用户名: 密码: 验证码:
p75~(NTR)在Alzheimer病海马神经发生中作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     人口老龄化是当今世界各国家已经或即将面临的严峻社会问题,在我国这一问题将会尤为突出。截至去年底我国60岁以上的人口已达1.44亿,占总人口的11%,已进入老龄化社会。而在未来的几十年中,我国社会老龄化的推进速度将是十分迅速:预计到2014年,我国老年人口总数将突破2亿人,2026年超过3亿人,2050年将会达到近4.5亿人,占总人口的比例超过30%。随着人口的老龄化,老年痴呆的发病率日益升高。阿尔茨海默病(Alzheimer's disease,AD)是老年痴呆最常见类型,我国60岁以上人群的AD年发病率为0.42%-0.95%。AD是一种中枢神经系统退行性疾病,其突出临床特征是早期出现认知功能损害并进行性加重,逐渐会引起老年人生活能力丧失并在发病后7-10年导致其死亡,给社会经济发展和家庭带来沉重的负担。
     近10余年来大量病理学、遗传学和转基因动物等方面的证据表明,Aβ是引起AD的主要致病物质。由Aβ所构成的细胞外SP的沉积(老年斑,senile plaque)及细胞内NFT(neurofibrillary tangle)是AD确诊的金标准。在AD未出现临床症状之前脑内即有可溶性Aβ纤维单体形成,并逐渐聚集形成老年斑,引起一系列复杂的病理生理变化。海马在学习记忆机制中,特别是空间学习记忆发挥重要作用,是AD最易受累脑区。成年哺乳动物海马齿状回颗粒细胞下层(subergranular zone,SGZ)神经发生终生存在,与学习记忆密切相关。局部环境因素影响其神经发生。在AD早期的病理阶段脑内产生的Aβ对海马神经发生有何影响、机制如何,是近年来神经科学领域研究的热点。阐明AD早期病理阶段海马神经发生的变化及其机制,对于AD的预防和治疗十分重要。
     神经营养素(neurotrophin,NT)低亲和力的75000 NT受体(75 KD NT recep tor,p75~(NTR)),属1型跨膜TNF受体超家族。p75~(NTR)在Trk存在时被活化,提高对神经营养因子的反应性。Trk受体和p75~(NTR)协同作用,参与神经系统发育。近年来研究表明,p75~(NTR)在神经发育过程中调控神经细胞存活和死亡方面发挥关键作用,同时p75~(NTR)作为Aβ受体,介导了Aβ诱导的神经元死亡。p75~(NTR)是否参与Aβ对AD脑内神经发生的影响,目前存在较大争论。
     为此,本研究构建了p75~(NTR)敲除AD小鼠模型,并通过p75~(NTR)胞外段(p75~(NTR-ECD))阻断在体海马干细胞和离体培养干细胞的p75~(NTR)激活,观察了海马NSCs神经发生的变化,从在体和离体水平探讨p75~(NTR)在AD海马神经发生中的作用。
     方法
     1.实验动物模型的制作及鉴定
     通过APPswe/PS1dE9转基因AD(APP_(swe)~(+/-))小鼠和p75~(NTR)基因敲除(p75~(NTR-/-))小鼠(均源于美国Jackson实验室),将p75~(NTR-/-)小鼠和APPswe转基因AD小鼠杂交,产生出APPswep75~(NTR+/-)小鼠,然后反复与p75~(NTR-/-)杂交10代,得到具有99.9%以上129/Sv背景的杂合型APPswep75~(NTR-/-)小鼠;随后将APPswep75~(NTR-/-)小鼠与p75~(NTR+/+)小鼠(背景均为129/Sv)进行杂交,得到APPswep75~(NTR+/-)小鼠;将APP_(Swe)p75~(NTR+/-)小鼠分别和p75~(NTR-/-)以及p75~(NTR+/+)小鼠杂交,最终得到了具有近100%129/Sv背景的携带不同p75~(NTR)基因型的包括部分含有APPswe转基因的小鼠,并对成功交配繁殖后的小鼠进行了基因型鉴定。
     2.p75~(NTR)基因敲除对AD小鼠海马神经发生的影响
     根据动物基因型的鉴定结果,选取3、6、9月龄p75敲除AD小鼠(APP_(swe)~(+/-)p75~(NTR-/-))、AD小鼠(APP_(swe)~(+/-)p75~(NTR+/+))及野生型小鼠(APP_(swe)~(-/-)p75~(NTR+/+))作为实验鼠共9组,每组10只。采用Morris水迷宫检测各组小鼠潜伏期、游泳速度及空间探索能力的差异,腹腔注射BrdU(剂量为100ug/Kg体重,2/日,共3天)后免疫组化检测各组小鼠海马神经干细胞的增殖情况,并用免疫荧光双标(Brdu+DCX、Brdu+GFAP)结合激光共聚焦显微镜观察海马神经干细胞增生后的初步分化。
     3.AD小鼠p75~(NTR-ECD)海马注射后干细胞增殖的变化
     p75~(NTR)胞外段(Extracellular domain of p75~(NTR),p75~(NTR-ECD))是p75~(NTR)与其配体(包括Aβ)的结合部位。选取9月龄APPswe PS1dE9 AD小鼠12只,随机分为实验组和对照组,每组各6只,采用克隆表达的人p75~(NTR-ECD)向AD小鼠海马注射来阻断p75~(NTR)配体激活路径,对照组注射人IgG,腹腔注射BrdU(方法同2)后免疫组化检测两组AD小鼠海马神经干细胞增殖的变化。
     4.p75~(NTR-ECD)对Aβ_(1-42)2培养海马干细胞增殖的影响
     分离培养了成年小鼠(2月龄)海马神经干细胞,观察离体条件下加入Aβ42寡聚体10um/l对成年小鼠海马神经干细胞增殖的影响,然后用不同浓度人p75~(NTR)胞外段(p75~(NTR-ECD))中和培养体系中的Aβ42,细胞计数测定神经干细胞的增殖变化。
     结果
     1.实验小鼠基因型鉴定结果及生长情况
     本实验所选用交配的两种动物即APPswe/PS1dE9转基因AD小鼠和p75~(NTR)基因敲除小鼠的遗传背景分别为C57BL/6、129/sv,将上述两种小鼠进行杂交,成功交配繁殖后对所生小鼠的基因型进行了鉴定,选择APP_(swe)~(+/-)p75~(NTR-/-)为p75敲除AD小鼠,APP_(swe)~(+/-)p75~(NTR+/+)为AD小鼠,APP_(swe)~(-/-)p75~(NTR+/+)为野生型小鼠。各种基因型小鼠的存活率、体重、繁殖生育能力及日常行为与其他遗传背景小鼠比较无明显异常表现。
     2.p75~(NTR)基因敲除后AD小鼠海马神经发生的变化
     随着月龄增加,各基因型小鼠海马神经发生均呈下降趋势,但AD鼠神经发生较野生鼠下降更为明显,同时与同月龄鼠相比增殖细胞向胶质分化比例增加、向神经元分化的比例下降,组间差别显著。通过比较不同月龄阶段同p75~(NTR)基因型小鼠海马神经干细胞的增殖分化情况,结果表明AD小鼠在p75~(NTR)敲除的情况下3、6、9月龄海马神经干细胞的增殖较未敲除鼠均增加,在6、9月龄鼠表现尤为显著,但增殖细胞的分化组间无明显差异。水迷宫检测显示3、6、9月龄AD小鼠的学习记忆能力与同龄野生鼠无显著差异,p75~(NTR)基因敲除后可促进AD小鼠海马的神经发生,但行为学检测发现对此阶段AD小鼠的记忆功能无明显影响。
     3.p75~(NTR-ECD)对AD小鼠海马干细胞增殖的影响
     通过向AD小鼠海马注射人p75~(NTR-ECD)融合蛋白,观察其对海马细胞增殖的影响。结果显示注射人p75~(NTR-ECD)融合蛋白AD小鼠海马BrdU阳性标记细胞较注射等mol量人IgG的AD小鼠明显增加,组间差异显著。
     4.p75~(NTR-ECD)对Aβ培养海马干细胞增殖中的影响
     成功分离、培养了成年小鼠海马NSCs。原代培养4-5d后多数成熟细胞死亡,而表达nestin抗原的神经细胞克隆球在培养7-10d形成,进一步将神经球分离成单细胞传代培养后,仍可在无血清培养基中快速生成并保持未分化状态、而且依旧表达nestin抗原的细胞克隆球,贴壁后可向神经元或胶质分化。离体条件下Aβ1-42对海马NSCs的增殖有明显的抑制作用;而如果同时加入p75~(NTR-ECD)胞外段后则可以阻断Aβ1-42对小鼠海马NSCs增殖的抑制作用。
     结论
     1.成功构建p75~(NTR)基因基因敲除AD小鼠模型
     2.p75~(NTR)对AD小鼠海马神经干细胞增殖起抑制作用,对其分化无显著影响。
     3.p75~(NTR)介导了Aβ1-42对海马干细胞增殖的抑制效应。
Background
     The aging of the population is one of the greatest challenges for the world in the twenty-first century. This problem in China is more serious in the coming dacades. China has become an aged society since 1999 ,and the aged population(>60years old) has reached 144 million by the end of last year. According to calculation based on the current prevalence data, there will be 0.45 billion elder people in China by 2050 and the proportion of aged people will exceed 30% by estimation. Alzheimer's disease (AD) is a neurodegenerative disease characterized histopathologically by beta-amyloid (Aβ)-containing senile plaque, neurofibrillary tangle and loss of neuron in certain brain areas, and clinically by progressive dementia. It is the most common cause of senile dementia of later life. Currently the incidence rate of AD among old people over 65 is 0.42 %-0.95% in china and the number of AD patients is about 3-4 million in China. AD is a major cause of disability and death in the elderly and results in heavy burden for the families and the society.
