用户名: 密码: 验证码:
Exendin-4对脂肪细胞分化及相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨Exendin-4对3T3-L1前脂肪细胞分化及GLUT-4、PPAR-γ、HSL mRNA表达的影响。
     方法:3T3-L1前脂肪细胞诱导分化不同时期分别用Exendin-4等干预,应用倒置相差显微镜观察3T3-L1前脂肪细胞诱导分化前后的细胞形态变化;油红O染色后观察脂滴数量;Q-PCR分别检测GLUT-4、PPAR-γ、HSL mRNA表达量;应用酶法测定脂肪细胞的甘油三酯(TG)含量。
     结果:诱导分化成熟的脂肪细胞经油红O染色可见细胞质内大片脂滴呈亮红色,而未分化细胞则不被油红O染色。
     在脂肪细胞分化第0d干预,Exendin-4可促进脂肪细胞分化,较空白组增加细胞内TG的含量(P<0.01),上调GLUT-4、PPAR-γ、HSL mRNA的表达(P<0.01),TNF-α组较空白组均能显著下调GLUT-4、HSL mRNA的表达(P<0.01);与Troglitazone组比较,EX-4组PPAR-γmRNA的表达降低(P<0.05),EX-4+Trogli组GLUT-4、HSL mRNA的表达显著增加(P<0.01),EX-4+Trogli组PPAR-γmRNA的表达增加(P<0.05)。
     在脂肪细胞分化6d干预,Exendin-4可促进脂肪细胞分化,较空白组增加细胞内TG的含量(P<0.01),上调GLUT-4、HSL、PPAR-γmRNA的表达(P<0.01);TNF-α组较空白组能显著下调GLUT-4、HSL mRNA的表达(P<0.01),下调PPAR-γmRNA的表达(P<0.05);与Troglitazone组比较,EX-4组GLUT-4 mRNA的表达降低(P<0.05),HSL mRNA的表达显著降低(P<0.01),EX-4+Trogli组HSL、PPAR-γmRNA的表达增加(P<0.05)。
     脂肪细胞分化第12d干预,Trogli组、EX-4组+Trogli组较空白组能上调GLUT-4 mRNA的表达(P<0.05);TNF-α组较空白组能下调HSL mRNA的表达(P<0.01);与Troglitazone组比较,EX-4组GLUT-4、HSL mRNA的表达减少(P<0.05),EX-4组+Trogli组HSL mRNA的表达增加(P<0.05),TG含量也增加(P<0.05)。
     结论:Exendin-4促进脂肪细胞分化并上调糖脂代谢相关基因GLUT-4、PPAR-γ、HSL mRNA表达,可能为Exendin-4抗糖尿病的部分作用新机制。
Objective: To investigate the effects of Exendin-4 on differentiation of 3T3-L1 preadipocytes and mRNA expressions of GLUT-4、PPAR-γand HSL.
     Methods: 3T3-L1 preadipocytes of different differentiation stages were treated by Exendin-4. Morphological changes of 3T3-L1 preadipocytes and cell differentiation were measured by inverted phase contrast mocroscope. The number of lipid droplets was observed by Oil red O staining. The mRNA expressions of GLUT-4、PPAR-γand HSL were detected by quantitative real-time polymerase chain reaction(RT-PCR).The triglyceride content of 3T3-L1 preadipocytes was quantitated with an acetyl acetone–based colorimetric kit.
     Results: Induced differentiation of mature adipocytes showed large lipid droplets of red within the cytoplasm by oil red O staining, undifferentiated cells are not stained by oil red O.
     Comparing with control group, Exendin-4 promoted preadipocyte differentiation, increased TG content (P<0.01) and the mRNA expression of GLUT-4, HSL and PPAR-γ(P<0.01) when treated with Exendin-4 at day 0.Compared with the control group,TNF-αsignificantly reduced mRNA expressions of GLUT-4 and HSL (P<0.01). Compared with troglitazone group, the expressions of PPAR-γmRNA reduced in EX-4 group (P<0.05), the expressions of GLUT-4 and HSL mRNA significantly increased (P<0.01) and the expressions of PPAR-γmRNA increased (P<0.05) in Ex-4 combined with troglitazone group.
