用户名: 密码: 验证码:
PET/CT显像在肺癌及前列腺癌诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:肺癌是危害人类健康的主要肿瘤之一,肺癌预后与其是否能早期诊断、早期治疗密切相关。因此,肺部肿块和结节的良恶性鉴别诊断一直为临床医生所关注。支气管镜和穿刺活检是有创性检查方法,存在一定的风险,而且该检查结果和医生的操作水平、取材部位有很大关系,甚至需经反复多次检查才能得出可靠结论,因此很多患者难以接受。医学影像学在肺癌的诊断中起着十分重要的作用,影像学检查对肺癌的早期诊断、治疗方案的选择、疗效的观察及预后的评估至关重要,易于被患者和临床医生所接受。但常规影像学检查通常很难确诊。PET/CT将CT与PET融为一体,由CT提供病灶的精确解剖定位,而PET提供病灶洋尽的功能与代谢等分子信息,具有灵敏、准确、特异及定位精确等特点,一次显像可获得全身各方位的断层图像,可以一目了然的了解全身整体状况,达到早期发现病灶和诊断疾病的目的。PET/CT能在生理状态下动态地定量观察体内分子水平的生化变化,受到了医学界的公认和广泛关注,是目前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具有无创伤性的特点,是临床上用以诊断和指导治疗肿瘤最佳手段之一。PET/CT融合图像能很好地描述疾病对生物化学过程的作用,鉴别生理和病理性摄取,能在疾病得到解剖证据前检测出早期发病征兆,甚至能探测到业临床型的肿瘤。18F-FDG(18F-脱氧葡萄糖)PET/CT检查技术有其突出的特点,临床应用较为广泛。但18F-FDG PET/CT检查是从葡葡糖代谢角度来评估肿瘤,除肿瘤组织外,正常组织及一些良性病变也可以摄取葡萄糖,这给临床诊断带来一定的困难。18F-FLT(18F-胸腺嘧啶)因其为胸腺嘧啶核苷的衍生物、能够反映肿瘤增殖特性等优势而倍受关注,18F-FLT用于肿瘤细胞增殖及良恶性肿瘤鉴别具有18F-FDG所不可比拟的作用。前期研究表明,18F-FLT通过被动扩散和Na+依赖的载体进入细胞,随后在胸腺嘧啶核营激酶1(TK1)的作用下发生磷酰化。由于3位上的羟基被F-18取代,不能真正参加细胞DNA的合成,故如FDG一样滞留于细胞内而达到显像目的。目前研究较多的是肺癌病灶大小、肺癌细胞分化程度和18F-FLT SUV值之间的关系。因此,本课题设计了本项平行、盲法的前瞻性临床研究。主要目的是比较18F-FDG、18F-FLT两种示踪剂对不同病理类型肺部肿瘤的诊断效能,以提高PET/CT在肺部良恶性肿瘤鉴别诊断中价值,从而为临床治疗方案的选择提供可靠依据。
     材料与方法:搜集2010.03~2011.09期间来本中心就诊且未能确诊和没有经过针对性治疗的肺部肿瘤患者55例为研究对象,其中男33例,女22例,年龄17~82岁。28例为肺内孤立结节或肿块,其余为2-3个结节或肿块,结块长径分布范围0.6~11.0cm。所有患者经填写知情同意书后行肺音(?)18F-FDG和18F-FLT PET/CT显像,为避免两种正电子药物相互干扰,两次检查间隔时间为4~7天,以手术切除或穿刺活检的病理结果为依据判断肿块性质。显像设备采用美国通用电器医疗仪器公司的GE Discovery ST16排PET/CT扫描仪,120~140kV,100~250mAs,0.8sec旋转速度,1.25mm层厚,3D方式进行采集,FORE迭代方式进行图像重建,断层分辨率为4mmFWHM。正电子药物的合成由GE公司MINItrace system医用回旋加速器完成,标记采用GE Tracerlab FXFN全自动化学合成器。检查前禁食6小时以上,血糖控制在7.8mmol/1以内,静脉注射剂量为5MBq/kg,避光安静休息60mins后行PET/CT显像。所有患者的影像资料经统一处理后,数据分析采用集中、盲法的方式,由5名具有丰富经验的从事PET/CT诊断的医生在同一台计算机投影上同时阅片,并独立判断和分析所有病例的影像结果,结论以3/5以上阅片医生的共同意见为准。根据本文需要,18F-FDG和8F-FLT标准摄取值按患者的性别、年龄、结节大小及病理类型等分组,各组数据表述形式为x±s。分析18F-FDG和8F-FLT标准摄取值(SUV)与肺肿瘤患者的年龄、肿块大小及病理类型等相互关系和统计学意义,对比分析18F-FDG和18F-FLT PET/CT显像结果差异是否有统计学意义,不同病理类型之间18F-FDG和18F-FLT PET/CT显像SUVmax差异是否存在统计学意义。统计学处理使用SPSS13.0版软件包,对各组数据采用两组完全随机化设计资料的t检验,p>0.05认为无统计学差异;p<0.05认为有统计学差异,p<0.01认为有显著性差异。
     结果:55例肺结节患者均有手术切除或穿刺活检的病理结果,其中肺癌患者16例,肺结核患者17例,22例为炎性病灶。55例患者按照性别、年龄、肿块大小及病理类型各分为两组共8组。18F-FDG和18F-FLT PET/CT显像的SUV值与肺肿瘤患者的性别、年龄、肿块大小等均无统计学差异(p>0.05),18F-FDG PET/CT显像的SUV值与患者的病理类型亦无统计学差异(p>0.05),而18F-FLT PET/CT显像的SUV值与患者的病理类型有统计学差异(p<0.05)。18F-FDG标准摄取值高的肺结节患者,18F-FLT标准摄取值愈高,恶性可能性愈大,反之,则为良性可能。
     结论:肺肿瘤患者的肿块病理类型是影响18F-FLT PET/CT显像的SUV值的重要因素,18F-FLT PET/CT显像的SUV值在肺部良恶性肿瘤鉴别诊断中具有重要的价值。采用18F-FDG和18F-FLT双显像剂PET/CT联合观察,能够明显提高对肺肿瘤诊断的效能。在目前缺乏对肺肿瘤诊断的特异性正电子放射性示踪剂的情况下,对于常规18F-FDG/PET显像难以鉴别的肺部良恶性肿瘤患者,将18F-FDG与18F-FLT结合起来可以弥补18F-FDG仅反映细胞代谢、而18F-FLT仅反映细胞增殖两者之间的不足,使我们能够从不同的角度监测肿瘤细胞特性,从而达到提高对肺肿瘤鉴别诊断之目的。