     Over the past 10 years , it has been demonstrated that Aβis the main pathogenic cause of AD by pathology, genetics and transgenic studies. The senile plaque(SP) mainly copmosed of Aβwhich is currently considered as the key factor in pathogenesis of AD. Aβbegins to accumulate and deposit in the brain long before the clinical symptoms onset of AD .Hippocampus plays an important role in learning and memory ,while hippocampus is the most vulnerable part of the brain affected by AD. The granule cells in the subergranular zone(SGZ) of dentate gyrus is one of the few areas in adult mammalian brain that neurogenesis exists all the life.Local environmental factors play important roles in neurogenesis. Neurogenesis in hippocampus has close relation with memory, and is affected by the local environmental factors.What the role of Aβgenerated in the early stages of AD brain on neurogenesis in hippocampus is unknown, which attracts a lot of attention in the field of neuroscience recent years. It is very important to clarify the neurogenesis changes in hippocampus in the early pathological stage of AD for the prevention and treatment ofAD.
     p75~(NTR), the low affinity receptor of neurotrophins, together with Trk receptors, play critical roles in regulating the survival and death of nerve cells during the neuron development. Recently p75~(NTR) has identified as an Aβreceptor and it mediates neuronal death induced by Aβ. But whether p75~(NTR) is involved in neurogenesis in AD brain affected by Aβis not clear.
     With regard to this purpose, we established a p75~(NTR)-knockout AD mouse model, and the extracellular domain of p75~(NTR) (p75~(NTR-ECD) ) was injected into AD mouse hippocampus and added to neural stem cells (NSCs) cultured with Aβ. Then proliferation of NSCs was observed in vivo and in vitro. By such means we explored the role of p75 NTR in AD hippocampal neurogenesis.
     Methods
     1. Generation of animal model and genotyping
     APPswe/PS1dE9 and p75~(N32TR-/-) mice were crossed and their progeny were genotyped. An APPswe/PS1dE9/p75~(NTR+/-) mouse was repeatedly backcrossed with a p75~(NTR-/-) mouse for 10 generations to produce APPswe/PS1dE9/p75~(NTR-/-) mice with nearly pure 129/Sv homozygosity. An APPswe/PS1dE9/p75~(NTR-/-) mouse was crossed with a 129/Sv mouse to obtain a male APPswe/PS1dE9/p75~(NTR+/-) mouse, which was next crossed with female 129/Sv mice and p75~(NTR-/-) mice to breed different kinds of genotype animals for the next experiments. Mice were maintained on ad libitum food and water with a 12-hour light/dark cycle.
     2. Effect of p75~(NTR)on neurogenesis of hippocampus in AD mice
     p75 knockout AD mice、AD mice and wild-type mice at age of 3, 6, 9 months were selected for the experiment. Morris Water Maze was used to measure the cognitive function of the mice. Intraperitoneal injection of BrdU (dose 100ug/Kg weight, 2 / day, total of 3 days) and immunohistochemical detection of BrdU were used to observe the proliferation of hippocampal NSCs in different groups of mice.The initial differentiation of hippocampal NSCs was observed by double-labeling immunofluorescence (Brdu + DCXor Brdu + GFAP) and confocal laser scanning microscope .
     3. NSCs proliferation in AD mice hippocampus after p75~(NTR-ECD) injection .
     Extracellular domain of p75~(NTR)is the binding site of Aβ. Twelve APPswe PS1dE9 ADmice at the age of 9-month-old were randomly divided into experimental and control groups with 6 mice in each group. The human p75~(NTR-ECD) was injected into the AD mouse hippocampus to block the endogenous p75~(NTR) activation,while human IgG was used as control .Intraperitoneal injection of BrdU and immunohistochemistry were used to examine the proliferation of NSCs in hippocampus .