     Comparing with control group, Exendin-4 promoted preadipocyte differentiation, increased TG content (P<0.01) and the mRNA expressions of GLUT-4, HSL andPPAR-γ(P<0.01) when treated with Exendin-4 at day 6. Compared the control group, TNF-αgroup significantly reduced GLUT-4 and HSL mRNA expressions (P<0.01) and reduced PPAR-γmRNA expression (P<0.05); Compared with Troglitazone group , the expressions of GLUT-4 mRNA reduced in Ex-4 group (P<0.05) and the expression of HSL mRNA significantly reduced (P<0.01). Compared with Troglitazone group, the expressions of HSL and PPAR-γmRNA increased in Ex-4 combined with troglitazone group (P <0.05).
     Compared with control group, the expressions of GLUT-4 mRNA increased in Ex-4 combined with troglitazone group and Trogli group(P<0.05). Compared with control group, the expressions of HSL mRNA reduced in TNF-αgroup (P<0.01) when treated with Exendin-4 at day. Compared with Troglitazone group, the expressions of GLUT-4 and HSL mRNA reduced in Ex-4 group (P<0.05), Compared with Troglitazone group, increased TG content (P<0.01) and the mRNA expression of HSL mRNA increased in Ex-4 combined with troglitazone group (P<0.05) and TG content also increased (P<0.05).
     Conlusion: Exendin-4 promoted adipocyte differentiation,increased glucose and lipid metabolism related genes mRNA expression, which may be some new mechanisms of Exendin-4 anti-diabetic.
引文
[1].Buse JB,Henry RR,Han J,et al.Effects of exenatide(exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes.Diabetes Care,2004;27:2628–35.
    [2].Nielsen LL,Baron AD.Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes.Curr Opinion Investig Drugs 2003;4:401–405.
    [3].Gedulin BR,Nikoulina SE,Smith PA,et al.Exenatide (exendin-4) improves insulin sensitivity and beta-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology, 2005;146:2069–2076.
    [4].Fineman MS,Shen LZ,Kristin Taylor T,et al.Effectiveness of progressive dose- escalation of exenatide(exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes.Diabetes Metab Res Rev 200420:411-417.
    [5].Kolterman D,Kim DD,Shen L,et al. Pharmacokinetics, pharmacolynamics,and safety of exenatide in patients with type 2 diabetes mellitus.[J].Am J Health Pharm, 2005;62:173-81.
    [6].杨涛,杨永年.Exenatide与β细胞功能.国外医学内分泌分册,2005,25 (1):18-22.
    [7].Otto TC,LaneMD. Adipose development: from stem cell to adipocyte.Crit Rev Biochem Mol Biol,2005;40(4):229-242.
    [8].Kershaw EE,Hamm JK,Verhagen LA,et al.Adipose triglyceride lipase: function, regulation by insulin,and comparison with adiponutrin. Diabetes, 2006;55: 148-157.
    [9].Pannacciulli N,Le DS, Salbe AD, et al. Postprandial glucagon like peptide -1(GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuro image,2007;35(2):511-7.
    [10].McDermott LC,Freel JA,West AP,et al.Zn-alpha2-glycoprotein,an MHC class I related glycoprotein regulator of adipose tissues: modification or abrogation of ligand binding by site directed mutagenesis.Biochemistry,2006;45:2035-2041.
    [11].Gohda T,Makita Y,Shike T,et al.Identification of epistatic interaction involved in obesity using the KK/Ta mouse as a type 2 diabetes model:is Zn-alpha2-glycoprotein-1 a candidate gene for obesity? Diabetes,2003;52:2175-2181.
    [12].Marrades MP,Martínez JA,Moreno-Aliaga MJ. ZAG,a lipid mobilizing adipokine, is downregulated in human obesity.J Physiol Biochem,2008,64:61-66.
    [13].Defronzo RA, Ratner RE, Han J, et al. Effects of Exenatide (Exendin-4) on glycemic control and weight over 30 weeks in metformin treated patients with type 2 diabetes. Diabetes Care,2005;28(5):1092-100.
    [14].Yazhou L,Patricial B ,et al. beta-cell Pdx1 expression is essential for the glucoregulatory, proliferative and cytoprotective actions of glucagon-like peptide-1. Diabetes,2005,54(2):482-491.
    [15].Li Y,Hansotia T,Yusta B,et al.Glucagon-like peptide-1recepter signaling modulates beta cell apoptosis.J Biol Chem,2003;278(1):471-478.
    [16].Hansotia T, Maida A , Flock G, et al. Extra pancreatic incretin receptors modulate glucose homeostasis, body weight , and energy expenditure.J Clin Invest, 2007; 117: 143-152.