     研究背景和目的:前列腺癌是老年男性最常见的恶性肿瘤,早期前列腺癌治疗效果肯定,多数患者可达到治愈之目的。因此,重视前列腺癌的规范化筛查和早期诊断具有十分重要的意义。PET/CT是近年来应用于临床的一种重要的影像学检查设备,能在肿瘤的早期诊断、良恶性肿瘤的鉴别以及恶性肿瘤的分期等临床应用方面具有其独特的作用和功能。PET/CT将CT与PET融为一体,由CT提供病灶的精确解剖定位,而PET提供病灶详尽的功能与代谢等分子信息,具有灵敏、准确、特异及定位精确等特点,一次显像可获得全身各方位的断层图像,可以一目了然的了解全身整体状况,达到早期发现病灶和诊断疾病的目的。PET/CT能在生理状态下动态地定量观察体内分子水平的生化变化,受到了医学界的公认和广泛关注,是目前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具有无创伤性的特点,是临床上用以诊断和指导治疗肿瘤最佳手段之一。PET/CT融合图像能很好地描述疾病对生物化学过程的作用,鉴别生理和病理性摄取,能在疾病得到解剖证据前检测出早期发病征兆,甚至能探测到亚临床型的肿瘤。但常规显像剂18F-脱氧葡萄糖(FDG)经泌尿系排泄,导致膀胱内高放射性,且前列腺肿瘤组织对18F-FDG的摄取较少,故其对前列腺癌的诊断受限。11C-胆碱(choline)显像剂具有在前列腺肿瘤内高度浓聚及不在膀胱内存留的特性,且前列腺癌组织内的胆碱水平即其标准摄取值(SUV)高于正常前列腺及良性前列腺增生组织,便于鉴别前列腺病灶的良恶性。本课题研究前列腺癌PET/CT显像18F-FDG、11C-choline代谢的标准摄取值(SUV)、计算病变前列腺组织及正常组织的SUV比值(P/M),分析其与前列腺癌的相互关系,为临床早期诊断、分期和合理选用前列腺癌治疗方案提供基础理论依据。
     材料与方法:选择2010年3月~2011年09月期间来本中心就诊且未能确诊和没有经过针对性治疗的PSA升高并可疑有前列腺病变的患者71例为研究对象(平均4例/月),年龄51-82岁,平均年龄71.6岁。所有前列腺病变确诊均经穿刺活检或手术切除标本的病理免疫组化证实。其中39例为前列腺癌,转移程度不一,余32例为前列腺良性增生性病变。所有患者均行全身18F-FDG和11C-choline PET/CT显像检查。显像设备采用美国通用电器医疗仪器公司的GE Discovery ST16排PET/CT扫描仪,120~140kV,100-250mAs,0.8sec旋转速度,1.25mm层厚,3D方式进行采集,FORE迭代方式进行图像重建,断层分辨率为4mmFWHM。正电子药物的合成由GE公司MINItrace system医用回旋加速器完成,标记采用GETracelab FXFN全自动化学合成器。18F-FDG PET/CT显像检查前禁食6小时以上血糖控制在7.8mmol/l以内,检查前0.5h饮水500ml以允盈膀胱,静脉注射18F-FDG的剂量为5MBq/kg,避光安静休息60min后行PET/CT显像。1C-choline PET/CT显像检查前患者无须禁食,不做血糖调节,检查前0.5h饮水500ml以充盈膀胱,安静休息10mins后,静脉注射11C-choline:的剂量为7.4MBq/kg,5mmins后行PET/CT显像检查。数据分析采用集中、盲法的方式由5名具有丰富经验的从事PET/CT诊断的医生在同一台计算机投影上同时阅片,并独立判断和分析所有病例的影像结果,结论以3/5以上阅片医生的共同意见为准。18F-FDG和HC-choline的标准摄取值按患者的年龄和病理类型分为两组,各组数据表述形式为x±s。分析18F-FDG和11C-choline的标准摄取值(SUV)、病变前列腺组织及正常组织的P/M比值与前列腺病变患者的年龄及病理类型的相互关系和意义;对比分析18F-FDG和1C-choline PET/CT显像技术在前列腺病变中的诊断价值,评价两种不同正电子药物在诊断前列腺病变中的可靠性和关联性,探讨联合应用两种正电子药物PET/CT显像技术在诊断前列腺病变中的效能。统计学处理使用SPSS13.0版软件包,定量资料以均数±标准差表示(x±s),对各组数据采用两组完全随机化设计资料的t检验,p>0.05认为无统计学差异;p<0.05认为有统计学差异,p<0.01认为有显著性差异。
     结果:71例可疑前列腺病变患者,52例为手术切除病理证实,19例经穿刺活检病理证实。病理结果前列腺癌患者39例,其中高分化腺癌7例,中分化腺癌14例,低分化腺癌18例;32例为前列腺增生,其中伴有慢性炎症的前列腺增生患者为11例。18F-FDG PET显像SUV值分布范围4~-32,平均为11.05;11C-choline PET显像SUV值分布范围3~12,平均为6.68。统计分析18F-FDG和11C-choline的标准摄取值与患者的年龄无统计学差异(p>0.05),18F-FDG的标准摄取值与患者的病理类型亦无统计学差异(p>0.05),而11C-choline的标准摄取值与患者的病理类型有统计学差异(p<0.05),11C-choline标准摄取值愈高,恶性可能性愈大,反之,则为前列腺增生可能。
     结论:前列腺病变患者的病理类型是影响11C-choline的标准摄取值的重要因素,11C-choline PET/CT显像鉴别诊断前列腺良恶性病变具有重要的价值和意义。11C-choline PET/CT显像是一种诊断前列腺癌的较好的无创性检查方法,尤其适用于PSA升高的可疑前列腺癌患者。PET/CT显像中CT的精确定位意义重大,放射性浓聚区位前列腺中央带且对称多提示前列腺增生,而放射性浓聚点位于外周带且呈孤立结节则高度警惕前列腺癌。1C-choline PET/CT全身显像可以发现局部转移淋巴结及远处转移灶,有助于准确临床分期。对于评价治疗疗效、监测肿瘤残留与复发,11C-choline PET/CT显像则具有重要意义,可以发现部分PSA没有显著升高的肿瘤复发患者,在PSA显著升高的患者中肿瘤残留与复发探测率高。