     4. The effect of p75~(NTR-ECD) on Aβ1-42cultured NSCs from mouse hippocampus.
     Adult (2 months old) hippocampal NSCs were isolated and cultured.Aβ42 was addedinto the cultured cells at a concentration of 10um/1 and NSCs proliferation changes was observed.Then p75~(NTR-ECD) with different concentrations were added into the NSCscultured with Aβ1-42 to examine the role of p75~(NTR) in NSCs proliferation changes induced by Aβ1-42.
     Results
     1. Generation of p75~(NTR) knocked out AD mouse model.
     APPswe/PS1dE9 transgenic AD mice carry a C57BL/6 gene back ground, and p75 knockout mice (p75NTR/ExonⅢ-/- mice) has a 129 / sv background .The two kinds of animals were crossed according to the designed step in order to get the same 129/sv back ground. As a result,six genetic types including APP_(swe)~(+/-)p75~(NTR-/-)、APP_(swe)~(+/-)p75~(NTR+/+)、APP_(swe)~(-/-)p75~(NTR-/-)、APP_(swe)~(-/-)p75~(NTR+/-)、APP_(swe)~(-/-)p75~(NTR+/+)、APP_(swe)~(+/-)p75~(NTR+/-) were produced.The different genetype animals were in normal condition. APP_(swe)~(+/-)p75~(NTR-/-)、APP_(swe)~(+/-)p75~(NTR+/+) , APP_(swe)~(-/-)p75~(NTR+/+)were selected as p75 konock-out AD mice, AD mice and wild mice.
     2. Neurogenesis changes in AD hippocampus and the role of p75~(NTR)
     The neurogenesis of hippocampus decreased with age increased in each genotype,with more drop in AD brain. The results of double labeling showed that the proportion of NSCs differentiation in p75~(NTR) knockout AD and AD mice was much different from wild mice-the proportion of BrdU+DCX was lower,and the proportion of BrdU+GFAP was higher than wild mice especially at 6、9 months of age (p<0.05). There were no significant differences between each groups at 3 months of age. The results of Morris Water Maze test showed that there were no significant differences between AD mice , p75~(NTR) knockout mice and wild mice in the ability of learning and memory.
     3. NSCs proliferation changes in AD mice hippocampus after p75~(NTR-ECD) injection
     BrdU-positive cells in AD mouse hippocampus significantly increased afterp75~(NTR-ECD) hippcampus injection compared with control (p<0.01).
     4. The effect of p75~(NTR-ECD) on mouse hippocampal NSCs cultured with Aβ.
     In vitro study we demonstrated that Aβ1-42 inhibited the proliferation of hippocampal NSCs, and p75~(NTR-ECD) blocked the inhibition effect of Aβ1-42 on the proliferation of hippocampal NSCs.
     Conclusions
     1. p75~(NTR) knockout AD mice were successfully constructed .
     2. p75~(NTR) plays an inhibitory role in the proliferation of hippocampus NSCs in AD mice.
     3. The inhibition of proliferation induced by Aβ_(1-42) is mediated by p75~(NTR).
引文
1.全国老龄工作委员会.中国人口老龄化发展趋势预测研究报告.2006.
    2.Brookmeyer, R., Gray, S. & Kawas, C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998;88(9):1337-42.
    3.Copeland, J.R., Davidson, I.A., Dewey, M.E., Gilmore, C, Larkin, B.A., McWilliam, C,Saunders, P.A., Scott, A., Sharma, V. & Sullivan, C. Alzheimer's disease, other dementias, depression and pseudodementia: prevalence, incidence and three-year outcome in Liverpool. Br J Psychiatry 1992; 161:230-9.
    4.张新凯,李春波,张明园,何燕玲.阿尔茨海默病的心理社会危险因素研究.中华医学杂志1999;79(5):335-38.
    5.唐牟尼,刘协和,邹晓毅,罗祖明,韩海英,张烈珍,唐铭民,王艺峰,季刚,周豪,马振兴,袁强,陈建民,赖晓晖.成都地区老年期痴呆患病率调查.中华精神科杂志2001;34(4):226-30.
    6.张明园,Katzman,R.,陈佩俊,Liu,W.,Yu,E.,何燕玲,朱紫青,陈建新,李春波,陆峥,俞剑平.痴呆和阿尔茨海默病的发病率.中华精神科杂志1998;31(4):195-98.
    7.闫芳,李淑然,刘津,张维熙,陈昌惠,刘棉,许亮,李硕,邵钧,吴宏,王玉兰,梁扣华,赵长启,雷晓星.老年期痴呆和老年抑郁症的流行病学调查.中华医学杂志2002;82(15):1025-8.
    8.唐牟尼,刘协和,云扬,韩海英,唐铭民,任会,彭祖贵,覃林敏,罗祖明.社区老年期轻微认知功能损害和老年期痴呆的随访研究.中华精神科杂志2000;33(4):218-21.
    9.Thompson C,Spilsbury K .WITHDRAWN: Support for carers of people with Alzheimer's type dementia. Cochrane Database Syst Rev. 2007; 18 (3):CD000454.
    10. Hardy, J.A. & HIgGins, G.A. Alzheimer's disease: the amyloid cascade hypothesis.Science 1992;256(5054):184-5.
    11. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353-6.
    12. Koistinaho M, Ort M, Cimadevilla JM, Vondrous R, Cordell B, Koistinaho J, Bures J,HIgGins LS. Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques. Proc Natl Acad Sci U S A. 2001;98(25): 14675-80.
    
