesheim P. Overexpression of mucin genes induced by interleukin-1 beta, tumor necrosis factor-alpha, lipopolysaccharide, and neutrophil elastase is inhibited by a retinoic acid receptor alpha antagonist. Exp Lung Res. 2002, 28: 315-332.
    [29] Fischer B, Voynow J. Neutrophil elastase induces MUC5AC messenger RNA expression by an oxidant-dependent mechanism. Chest. 2000, 117: 317S-320S.
    [30] Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epitheial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol. 2005, 175: 4009-4016.
    [31] Voynow JA, Young LR, Wang Y, et al. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol Lung. 1999, 276: L835-L843.
    [32] Voynow JA, Fischer BM, Malarkey DE, et al. Neutrophil elastase induces mucus cell metaplasis in mouse lung. Am J Physiol Lung Cell Mol Physiol. 2004. 287: L1293-L1302.
    [33] Koo JS, Kim YD, Jetten AM, et al. Overexpression of mucin genes induced by interleukin-1 beta, tumor necrosis factor-alpha, lipopolysaccharide, and neutrophil elastase is inhibited by a retinoic acid receptor alpha antagonist. Exp Lung Res. 2002, 28: 315-332.
    [34] Fischer B, Voynow J. Neutrophil elastase induces MUC5AC messenger RNA expression by an oxidant-dependent mechanism. Chest. 2000, 117: 317S-320S.
    [35] McCubrey JA, Lahair MM, Franklin RA. Reactive Oxygen Species-induced activation of the MAPK kinase signaling. Antioxid Redox Signal. 2006, 8: 1775-1789.
    [36] Nadel JA. Role of epidermal growth factor receptor activation in regulating mucin synthesis. Respir Res. 2001, 2: 85-89.
    [37] Kohri K, Ueki IF, Nadel JA. Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol. 2002, 283: L531-L540.
    [38] Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax. 2004, 59: 992-996.
    [39] Kuwahara I, Lillehoj EP, Koga T, Isohama Y, Miyata T, Kim KC. The signaling pathway involved in neutrophil elastase stimulated MUC1 transcription. Am J Respir Cell Mol Biol. 2007, 37: 691-698.
    [40] van der Toorn M, Rezayat D, Kauffman HF, Bakker SJ, Gans RO, Ko?ter GH, Choi AM, van Oosterhout AJ, Slebos DJ. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2009, 297: L109-L114.
    [41] Franck T, Kohnen S, de la Rebière G, Deby-Dupont G, Deby C, Niesten A, Serteyn D. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase. Vet Immunol Immunopathol. 2009, 130: 243-250.
    [42] Sarir H, Mortaz E, Janse WT, et al. IL-8 production by macrophages is synergistically enhanced when cigarette smoke is combined with TNF-alpha. Biochem Pharmacol. 2010, 79: 698-705.
    [43] Takeyama K, Dabbagh K, Jeong SJ, et al. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J Immunol. 2000, 164: 1545-1552.
    [44] Cervantes-Sandoval I, Serrano-Luna Jde J, Meza-Cervantez P, et al. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation. Microbiology. 2009, 155: 3739-3747.
    [45] Brownlee IA, Knight J, Dettmar PW, et al. Action of reactive oxygen species on colonic mucus secretions. Free Radic Biol Med. 2007, 43: 800-808.
    [46] Ryter SW, Alam J, Choi AM.Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006, 86: 583-650.
    [47] Viarengo A, Burlando B, Ceratto N, Panfoli I.Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol (Noisy-le-grand). 2000, 46:407-17.
    [48] Wheeler DS, Wong HR.Heat shock response and acute lung injury. Free Radic Biol Med. 2007, 42:1-14.
    [49] Lee PJ, Choi AM.Pathways of cell signaling in hyperoxia. Free Radic Biol Med. 2003, 35: 341-50.
    [50] Ho YS, Vincent R, Dey MS, Slot JW, Crapo JD. Transgenic models for the study of lung antioxidant defense: enhanced manganese-containing superoxide dismutase activity gives partial protection to B6C3 hybrid mice exposed to hyperoxia. Am J Respir Cell Mol Biol. 1998, 18: 538-547.
    [51] Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008, 11: 1-15.
    [52] Dong CC, Yin XJ, Ma JY, et al. Effects of diesel exhaust particles on allergic reactions and airway responsiveness in ovalbumin-sensitized brown Norway rats. Toxicol Sci. 2005, 88: 202-212.
    [53] Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med. 2003, 34: 1507-1516.
    [54] Afonso V, Champy R, Mitrovic D, et al. Reactive oxygen species and superoxide dismutases: role in joint diseases. Join Bone Spine. 2007, 74: 324-329.
    [55] Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000, 275: 16023–16029.
    [56] Choi AMK, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996, 15: 9-19.
    [57] Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal. 2005, 7: 80-91.
    [58] Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997, 37: 517-547.
    [59] Lee JM, Li J, Johnson DA, et al. Nrf2, a multi-organ protector? FASEB J. 2005, 19: 1061-1066.
    [60] He X, Kan H, Cai L, et al. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol. 2009, 46: 47-58.
    [61] Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006, 8: 76-87.
    [62] Reddy SP. The antioxidant response element and oxidative stress modifiers in airway diseases. Curr Mol Med. 2008, 8:376-383.
    [63] Ishii Y, Itoh K, Morishima Y, et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol. 2005, 175: 6968-6975.
    [64] He X, Ma Q. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. Mol Pharmacol. 2009, 76: 1265-1278.
    [65] Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006, 38: 769-789.
    [66] Cho HY, Jedlicka AE, Reddy SP, et al. Role of Nrf2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 2002, 26: 175-182.
    [67] Cho HY, Reddy SP, Yamamoto M, et al. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J. 2004, 18: 1258-1260.
    [68] Papaiahgari S, Yerrapureddy A, Reddy SR, et al. Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. Am J Respir Crit Care Med. 2007, 176: 1222-1235.
    [69] Goven D, Boutten A, Le?on-Malas V, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax. 2008, 63: 916-924.
    [70] Rangsamy T, Cho CY, Thimmulappa RK, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004, 114: 1248-1259.
    [71] Iizuka T, Ishii Y, Itoh K, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005, 10: 1113-1125.
    [72] Singh A, Rangasamy T, Thimmulappa RK, et al. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol. 2006, 35: 639-650.
    [73] Ma Q, Battelli L, Hubbs AF. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol. 2006, 168: 1960-1974.
    [74] Yoh K, Itoh K, Enomoto A, et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 2001, 60: 1343-1353.
    [75] Choi AM, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996, 15: 9-19.
    [76] Shan Y, Wang X, Wang W, He C, Bao Y.p38 MAPK plays a distinct role in sulforaphane-induced up-regulation of ARE-dependent enzymes and down-regulation of COX-2 in human bladder cancer cells. Oncol Rep. 2010, 23: 1133-1138.
    [77] Cheng SE, Lee IT, Lin CC, Kou YR, Yang CM.Cigarette smoke particle-phase extract induces HO-1 expression in human tracheal smooth muscle cells: role of the c-Src/NADPH oxidase/MAPK/Nrf2 signaling pathway.Free Radic Biol Med. 2010, Feb 25.
    [78] Goven D, Boutten A, Le?on-Malas V, Boczkowski J, Bonay M.Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: roles of the MAP kinases ERK(1/2) and JNK. FEBS Lett. 2009, 583: 3508-3518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700