Background and Objection:Pulmonary cancer is one of the major malignant tumors which are harmful to human health. The prognosis of pulmonary cancer has a close relationship with earlier diagnosis and earlier treatment. So it is important to provide differential diagnose of pulmonary tumour and also attentioned by clinical doctors all the time. Bronchoscopy and biopsy are invasive examination methods, there is a certain risk, but the test results have a great relationship with the doctor's operating level and the material parts, or even need to repeatedly check in order to draw firm conclusions, so it is difficult to accept in many patients. Medical imaging plays a very important role in the diagnosis of lung cancer, imaging studies for early diagnosis of lung cancer, treatment options, the observation of the efficacy and prognosis assessment is essential, easy to accept by patients and clinicians. Normal medical imaging is very difficult to differential diagnosing pulmonary tumour. PET/CT, CT and PET integrated with CT to provide precise anatomical localization of lesions, while PET lesions detailed function and metabolism of molecular information, with sensitive, accurate, specific and precise positioning, once available imaging all sectional images of the body, at a glance understanding of the body as a whole situation, to achieve the purpose of early detection of lesions and diagnosis of diseases. PET/CT quantitative observation of the body at the molecular level in the physiological state of dynamic biochemical changes has been recognized and widespread concern of the medical profession, is currently the only functional anatomy, metabolism and receptor imaging technology, with the characteristics of non-invasive, is one of the best means of clinically used for diagnosis and treatment of cancer. PET/CT fusion images can be well described by the role of disease on the biochemical processes, differential diagnosis physiological and pathological uptake, in the disease before anatomical evidence to detect the early onset of signs, or even be able to detect subclinical tumor.18F-fluorodexyglucose [18F-FDG] PET/CT as a special imaging is very widely used for patients and evalute tumors with glucose metabolism, except tumor tissue, many normal tissue and optimum lesion can absorb glucose that is difficult for diagnosing pulmonary tumour. F-fluorothymidine [18F-FLT] as a thymidine ramification can reflect proliferation of tumor cells.18F-FLT can reflect proliferation of tumor cells and differential diagnosis for tumors, but18F-FDG can not substitute the function of that. The preliminary study showed that F-FLT enter into the cell by passive diffusion and Na+-dependent carrier, follow by thymidine kinase1(TK1) Phosphoryl. Hydroxyl on the3position to be replaced by F-18, can not really participate in DNA synthesis, so to achieve imaging purposes such as FDG is the same remain in the cells. Today most studies are following with interest for the relationship with pulmonary tumour size, differentiation of tumour cells and standardized uptake value (SUV) of18F-FLT. Our study aims to investigate the diagnostic performance of dual-tracer (18F-FDG and18F-FLT) PET/CT in pulmonary nodules, to differentiate the malignant tissue from benign pulmonary nodules.