    13. Susen K. and Blochl A. Low concentrations of aggregated b-amyloid induce neurite formation via the neurotrophin receptor p75. J. Mol. Med. 2005, 83: 720-735.
    
    14. Coulson E. J., Reid K., Shipham K. M., Morley S., Kilpatrick T. J. and Scale Bartlett P. F. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog. Brain Res. 2004,146, 41-62.
    
    15. Jordan, J., Galindo, M. F. and Miller, R. J. Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. 7. Neurochem. 1997,68, 1612-1621.
    
    16. Guo, Q., Sebastian, L., Sopher, B. L., Miller, M.W., Ware,C. B., Martin, G. M. and Mattson, M. P. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation.J. Neurochem. 1999,72, 1019-1029.
    
    17. Mattson, M. P., Partin, J. and Begley, J. G. Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 1998,807, 167-176.
    
    18. Counts, S.E., Nadeem, M., Wuu, J., Ginsberg, S.D., Saragovi, H.U., Mufson, E.J.,. Reduction of cortical TrkA but not p75(NTR) protein in earlystage Alzheimer's disease. Ann. Neurol. 2004, 56, 520-531.
    
    19. Kawarabayashi, T., Younkin, L.H., Saido, T.C., Shoji, M., Ashe, K.H. & Younkin, S.G. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci 2001;21(2):372-81.
    
    20. Dahlgren, K.N., Manelli, A.M., Stine, W.B., Jr., Baker, L.K., Krafft, G.A. & LaDu, M.J. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 2002;277(35):32046-53.
    
    21.Nunan, J. & Small, D.H. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 2000;483(1):6-10.
    22. Hartlage2RubsamenM, Apelt J, Schliebs R. Fibrillary beta-amyloid deposits are closely associated with atrophic nitric oxide synthase (NOS) exp ressing neurons but do not up regulate the inducibleNOS in transgenic Tg2576 mouse brain with Alzheimer pathology. Neuroscience letter,2001, 302: 73276.
    23.Hendrie, H.C. Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry 1998;6(2 Suppl 1):S3-18.
    
    24. Cummings, J.L. Alzheimer's disease management. J Clin Psychiatry 1998;59 Suppl 13:4-5.
    
    25. Evans, D.A., Funkenstein, H.H., Albert, M.S., Scherr, P.A., Cook, N.R., Chown, M.J., Hebert, L.E., Hennekens, C.H. & Taylor, J.O. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 1989;262(18):2551-6.
    
    26. Rice, D.P., Fillit, H.M., Max, W., Knopman, D.S., Lloyd, J.R. & Duttagupta, S. Prevalence, costs, and treatment of Alzheimer's disease and related dementia: a managed care perspective. Am J Manag Care 2001;7(8):809-18.
    
    27. Hendrie, H.C. Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry 1998;6(2 Suppl 1):S3-18.
    
    28. Gould E, Reeves AJ,Graziano MSA,Gross CG..Neurogenesis in the neocortex of adultprimates. Science, 1999, 286:548-552.
    
    29. Kornack DR, Rakic P.Continuation of neurogenesis in the hippocampus of the adult macaque monkey.Proc Natl Acad Sci USA,1999,96(10):5768-73.
    
    30. Temple S . The developmeet of neural stem cells. Nature,2001,414-112-17.
    
    31. Miller G. New neurons strive to fit in. Science,2006;311(5763):938-40.
    
    32. Haughey Nj, Nath A, Chan Sl, et al. Disruption of neurogenesis by amyloid beta-peptide, andperturbed neural progenitor cell homeostasis , in models of alzheimer's disease. J Neurochem,2002;83(6):1509-24.
    
    33. Heo, C., Chang, K. A., Choi, H. S., Kim, H. S., Kim, S., Liew, H., Kim, J. A., Yu, E., Ma, J. and Suh, Y. H. Effects of the monomeric, oligomeric, and fibrillar Abeta42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J. Neurochem. 2007; 102:493-500.
    
    34. Uchida, Y., Nakano, S., Gomi, F. and Takahashi, H. Differential regulation of basic helix-loop-helix factors Mashl and Olig2 by beta-amyloid accelerates both differentiationand death of cultured neural stem/progenitor cells. J. Biol.Chem. 2007,282:19700-19709.
    
    35. Jankowsky, J.L., et al., Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular Engineering.2001;17(6): 157-65.
    
    36. Lee, K.F., et al., Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell.1992;69(5): 737-749.
    
    37. Costantini, C, et al., Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci.2005; 25(2): 141-56.
    
    38. Kubis AM, Janusz M. Postepy Hig Med Dosw (Online). Alzheimer's disease: new prospects in therapy and applied experimental models.2008;62:372-92.
    
    39. Bahn, S., Mimmack, M., Ryan, M., Caldwell, M. A., Jauniaux,E., Starkey, M., Svendsen, C. N. and Emson, P. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome:a gene expression study. Lancet .2002;359:310-315.
    
    40. Kirkitadze MD, Kowalska A. Acta Biochim Pol. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer's disease.2005;52(2):417-23.
    
    41. Eriksson PS, Perfileeva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. MedA998;4:1313-17.
    
    42. Mckay R. Stem cells and the cellular organization of the brian. J. Neurosci Res. 2000,59:298-300.
    
    43. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J. Neurosci.2002;22:629-34.
    
    44. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis. Found. Symp.2000;231:220-35.
    
    45.Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms,pitfalls, limitations, and validation. Brain Res Rev. 2007 ;53(1):198-214.
    
    46. Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G.,Yang, A., Gallagher, M. and Ashe, K. H. A specific amyloid-beta protein assembly in the brain impairs memory.Nature .2006;440:352-357.
    
    47. Kim, S. H., Tang, Y. P. and Sisodia, S. S. Abeta star: a light onto synaptic dysfunction? Nat Med .2006; 12:760-61; discussion 761.
    
    48. Donovan MH, Yazdani U, Norris RD,etc.Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol. 2006;495(1):70-83.
    
    49. Mattson MP.Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.Phisiol Rev.1997; 77(4): 1081-132.
    
    50. Koh JY,Yang LL,cotman CW. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damages.Brain Res.1990;533(2):315-20.
    
    51. Gong Y,Chang L,Viola KL,et al. Alzheimer's disease-affected brain:presence of oligomeric A beta ligands suggests a molecular basis for reversible memory loss.Proc Natl Acad Sci USA.2003;100:10417-422.
    
    52. Selkoe DJ,Schenk D. Alzheimer's disease:molecular understanding predicts amyloid -based therapeutics.Annu Rev Pharmacol Toxico1.2003;43:545-84.
    
    53. Cleary JP,Walsh DM,Hofmeister JJ,et al.Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function.Nat Neurosci.2005;8:79-84.
    
    54. Small DH, Gasperini R, Vincent AJ, Hung AC, Foa L. The role of Abeta-induced calcium dysregulation in the pathogenesis of Alzheimer's disease.J Alzheimers Dis. 2009;16(2):225-33.
    
    55. Parihar MS, Hemnani T. Alzheimer's disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004; 11(5):456-67.
    
    56. Storm R, Cholewa-Waclaw J, Reuter K, Brohl D, Sieber M, Treier M, Müller T, Birchmeier CThe bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development. 2009;136(2):295-305.
    
    57. Wang Y, Chen KP, Yao Q. Progress of studies on bHLH transcription factor families Yi Chuan. 2008;30(7):821-30.
    
    58. Essberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH. Directed differentiation of hippocampal stem/progenitor cells in the adult brain.Nat Neurosci. 2008; 11(8):888-93.
    