    [17].Degn KB,Brock B,Juhl CB,et al.Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose dependent insulin secretion and counter regulation during hypoglycemia. Diabetes,2004;53:2397-2403.
    [18].Nielsen LL,Young AA,Parkes DG. Pharmacology of exenatide (synthetic exendin-4):a potential therapeutic for improved glycemic control of type2 diabetes. Regul Pept, 2004;117(2):77-88.
    [19].Iskandar I ,Divina P ,Samuel G,et al. Exendin-4 increases insulin sensitivity via a PI3 kinase dependent mechanism:contrasting effects of GLP-1.Biochemical Pharmac- ol, 2002;63(5):993
    [20].Zhou J,Wand X,Pinceyro MA,et al.Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon and insulin producting cells. Diabetes,1999;48(12):2358-2366.
    [21].Greig NH, Holloway HW, De Ore KA, et al. Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concent rations. Diabetologia,1999;42:45-50.
    [22].Fehse F, trautmannM, Holst JJ, et al. Exenatide augments first and second phaseinsulin secretion in response to intravenous glucose in subjects with type 2 diabetes.J Clin Endocrinol Metab,2005;90:5991-5997.
    [23].Moore MC,Cherrington AD.Regulation of net hepatic glucose up take: inten action of neural and pancreatic mechanisms.Reprod Nutr Dev,1996;36:399-406.
    [24].Kolterman OG, Buse JB, Fineman MS, et al.Synthetic exendin-4(AC2993) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes.J Clin Endocrinol Metab,2003;88: 3082-3089.
    [25].Dillon JS, Lu M, Bowen S, et al. The recombinant rat glucagon–like peptide-1 receptor, expressed in an alpha-cell line, is coupled to adenylyl cyclase activation and intracellular calcium release [J]. Exp Clin Endocrinol Diabetes,2005;113:182-189.
    [26].Brubaker PL ,Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors:the glucagon,GIP,GLP-1,and GLP-2 receptors. Receptors Channnels,2002,8:179-188.
    [27].Kast-Woelbern HR,Dana SL,Cesario RM,et al. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferatoractivated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis.J Biol Chem,2004;279(23):23908–23915.
    [28].Li JZ,Ye J,Xue B,et al.Cideb regulates diet-induced obesity,liver steatosis,and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes, 2007, 56:2523-2532.
    [29].Young AA,Gedulin BR, Bhavsar S,et al.Glucose-lowering and insulin sensitizing actions of exendin-4:studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats,and diabetic rhesusmonkeys(Macaca mulatta).Diabetes, 1999; 48:1026- 1034.
    [30].Willms B,Werner J, Holst JJ,et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal:effects of exogenous glucagon like peptide-1(GLP-1)(7236) amide in type 2 (noninsulin-dependent) diabetic patients.J Clin Endocrinol Metab,1996;81(1):327-332.
    [31].SzaynaM, DoyleME, Betkey JA, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology, 2000;141:1936-1941.
    [32].Goke R, Larsen PJ,Mikkelsen JD,et al.Distribution of GLP-1 binding sites in the rat brain:evidence that exendin-4 is a ligand of brain GLP-1 binding sites.Eur J Neurosci,1995;7:2294–2300.
    [33].Orskov C,Poulsen SS,MollerM,et al.Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I.Diabetes,1996;45:832–835.
    [35].Li Y,Cao X,Li LX,et al.beta-Cell Pdxl expression is essential for the glucore -gulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diab- etes,2005;54(2):482-491.
    [36].Perfetti R,Merkel P.Glucagon-like peptide-1:a major Regulator of pancreaticβcell function.Euro J Endocrinol;2000,143(6):717-725.
    [37].卜石,杨文英.胰升糖素样肽-1与糖尿病治疗研究进展.国外医学内分泌分册,2001;21(1):24-27.
    [38].Gutzwiller JP,Drewe J,Goke B,et al.Glucagon-like peptide 1 promotes safety and reduces food intake in patients with diabetes mellitus type 2.Am J physiol, 1999; 276 (5 Pt2):R1541-R1544.
    [39].Sticchi D,Fassina A,Ganzaroli C,et al.Expression of telomerase (hTERT) in aldosterone-producing adrenocortical tumors.Int J Mol Med,2006;17(3):469-474.
    [40].Ruan H, Hacohen N,Golub TR,et al.Tumor necrosis factor-alpha suppressesadipocyte specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory.Diabetes,2002;51:1319-1336.