     Methods and materials:55cases of lung lesions failed to be diagnosed were collected during2010.03to2011.09in our center, including33males and22females, aged from17to82-year-old,28cases for the lungs isolated mass, and the other from2to3tumors, tumor size from0.6to11.0cm. All patients fill in the informed consent of the book before exzaminations, and underwent lung18F-FDG and18F-FLT PET/CT imaging. In order to avoid the two positron drugs interference with each other, there was a intervals for4-7days during two inspection. Surgical resection or biopsy pathologic findings were considered as the basis to judge mass nature. GE medical equipment company of GE the Discovery ST16-row PET/CT scanner imaging equipment,120~140kV,100250mAs,0.8sec rotation speed,1.25mm thickness in3D acquisition of FORE iterative manner image reconstruction, fault resolution4mm FWHM. the synthesis of electronic drug completed by the GE MINI trace system. Medical cyclotron mark to GE Tracerlab FXFN automatic chemical synthesizer. Fasting for more than six hours before the examination, the blood glucose control in less than7.8mmol/L, intravenous dose5MBq/kg, patients are quiet and rest in dark in60mins underwent PET/CT imaging. The image data through a unified treatment of all patients, data analysis, centralized, blinded manner by five doctors with extensive experience in PET/CT diagnosis on the same computer projector film-reading, and independent judgment and analysis of all casesthe imaging findings, conclusions subject to the common opinion of the doctor to read the piece more than3/5.18F-FDG and18F-FLT SUV in the patient's gender, age, nodule size, and pathological type of grouping, each group of data expressed in the form of x±s. Analysis of18F-FDG and18F-FLT SUV and lung cancer patients age, tumor size and pathological type of relationship between statistical significance. Comparative analysis of18F-FDG and18F-FLT PET/CT imaging results difference is or not statistically significant, analysis the difference of SUVmax of18F-FDG and 18F-FLT PET/CT imaging between the different pathological types whether there is statistically significant. Statistical analysis using the SPSS version13.0software package, t-test on each set of data using two sets of completely randomized design information. p>0.05no significant difference; p<0.05was considered statistically significant, p<0.01considered significant difference.