    59. Poser SW, et al.Notch signaling regulates stem cell numbers in vitro and in vivo. Nature .2006;442:823-6.
    
    60. Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006,24:2437-47.
    
    61. GrandScale Barbe L, Bouissac J, Rand M, Hrabé de Angelis M, rtavanis-Tsakonas S, Mohier E.Delta-Notch signaling controls the generation of neurons/glia from neural stemcells in a stepwise process. Development 2003;130:1391-402.
    62. Ehninger, D., Kempermann, G.,. Neurogenesis in the adult hippocampus. CellTissue Res.2008;331:243-250.
    
    63. Elizabeth J. Coulson .Does the p75 neurotrophin receptor mediate Ab-induced toxicity in Alzheimer's disease? Journal of Neurochemistry.2006,98:654-660
    
    64. Ozen I, Galichet C, Watts C, Parras C, Guillemot F, Raineteau O.Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2. Eur J Neurosci. 2007;25(9):2591-603.
    
    65. Doetsch, F., Alvarez-Buylla, A.,. Network of tangential pathways for neuronal migration in adult mammalian brain.Proc. Natl. Acad. Sci. U. S. A. 1996;93:14895-14900.
    
    66. Ino, H., Chiba, T.,. Expression of proliferating cell nuclear antigen (PCNA) in the adult and developing mouse nervous system. Brain Res. Mol. Brain Res. 2000;78:163-74.
    
    67. Zacchetti, A., van Garderen, E., Teske, E., Nederbragt, H.,Dierendonck, J.H., Rutteman, G.R.,. Validation of the use of proliferation markers in canine neoplastic and non-neoplastic tissues: comparison of Ki-67 and proliferating cell nuclear antigen (PCNA) expression versus in vivo bromodeoxyuridine labelling by immunohist ochemistry. APMIS .2003; 111:430-438.
    
    68. Miyagawa M, Katsuta O, Tsuchitani M, Yoshikawa K.Measurement of replicative DNA synthesis (RDS) by a 5-bromo-2'-deoxyuridine (BrdU) labeling technique for detection of hepatocyte proliferation. J Vet Med Sci. 1997;59(1):45-9.
    
    69. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S.,Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen,R.,. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science.2003; 301:805-9.
    
    70. Sekerkova, G., Ilijic, E., Mugnaini, E.,. Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. J. Comp. Neurol. 2004,470:221-39.
    
    71. Cameron HA, Mckay RD et al. Adult neurogenesis p roduces a large pool of new granule cells in the dentate gyrus. J Comp Neurol.2001; 435: 406 -17.
    
    72. Kjelvik G, Sando SB, Aasly J, Engedal KA, White LR. Use of the Brief Smell Identification Test for olfactory deficit in a Norwegian population with Alzheimer's disease.Int J Geriatr Psychiatry. 2007 ;22(10): 1020-4.
    
    73. Gage FH. Mammalian neural stem cells. Science. 2000; 287:1433-38.
    74. Temple S . The developmeet of neural stem cells. Nature.2001;414:112-17.
    
    75. Miller G. New neurons strive to fit in. Science,2006;311(5763):938-40.
    
    76. Eriksson PS, Perfileeva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med.1998;4-1313-17.
    
    77. Jones SP, Rahimi O, O'Boyle MP, et al. Maturation of granule cell dendrites after mossy fiber arrival in hippocampal field CA3. Hippocampus.2003;13:413-27.
    
    78. Mckay R. Stem cells and the cellular organization of the brian. J. Neurosci.Res,2000,59:298-300.
    
    79. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J. Neurosci.2002;22:629-34.
    
    80. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis. Found. Symp.2000,231:220-35.
    
    81. Kempermann G, Gast D,Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in hippocampus of mice .Develoment. 2003; 130(2):391-9.
    
    82. Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., Palmer, T.D.,. VEGF is necessary for exercise-induced adult hippocampal neurogenesis.Eur. J. Neurosci. 2003;18:2803-12.
    
    83. Allen J., Khwaja F., Byers S. and Djakiew D. The p75NTR mediates a bifurcated signal transduction cascade through the NFjB and JNK pathways to inhibit cell survival. Exp. Cell Res. 2005;304:69-80.
    
    84. Aurikko J. P., Ruotolo B. T., Grossmann J. G., Moncrieffe M. C.,Stephens E., Leppanen V. M., Robinson C. V., Saarma M.,Bradshaw R. A. and Blundell T. L. Characterization of symmetric complexes of nerve growth factor and the ectodomainof the pan-neurotrophin receptor, p75NTR. J. Biol. Chem. 2005;280:33453-60.
    
    85. Carter B. D., Kaltschmidt C., Kaltschmidt B., Offenhauser N., Bohm-Matthaei R., Baeuerle P. A. and Scale Barde Y. A. Selective activation of NF-kB by nerve growth factor through the neurotrophin receptor p75. Science .1996;272:542-45.
    
    86. Epa W. R., Markovska K. and Scale Barrett G. L. The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J. Neurochem. 2004,89: 344-353.
    87. Zampieri, N., Xu, C., Neubert, T.A., Chao, M.V., Cleavage of p75 neurotrophin receptor by a-secretase and g-secretase requires specific receptor domains. JBC .2005; 280:14563-14571.
    
    88. Wang, Y.J., et al. Characterization of an Alzheimer 's disease mouse model bearing mutant genes of amyloid precursor protein and human presenilin. Proceeding of the Australian Neuroscience Society. 2006; 17:150.
    
    89. Barrett, G.L., Greferath, U., Barker, P.A., Trieu, J., Bennie, A., Coexpression of the P75 neurotrophin receptor and neurotrophin receptorinteracting melanoma antigen homolog in the mature rat brain. Neuroscience.2005; 133, 381-392.
    
    90. Elmariah, S.B., Crumling, M.A., Parsons, T.D., Balice-Gordon, R.J.,. Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J. Neurosci. 2004; 24:2380-2393.
    
    91. Perini, G., DeJla-Bianca, V., Politi, V., Delia Valle, G., Dal-Pra, I., Rossi, F., Armato, U., Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J. Exp. Med. 2002; 195:907-918.
    
    92. Spatial learning and morphine-rewarded place preference negatively correlates in mice. Li Z, Wu CF, Pei G, Xu N J.Pharmacol Biochem Behav. 2001;68(3):507-13.
    
    93. Mehrdad J, Sadeghi Y, Hosseini A, Naghdi N. The astrocytes number in different subfield of rat's hippocampus in reference memory learning method.Pak J Biol Sci. 2007;10(21):3964-6.
    
    94. Yau JL, McNair KM, Noble J, Brownstein D, Hibberd C, Morton N, Mullins JJ, Morris RG, Cobb S, Seckl JR.Enhanced hippocampal long-term potentiation and spatial learning in aged 11beta-hydroxysteroid dehydrogenase type 1 knock-out mice. J Neurosci. 2007;27(39): 10487-96.
    