    [41].Frühbeck G,Gómez-Ambrosi J,Muruzábal FJ,et al.The adipocyte:a model forintegration of endocrine and metabolic signaling in energy metabolism regulation.Am J physical Endocrinal Metab,2001;280(6):E827-E847.
    [42].乐嘉静,李湛君,邱财荣等.重组人胰高血糖素类多肽–1(7236)对正常动物降糖作用的实验研究.中国临床药理学与治疗学,2004;9:527-531.
    [43].Kenuall DM,Riddle MC,Rosensock J,et al.Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type diabetes treated with metformin and a sulfonylurea.Diabetes Care,2005;28(5):1083-1091.
    [44].Brubaker PL,Drucker DJ. Structure function of the glucagon receptor family of G protein coupled receptors:the glucagon,GIP,GLP-1,andGLP-2receptors.Recep Chann, 2002; 8:179.
    [1]Liu LF,Purushotham A,Wendel AA,et al. Regulation of adipose triglyceride lipase by rosiglitazone.Diabetes Obes Metab,2009,11:131-142.
    [2]Kershaw EE, Hamm JK,Verhagen LA, et al. Adipose triglyceride lipase: Function,regulation by insulin,and comparison with adiponutrin. Diabetes, 2006, 55: 148-157.
    [3]Zimmermann R,Lass A,Haemmerle G,et al.Fate of fat: The role of adipose triglyceride lipase in lipolysis.Biochim Biophys Acta, 2009,1791:494-500.
    [4]Muccioli GG,Labar G,Lambert DM.CAY10499,a novel monoqlyceride lipase inhibitor evidenced by an expeditious MGL assay.Chembiochem, 2008,9: 2704-2710.
    [5]Saario SM, Laitinen JT. Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglyceol.Chem Biodivers,2007,8:1903-1913.
    [6]Bickel PE,Tansey JT,Welte MA.PAT proteins,an ancient family of lipid droplet proteins that regulate cellular lipid stores.Biochim Biophys Acta,2009,1791:419-440.
    [7]Brasaemle DL,Subramanian V,Carcia A,et al.Perilipin A and the control of triacylglycerol metabolism.Mol Cell Biochem,2009,326:15-21.
    [8]Puri V, Konda S,Ranjit S, et al. Fat-specific protein 27,a novel lipid droplet protein that enhances triglyceride storage.J Biol Chem,2007,282: 34213-34218.
    [9]Li JZ,Ye J,Xue B,et al.Cideb regulates diet-induced obesity,liver steatosis,and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes, 2007, 56:2523-2532.
    [10]Keller P,Petrie JT,De Rose P,et al.Fat-specific protein 27 regulates storage of triacylglycerol.J Biol Chem,2008,283:14355-14365.
    [11]Puri V,Czech MP.Lipid droplets: FSP27 knochout enhances their sizzle.J Clin Invest,2008,118: 2693-2696.
    [12]Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology,2008,149:942-949.
    [13]Rolli V,Radosavljevic M,Astier V,et al.Lipolysis is altered in MHC class zinc-alpha(2)-glycoprotein deficient mice.FEBS Lett,2007,581:394-400.
    [14]Russell ST,Zimmerman TP,Domin BA,et al.Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein, 2004,1636:59-68.
    [15]McDermott LC,Freel JA,West AP,et al.Zn-alpha2-glycoprotein,an MHC class related glycoprotein regulator of adipose tissues: Modification or abrogation of ligand binding by site directed mutagenesis.Biochemis,2006,45:2035-2041.
    [16]Marrades MP,Martínez JA,Moreno-Aliaga MJ.ZAG,a lipid mobilizing adipokine ,is downregulated in human obesity.J Physiol Biochem,2008,64:61-66.
    [17]Stejskal D, Karpísek M, ReutováH, et al. Determination of serum zinc-alpha-glycoprotein in patients with metabolic syndrome by a new ELISA.Clin Biochem, 2008,41:313–316.
    [18]Cawthorn WP,Sethi JK.TNF-alpha and adipocyte biology.FEBS Lett, 2008, 582: 117-131.
    [19]Kershaw EE,Schupp M,Guan HP,et al.PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo.Am J Physiol Metab,2007,293:E1736-E1745.
    [20]Towler MC,Hardie DG.AMP-activated protein kinase in metabolic control and insulin signaling.Circ Res,2007,100: 328-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700