     Results:Pulmonary nodules in55cases, the patients had surgical resection or biopsy of the pathological findings, including16cases of lung cancer,17cases of tuberculosis,22cases of inflammatory lesions.55patients were divided into eight groups according to gender, age, tumor size and pathological type. There were no significant differences between the SUV of18F-FDG and18F-FLT PET/CT imaging and sex, age, diameter of the nodule, type of the pathologic nature of nodule of all fifty-five patients (p>0.05). SUV of18F-FDG PET/CT imaging in patients with the pathological type of had no significant difference (p>0.05). Otherwise there were significant differences between the SUV of18F-FLT and the type of pathologic nature of nodules of all fifty-five patients (p<0.05).18F-FDG SUV was high in patients with pulmonary nodules,18F-FLT SUV was the higher, the vicious was the greater likelihood, the contrary, was a benign tumor possible.
     Conclusion:Tumor pathological type in patients with lung cancer is an important factor to affect SUV of18F-FLT PET/CT imaging, the SUV of18F-FLT PET/CT imaging has an important value in the differential diagnosis of benign and malignant tumors of the lung.18F-FDG and18F-FLT dual imaging agent of PET/CT joint observation, can significantly improve the performance of the diagnosis of lung tumors. The current lack of diagnosis of lung tumor specificity of positron radiotracers case for the conventional18F-FDG/PET imaging is difficult to identify patients with pulmonary benign and malignant lesions,18F-FDG and18F-FLT combined can compensate for the18F-FDG only reflect cell metabolism, and18F-FLT reflects only the lack of cell proliferation, so that we can from a different perspective for monitoring tumor cell characteristics, so as to improve the purpose of differential diagnosis of lung tumor.
     Background and Objection:Prostate cancer is the common malignant tumor, and the curative effect is very good for early prostate cancer, most patients can be cured. Early stage prostate cancer have no specificity of clinical situation, that lead to lost treatment opportunity for many patients in the first diagnosis. How to differentiate the prostate cancer from hyperplasia is always puzzled clinicians. Currently18F-FDG PET/CT as an useful imaging technique, can be used as diagnonsis in the early tumor and differential diagnosis of malignant tumor. PET/CT, PET integrated with CT, can provide precise anatomical localization of lesions, function and metabolism of molecular information, once available all sectional images of the body, at a glance understanding of the body as a whole situation, to achieve the purpose of early detection of lesions and diagnosis of diseases. Quantitative observation on PET/CT at the molecular level in the physiological state of dynamic biochemical changes has been recognized and widespread concern of the medical profession. PET/CT is currently the one of functional anatomy, metabolism and receptor imaging technology, with the characteristics of non-invasive, and also one of the best means of clinically used for diagnosis of cancer. PET-CT fusion images can be well described by the role of disease on the biochemical processes, differential diagnosis physiological and pathological uptake, in the disease before anatomical evidence to detect the early onset of signs, or even be able to detect. But18F-FDG drains from the urinary system, that lead to high radioactivity within bladder, intakes very few in prostate tumor, so diagnosis for prostate tumor on18F-FDG PET/CT is difficult.11C-choline have a characteristic of high concentration and no persistence in the bladder, and the level of choline in prostate cancer tissue is hingher than in normal prostate tissue. In our study, we put to use a technology of18F-FDG and11C-Choline PET/CT imaging for diagnosis prostate neoplasm, so that we can provide a valuable non-invasive imaging technology in the diagnosis, staging and detection of recurrent of prostate cancer.