    95. Forstl H,Kurz A. Clinical features oof Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci.1999;249(6):288-90.
    
    96. Chambers, R.A., Potenza, M.N., Hoffman, R.E., Miranker, W.,. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptiveneural networks. Neuropsychopharmacology. 2004;29:747-758.
    
    97. Sapolsky RM. Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry. 2004;56(3): 137-139.
    98. Wang SH, Zhang ZJ, Guo YJ, Teng GJ, Chen BA. Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 2008;189:9-16.
    
    99. Fowler, C.D., Liu, Y., Ouimet, C., Wang, Z.,. The effects of social environment on adult neurogenesis in the female prairie vole. J. Neurobiol. 2002, 51:115-28.
    
    100. Bruel-Jungerman, E., Rampon, C., Laroche, S.,. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci. 2007,18:93-114.
    
    101.Trejo, J.L., Llorens-Martin, M.V., Torres-Aleman, I.,. The effects of exercise onspatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol. Cell. Neurosci. 2008,37:402-411.
    
    102. Scaccianoce S, Del Bianco P, Caricasole A, et al. Relationship between learning, stress and hippocampal brain - derived neurotrophic factor. J.Neuroscience.2003, 121(4): 825-828.
    1.Thompson C , Spilsbury K .WITHDRAWN: Support for carers of people with Alzheimer's type dementia. Cochrane Database Syst Rev. 2007; 18 (3):CD000454.
    2.Rangachari V , Moore BD ,Reed DK,etc.Amyloid-beta(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate.Biochemistry.2007;46(43): 12451-62.
    3. Kjelvik G, Sando SB, Aasly J, Engedal KA, White LR. Use of the Brief Smell Identification Test for olfactory deficit in a Norwegian population with Alzheimer's disease.Int J Geriatr Psychiatry. 2007;22( 10): 1020-4.
    
    4. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-38.
    
    5. Temple S . The developmeet of neural stem cells. Nature,2001,414:l 12-17.
    
    6. Miller G. New neurons strive to fit in. Science.2006;311(5763):938-40.
    
    7. Eriksson PS, Perfileeva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998;4:1313-17.
    
    8. Jones SP, Rahimi O, O'Boyle MP, et al. Maturation of granule cell dendrites after mossy fiber arrival in hippocampal field CA3. Hippocampus.2003;13:413-27.
    
    9. Mckay R. Stem cells and the cellular organization of the brian.J. Neurosci. Neurosci.Res.2000;59:298-300.
    
    10. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J. Neurosci.2002;22:629-34.
    
    11. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis. Found. Symp.2000;231:220-35.
    
    12. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev. 2007 ;53(1): 198-214.
    
    13. Kempermann G, Gast D,Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in hippocampus of mice.Develoment.2003;130(2):391-9.
    
    14. Van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature.2002;415:1030-34.
    
    15. Nacher J,Crespo C,McEwen BS.Doublecortin expression in the adult rat telencephalon. Eur J Neurosci.2001;14:629-644.
    
    16. Thomas LB, Gates MA,Steindler DA.Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix- rich pathway. Glia. 1996; 17:1-14.
    
    17. van Praag, H., Shubert, T., Zhao, C. and Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci.2005;25:8680-5.
    
    18. Hattiangady, B. and Shetty, A. K. Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol. Aging.2008;29:129-147.
    
    19. Hagg, T. Endogenous regulators of adult CNS neurogenesis. Curr. Pharm. 2007;13: 1829-40.
    
    20. Gould, E. and Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiatry. 1999;46: 1472-79.
    
    21. Nacher, J., Alonso-Llosa,G.,Rosell,D. R. and McEwen,B. S. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. NeurobiolAging. 2003;24:273-84.
    
    22. Rao, M. S., Hattiangady, B., Abdel-Rahman, A., Stanley, D. P. and Shetty, A. K. Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur. J. Neurosci. 2005,21:464-476.
    
    23. Rao, M. S., Hattiangady, B. and Shetty, A. K. The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cel.2006;5: 545-58.
    
    24. Sahay, A. and Hen, R. Adult hippocampal neurogenesis in depression. Nat Neurosci.2007;10:1110-1115.
    
    25. Ravin R, Hoeppner DJ, Munno DM,etc. Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell. 2008;3(6):670-80.
    
    26. Belzunegui S , Izal-Azcarate A , San Sebastian W ,etc.Striatal carotid body graft promotes differentiation of neural progenitor cells into neurons in the olfactory bulb of adult hemiparkisonian rats. Brain res.2008;1217:213-20.
    
    27. Naylor M, Bowen KK, Sailor KA, etc. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus.Neurochem Int. 2005;47(8):565-72.
    
    28. Machold RP, Kittell DJ, Fishell GJ. Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. Neural Dev. 2007 ; 2:5.
    
    29. Eisch AJ, Cameron HA, Encinas JM, Meltzer LA,etc. Adult neurogenesis, mental health, and mental illness: hope or hype?J Neurosci. 2008;28(46):11785-91.
    
    30. Silani V, Cova L. Stem cell transplantation in multiple sclerosis: safety and ethics. J Neurol Sci. 2008 ;265(1-2): 116-21.
    
    31. Richardson RM, Broaddus WC, Holloway KL,etc. Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline.Brain Res. 2005;1032(1-2): 11-22.
    
    32. Richardson RM, Broaddus WC, Holloway KL,etc.Heterotypic neuronal differentiation of adult subependymal zone neuronal progenitor cells transplanted to the adult hippocampus. Mol Cell Neurosci. 2005 ;28(4):674-82
    
    33. Shihabuddin LS, Horner PJ, Ray J, Gage FH .Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus.J Neurosci. 2000;20(23):8727-35.
    
    34. Storm R, Cholewa-Waclaw J, Reuter K, Brohl D, Sieber M, Treier M, Müller T, Birchmeier CThe bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development. 2009;136(2):295-305.
    
    35. Wang Y, Chen KP, Yao Q. Progress of studies on bHLH transcription factor families Yi Chuan. 2008;30(7):821-30.
    
    36. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev 2005;85:523 - 69.
    
    37. Gao, X., Arlotta, P., Macklis, J.D., Chen, J., Conditional knock-out of betacatenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J. Neurosci. 2007;27:14317 - 14325.
    
    38. Essberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH. Directed differentiation of hippocampal stem/progenitor cells in the adult brain.Nat Neurosci. 2008; 11(8):888-93.
    
    39. Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, et al. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 2004;55:381 - 9.
    
    40. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al.Notch signaling regulates stem cell numbers in vitro and in vivo. Nature 2006;442:823 - 6.
    
    41. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science.2003,301:805 - 9.
    42. Willner P. Chronic mild stress (CMS) revisited: consistency and behaviouralneur-obiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90-110.
    
    43. Poser SW, et al.Notch signaling regulates stem cell numbers in vitro and in vivo. Nature.2006;442:823-6.
    
    44. Chiba S. Notch signaling in stem cell systems. Stem Cells 2006;24:2437-47.
    
    45. GrandScale Barbe L, Bouissac J, Rand M, Hrabé de Angelis M, rtavanis-Tsakonas S, Mohier E.Delta-Notch signaling controls the generation of neurons/glia from neural stemcells in a stepwise process. Development .2003; 130:1391-402.
    
    46. Ehninger, D., Kempermann, G.,. Neurogenesis in the adult hippocampus. CellTissue Res. 2008;331,243-250.
    
    47. Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology.Hippocampus. 2006; 16(3):271-86.
    
    48. Bonaguidi MA, Peng CY, McGuire T, etc.Noggin expands neural stem cells in the adult hippocampus.J Neurosci.2008;28(37):9194-204.
    
    49. Sahara N, Maeda S, Yoshiike Y,etc. Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res. 2007;85(14):3098-108.
    
    50. Drapeau E, Nora Abrous D.Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell.2008;7(4):569-89.
    
    51. Walf AA, Koonce CJ, Frye CA. Estradiol or diarylpropionitrile administration to wild type, but not estrogen receptor beta knockout, mice enhances performance in the object recognition and object placement tasks.Neurobiol Learn Mem. 2008;89(4):513-21.
    
    52. Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C. and Greenberg, D. A. Increased hippocampal neurogenesis in Alzheimer_s disease. Proc. Natl. Acad. Sci. USA 2004;101:343-347.
    
    53. Forette F, Hauw JJ. Alzheimer's disease: from brain lesions to new drugsBull Acad Natl Med. 2008;192(2):363-78; discussion 378-80.
    
    54. Phillips W, Michell AW, Scale Barker RA. Neurogenesis in diseases of the central nervous system. Stem Cells Dev. 2006;15(3):359-79.
    
    55. Boekhoorn, K., Joels,M. and Lucassen, P. J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol. 2006; 24:1-14.
    
    56. Haughey Nj, Nath A, Chan SI, et al. Disruption of neurogenesis by amyloid beta-peptide, andperturbed neural progenitor cell homeostasis , in models of alzheimer's disease. J Neurochem.2002:83(6): 1509-24.
    
    57. Donovan MH, Yazdani U, Norris RD,etc.Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol. 2006;495(1):70-83.
    
    58. Mattson MP.Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.Phisiol Rev, 1997;77(4): 1081-132.
    
    59. Koh JY,Yang LL,cotman CW. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damages.Brain Res, 1990 19;533(2):315-20.
    
    60. Pic CJ,Burdick D,walencewicz AJ,et al.Neurodegeneration induced by beta-amyloid peptides in vitro:the role of pepotide assembly state. J Neurosci; 13(4): 1676-87.
    
    61. Luo Y,Sunderland T,Roth GS,Cotman CW.Physiological levels of beta-amyloid peptide promote PC12 cell proliferation.Neurosci Lett, 1996;217(2-3): 125-8.
    
    62. Gong Y,Chang L,Viola KL,et al. Alzheimer's disease-affected brain:presence of oligomeric A beta ligands suggests a molecular basis for reversible memory loss.Proc Natl Acad Sci USA,2003,100:10417-422.
    
    63. Selkoe DJ,Schenk D. Alzheimer's disease:molecular understanding predicts amyloid -based therapeutics.Annu Rev Pharmacol Toxicol.2003;43:545-584.
    
    64. Cleary JP,Walsh DM,Hofmeister JJ,et al.Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function.Nat Neurosci.2005;8:79-84.
    
    65. Areechun Sotthibundhu,Qiao-Xin Li, Wipawan Thangnipon, Elizabeth J. Coulson.Ap-1-42 stimulates adult SVZ neurogenesis throughthe p75 neurotrophin receptor. Neurobiol Aging ,2008,02.004. Epub 2008 April.
    
    66. Cooper-Kuhn CM, Winkler J,Kuhn HG. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res.2004;77:155-165.
    
    67. Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F.,Bredesen, D. E. and Greenberg, D. A. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGFAPPSw,Ind) mice. Proc Natl Acad Sci USA .2004; 101:13363 - 13367.
    
    68. Wen, P. H., Shao, X., Shao, Z., Hof, P. R., Wisniewski, T.,Kelley,K., Friedrich,V. L., Jr.,Ho, L., Pasinetti,G. M., Shioi,J., Robakis, N. K. and Elder, G. A. Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol.Dis. 2002; 10: 8 - 19.
    
    69. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer's disease . Proc Natl Acad Sci U SA,2004;101(1):343-7.
    
    70. Waldau . B , Shetty .A. K. Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci. 2008;65(15):2372-84.
    
    71. Cameron, H. A. and McKay, R. D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus.J. Comp. Neurol. 2001;435:406 - 417.
    
    72. Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., Tamura, A., Kirino, T. and Nakafuku, M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110:429-441.
    
    73. Dong, H., Csernansky, C. A., Goico, B. and Csernansky, J. G. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J. Neurosci. 2003 ;23: 1742-1749.
    
    74. Liu, S.,Wang, J., Zhu,D., Fu, Y., Lukowiak, K. and Lu, Y. M. Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 2003,23:732-736.
    
    75. Zhao, C, Deng, W. and Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132:645-660.
    
    76. Tuszynski, M. H., U, H. S., Amaral, D. G. and Gage, F. H. Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 1990; 10:3604-3614.
    
    77. Tuszynski, M. H., Thai, L., Pay, M., Salmon, D. P., U, H. S., Bakay,R., Patel, P., Blesch, A., Vahlsing,H. L., Ho,G., G., Potkin, S. G., Fallon, J., Hansen, L., Mufson, E. J., Tong, Kordower, J. H., Gall, C. and Conner, J. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 2005; 11:551-555.
    
    78. Kempermann, G., Gast, D. and Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 2002,52:135-143.
    
    79. Nithianantharajah, J. and Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 2006;7:697-709.
    80. Levi,O. and Michaelson,D. M. Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J. Neurochem. 2007; 100:202-210.
    