     Methods and materials:71patients with suspicious prostate lesions and high PSA level were selected during March,2010to September,2011period for the study (average of4cases/per month), the age from51to82years, mean age of71.6years. All the prostate lesions were confirmed by biopsy or surgical resection specimens on pathology immunohistochemistry, among them,39cases of prostate cancer, metastasis to varying degrees, the remaining32cases as benign prostatic hyperplasia lesions. All patients underwent whole body18F-FDG and11C-choline. Equipment and technique:PET/CT imaging, GE medical equipment company of GE the Discovery ST16-row PET/CT scanner imaging equipment,120-140kV,100250mAs,0.8sec rotation speed,1.25mm thickness in3D acquisition of FORE iterative manner image reconstruction, resolution4mm FWHM, the synthesis of electronic drug completed by the GE MINItrace system. Medical cyclotron mark to GE Tracerlab FXFN automatic chemical synthesizer.18F-FDG PET/CT examination after fasting for more than six hours, blood glucose control in less than7.8mmol/L, drinking500ml to a full bladder before the examination0.5h, intravenous injection of18F-FDG dose of5MBq/kg, then the patients underwent PET/CT imaging after60mins quiet rest. The patients need not fast on11C-choline PET/CT scan, blood sugar level not regulate, drinking500ml to a full bladder before the examination0.5h, quiet rest lOmins, and underwent PET/CT scan5mins after intravenous injection of 11C-choline, dose7.4MBq/kg. A centralized data analysis, blinded manner by five doctor with rich experience in PET/CT diagnosis on the same computer projector and film-reading, and independent judgment and analysis of the image results in all cases, the conclusion of more than3/5film-reading the doctor views prevail. SUV of18F-FDG and11C-choline in the patient's age and pathological type divided into two groups, each group of data representation of the form x±s. Analysis SUV of18F-FDG and11C-choline, lesions of prostate tissue and normal tissue of the P/M and prostate lesions in patients with age and pathological type of mutual relations and meaning. Comparative analysis the diagnostic value of18F-FDG and "C-choline PET/CT imaging in prostate lesions, evaluate the reliability and relevance of two different positron drugs in the diagnosis of prostate lesions, investigate the performance of joint movement two positron drugs of PET/CT imaging in the diagnosis of prostate lesions. Statistical SPSS13.0software package, Quantitative data were expressed as mean and standard deviation (x±s), using two sets of completely randomized design information on each group of data t-test, p>0.05that no significant difference; p<0.05was considered statistically significant, p<0.01was considered significant difference.
     Results:In71cases of suspicious prostate lesions,52cases were confirmed surgiccaly and pathologically, the other19cases by aspiration biopsy. Of them, there was prostate cancer in39cases, including7cases of well differentiated adenocarcinoma,14cases of moderately differentiated adenocarcinoma,18cases of poorly differentiated adenocarcinoma,and benign prostatic hyperplasia in32cases, associated with chronic inflammation in11cases of them. SUV on18F-FDG PET imaging ranged from4to32, average11.05.11C-choline PET imaging SUV values ranged3to12, an average of6.68. There were no ststistics difference in the SUV of18F-FDG and11C-choline with age (p>0.05), pathological type of prostate neoplasms (p>0.05), and clearly ststistics difference in the SUV of11C-choline with pathological type prostate neoplasms (p<0.05). For the SUV of11C-choline, the higher the vicious the greater the likelihood, on the contrary, may be benign prostatic hyperplasia.
     Conclusion:The different pathological type of prostate lesions is an important factor in the standard uptake value of11C-choline. PET/CT imaging in the differential diagnosis of benign and malignant prostatic lesions has an important value and significance.11C-choline PET/CT imaging is a good noninvasive method for diagnosis of prostate cancer, especially for patients with suspected prostate cancer at an elevated PSA. PET/CT imaging, the precise positioning of the CT is of great significance, the radioactive concentration in the prostatic central zone and the symmetry is more suggestive of benign prostatic hyperplasia, radioactivity accumulation point located outside the peripheral zone and showed a solitary nodule is highly vigilant against prostate cancer.11C-choline PET/CT imaging for whole body can be found in the partial transferation of lymph node and distant metastases, and contribute to an accurate clinical staging.11C-choline PET/CT imaging is of great significance for the evaluation of treatment efficacy, monitoring residual tumor and recurrence, and can find that part of the PSA did not significantly elevated in patients with tumor recurrence, and the detection rate is high in patients with PSA significantly increased of residual tumor and recurrence.
引文
1. Garcia Vicente AM, Castrejon AS,Leon Martin AA,Garcia BG,Pilkington Woll JP,Munoz AP. Value of 4-Dimensional 18F-FDG PET/CT in the Classification of Pulmonary Lesions. J Nucl Med Technol.2011;39:91-9.
    2. Khan N, Islam MM, Mahmood S, Hossain GA, Chakraborty RK. 18F-Fluorodeoxyglucose Uptake in Tumor. Mymensingh Med J.2011; 20:332-42.
    3. Yuka Yamamoto. Yoshihiro Nishiyama, Shinya Ishikawa, et al. Correlation of F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging.2007; 1619-7089
    4.童金龙.朱虹,陈龙邦18F-FLTPET显像原理及肿瘤显像研究进展.中华核医学杂志.2009,29(1):65-67.
    5.潘中允主编.PET诊断学.北京:人民卫生出版社,2005.189-520.
    6. Yap CS, Czernin J, Fishbein MC, et al. Evaluation of thoracic tumor with
    18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest.2006; 129:393-401.
    7. Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, Kanaji N, Haba R, Kushida Y, Ohkawa M. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging.2007; 34: 1610-6.
    8. Sathekge M, Maes A, Kgomo M, Stoltz A, Van de Wiele C.Use of 18F-FDG PET to Predict Response to First-Line Tuberculostatics in HIV-Associated Tuberculosis. J Nucl Med.2011; 52: 880-5.
    9. Mier W, Haherkorn U, Eisenhut M.18F-FLT:portrait of a proliferation marker. Eur J Nucl Med.2002; 29:165-169.
    10. Weber WA. Monitoring tumor response to therapy with 18F-FLT PET.J Nucl Med.2010; 51:841-4.
    11. Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A, Ohnuki T, Nishikawa T, Kusakabe K. Accuracy of PET for Diagnosis of Solid Pulmonary Lesions with 18F-FDG Uptake Below the Standardized Uptake Value of 2.5. J Nucl Med.2006; 47:426-431.
    12. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP, Pradier O, Visvikis D. Reproducibility of 18F-FDG and
    3'-deoxy-3'-18F-fluorothymidine PET tumor volume measurements. J Nucl Med.2010; 51: 1368-76.
    13. Frings V, de Langen AJ, Smit EF, van Velden FH, Hoekstra OS, van Tinteren H, Boellaard R. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med.2010; 51:1870-7.
    14. Reske SN, Deisenhofer S.Is 3'-deoxy-3'-(18)F-fluorothymidine a better marker for tumour response than (18)F-fluorodeoxyglucose? Eur J Nucl Med Mol Imaging.2006; 33 Suppl 1: 38-43.
    15.全师,吴湖炳,王明芳,等.19例良性病变患者18F-FDG PET显像特点分析.中华核医学杂志.2003;23(4):210-211.
    16.汪涛,孙玉鹗,田嘉禾,等.肺肉芽肿性炎症FDG摄取特点初步研究.中华胸心血管外科杂志.2003;19(2):95-97.
    17.陈敏 郭佑民 郭晓娟,等.应用FDG-PET对孤立性肺结节诊断的循证分析.中国医学影像技术.2004;20(11):1754-1756.
    18. Ohtsuka T, Nomori H, Watanabe K, et al. False-Positive Findings on [18F]FDG-PET Caused by Non-Neoplastic Cellular Elements after Neoadjuvant Chemoradiotherapy for Non-Small Cell Lung cancer. Jpn J Clin Oncol.2005;35(5):271-273.
    19. Win Z, Todd J, Al-Nahhas A. FDG-PET Imaging in Pneumocystis Carinii Pneumonia. Clin Nucl Med.2005;30(10):690-691
    20. Herder JG, Tinteren Hv, Golding RP, et al. Clinical Prediction Model to Characterize Pulmonary Nodules:Validation and Added Value of 18F-Flurodeoxyglucose Positron Emission Tomography. Chest 2005; 128:2490-2496.