    81. Dhanushkodi, A. and Shetty, A. K. Is exposure to enriched environment beneficial for functional post-lesional recovery in temporal lobe epilepsy?Neurosci. Biobehav.Rev. 2008;32: 657-674.
    1.1.C.P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni and M. Ganguli et al., Global prevalence of dementia: a Delphi consensus study, Lancet 366 (2005), pp. 2112-2117
    
    2. 2.C.L. Masters, G. Simms, N.A. Weinman, G. Multhaoup, B.L. Selkoe, D.J., 1994. Cell biology of the amyloid P-protein precursor and theMcDonald, K. Beyreuther, Amyloid plaque core protein inAlzheimer disease and Down's syndrome, Proc. Natl. Acad. Sci. USA 82 (1985) 4245-4249.
    
    3. 3.D.J. Seikoe, The molecular pathology of Alzheimer's disease, Neuron 6 (1991) 487-498.
    
    4. Selkoe, D.J. Cell biology of the amyloid P-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell. Biol. 10(1994), 373-403.
    
    5. Li, Q.X., Maynard, C., Cappai, R., McLean, C.A., Cherny, R.A., Lynch, T., Culvenor, J.G., Trevaskis, J., Tanner, J.E., Bailey, K.A., Czech, C.,Bush, A.I., Beyreuther, K., Masters, C.L., Intracellular accumulation of detergent-soluble amyloidogenic Aβ fragment of Alzheimer's disease precursor protein in the hippocampus of aged transgenic mice.J. Neurochem. 72(1999) 479-2487.
    
    6. Kuhn, H.G., Cooper-Kuhn, C.M., Boekhoorn, K., Lucassen, P.J.,.Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur. Arch. Psychiatry Clin. Neurosci. 257(2007),281-289.
    
    7. 7.T. Maurice, B.P. Lockhart, A. Privat, Amnesia induced in mice by centrally administered (3-amyloid peptides involves cholinergic dysfunction, Brain Res. 706 (1996)181-193.
    
    8. 8.A. Nitta, A. Itoh, T. Hasegawa, T. Nabeshima, β-amyloid protein induced Alzheimer's disease animal model, Neurosci. Lett. 170 (1994) 63-66.
    
    9. Sotthibundhu, A., et al., Aβ1-42 stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor,Neurobiol Aging 2008.02.004
    
    10. George Paxinos, Keith B. J. Franklin.The Mouse Brain in Stereotaxic Coordination, second edition.Australia 2001.
    
    11. J.M. Parent, T.W. Yu, R.T. Leibowitz, D.H. Geschwind, R.S.Sloviter, D.H. Lowenstein, Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorgani- zation in the adult rat hippocampus, J. Neurosci. 17 (1997) 3727-3738.
    
    12. W.P. Gray, L.E. Sundstrom, Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat, BrainRes. 790 (1998) 52-59.
    
    13.Abrous, D. N., Koehl, M. and Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85 (2005), 523-569.
    
    14. Gould, E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 8(2007), 481-488.
    
    15. Thomas Arendt. Alzheimer's disease as a disorder of dynamic brain self-organization. Progress in Brain Research, 147(2005), 355-378.
    
    16. Dong, H., Goico, B., Martin, M., Csernansky, C.A., Bertchume, A., Csernansky,J.G., Modulation of hippocampal cell proliferation, memory,and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127(2004), 601-609.
    
    17. Donovan, M.H.,Yazdani, U., Norris, R.D., Games, D., German, D.C., Eisch,A.J.,. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J. Comp. Neurol. 495(2006), 70-83.
    
    18. Zhang, C., McNeil, E., Dressier, L., Siman, R., 2007. Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer's disease. Exp. Neurol. 204, 77-87.
    19. Gan, L., Qiao, S., Lan, X., Chi, L., Luo, C., Lien, L., Yan Liu, Q., Liu, R., Neurogenic responses to amyloid-_ plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APP(Sw Ind)) mice. Neurobiol. Dis. 29(2008), 71-80.
    
    20. Jin, K., Galvan, V., Xie, L., Mao, X.O., Gorostiza, O.F., Bredesen, D.E.,Greenberg, D.A.,. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSwInd) mice. Proc. Natl. Acad. Sci. U.S.A. 101(2004a),13363-13367.
    
    21. Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., Greenberg, D.A.,. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 101 (2004b), 343-347.
    
    22. Kuo, Y. M., Emmerling, M. R., Vigo-Pelfrey, C., Kasunic,T. C., Kirkpatrick, J. B., Murdoch, G. H., Ball, M. J. and Roher, A. E. Water-soluble Abeta (N-40, N-42)oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271(1996), 4077-4081.
    
    23. Haughey NJ, Mattson MP. Neuromolecular Med. Alzheimer's amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes.2003; 3(3): 173-80.
    
    24. Donovan MH,Yazdani U,Norris RD, et al.Decreased adult himppocampal neurog enesis in PDAPP mouce model of Alzheimer's disease.J Comp Neurol,2006, 495(1 ):70-83.
    
    25. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L. "Doublecortin expression levels in adult brain reflect neurogenesis". Eur. J. Neurosci. 2005,21 (1): 1-14.
    
    26. Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. J Neurosci. 2007 Jun 20;27(25):6771-80.
    
    27. Klein, W. L., Krafft, G. A. and Finch, C. E. Targeting small Abeta oligomers: the solution to an Alzheimer_s disease conundrum? Trends Neurosci. 24 (2001), 219-224.
    
    28. D.A. Lim, A.D. Tramontin, J.M. Trevejo, D.G. Herrera, J.M.Garcia-Verdugo, A. Alvarez-Buylla, Noggin antagonizes BMP signaling to create a niche for adult neurogenesis, Neuron 28 (2000) 713-726.
    
    29. P. Peretto, D. Cummings, C. Modena, M. Behrens, G. Venkatraman, A. Fasolo, F.L. Margolis, BMP mRNA and protein expression in the developing mouse olfactory system, J. Comp. Neurol. 451 (2002) 267-278.
    30. P. Peretto, C. Dati, S. De Marchis, H.H. Kim, M. Ukhanova, A.Fasolo, F.L. Margolis, Expression of the secreted factors noggin and bone morphogenetic proteins in the subependymal layer and olfactory bulb of the adult mouse brain, Neuroscience 128 (2004)685-696.
    
    31. A. Lewen, S. Soderstrom, L. Hillered, T. Ebendal, Expression of serine/threonine kinase receptors in traumatic brain injury, Neuroreport 8 (1997) 475-479.
    
    32. P.C. Mabie, M.F. Mehler, J.A. Kessler, Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype, J. Neurosci. 19 (1999) 7077-7088.
    
    33.R.E. Gross, M.F. Mehler, P.C. Mabie, Z.Y. Zang, L. Santschi, J.A.Kessler, Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells,Neuron 17 (1996) 595-606.
    
    34. M.F. Mehler, P.C. Mabie, D. Zhang, J.A. Kessler, Bone morphogenetic proteins in the nervous system, Trends Neurosci. 20 (1997) 309-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700