    21. Shim SS, Lee KS, Kim BT, et al. Non-Small Cell Lung Cancer:Prospective Comparison of Integrated FDG PET/CT and CT Alone for Preoperative Staging. Radiology 2005:236:1011-1019.
    22. Kim TJ, Lee KW, Kim HY, et al. Simple Pulmonary Eosinophilia Evaluated by Means of FDG PET:the Findings of 14 Cases. Korean J Radiol 2005;6:208-213.
    23.葛全序,朱仁娟,刘庆伟,等18F-FDG PET/CT结合高分辨率CT对孤立性肺结节的诊断价值.中华核医学杂志.2005;25(5):264-266.
    24. Yi CA, Lee KS, Kim BT, et al. Tissue Characterization of Solitary Pulmonary Nodule: Comparative Study Between Helical Dynamic CT and Integrated PET/CT. J Nucl Med 2006;47:443-450.
    25.汪涛,初向阳,孙玉鹗,等.18F-脱氧葡萄糖正电子发射体层显像检查在肺结核患者中的应用.中国胸心血管外科临床杂志.2006;13(2):73-76.
    26. Schwartz JL, Tamura Y, Jordan R, et al. Monitoring Tumor Cell Proliferation by Targeting DNA Synthetic Processes with Thymidine and Thymidine Analogs. J Nucl Med 2003;44:2027-2032.
    27. Rasey JS, Grierson JR, Wiens LW, et al. Thymidine Kinase-1 Activity in A549 Carcinoma Cells. J Nucl Med 2002; 43:1210-1217.
    28. Jager PL, Korte MA, Hooge MN, et al. Molecular imaging:what can be used today. Cancer Imaging 2005;5:S27-S32.
    29. Lentle B, Worsley D. Osteoporosis redux. J Nucl Med.2006:47(12):1945-1959.
    30. Strauss LG. Fluoro-18 deoxyglucose and false-positive results:a Major problem in the diagnostics of oncological patients. Eur J Nucl Med.1996;23:1409-1415
    31. Kim SK, Allen-Auerbach M, Goldin J, Fueger BJ, Dahlbom M. Brown M, Czernin J, Schiepers C. Accuracy of PET/CT in Characterization of Solitary Pulmonary Lesions. J Nucl Med 2007; 48:214-220
    32.尚玉真,朱仁娟,王莉,等18F-FDG PET-CT全身显像患者的护理.医学影像学杂志,2008,18(4):379,418.
    33.张云霞PET/CT显像诊断肺部肿瘤15例的护理.第四军医大学学报,2008,29(16):1471.
    34. Vesselle H, Grierson J, Peterson LM, Muzi M, Mankoff DA. Krohn KA. 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med.2003; 44(9):1482-1488.
    35. Zhuang H,Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med.2001,42:1412-1417.
    1. Jemal A, Murray T, Ward E, et al. Cancer statistics. CA Cancer J Clin.2005,55:10-30.
    2.贺大林,张林琳.前列腺癌的诊断.临床外科杂志,2008,16(2):91-93.
    3.王霄英.中国前列腺癌的MR研究现状和发展方向.中华放射学杂志,2006,40(7):677.
    4.徐磊,高培毅”影像触诊”——磁共振弹性成像.中华医学信息导报,2006,20:8
    5. McKnight AL. Kugel JL. Rossman PJ, et al. MRI elastography ofbreast cancer:Preliminary results [J]. AJR,2002,178:1411-1417.
    6.徐磊,高培毅,林燕,等.大脑MR弹性成像的初步研究.中华放射学杂志.2007,41(3):300-303.
    7. Kruse SA, Rose GH, Glaser KJ, et al. Magnetic resonance elastography of the brain. Neuro Image,2008,39:231-236.
    8.徐磊.高培毅,林燕,脑肿瘤MR弹性成像的初步临床研究.中华放射学杂志2008,42(6):605-608.
    9. Yoshida S, Nakagomi K, Goto S, et al.11C-choline positron emission tomography in prostate cancer:primary staging and recurrent site staging. Urol Int,2005,74:214-220.
    10. Sven N. Reskel, Norbert M. Blumsteinl, Bernd Neumaier, et al. Imaging Prostate Cancer with 11C-Choline PET.CT. J Nucl Med.2006.47:1249-1254.
    11.李听,王晴文,宁国庆,等.11C-胆碱PET/CT显像在PSA升高的前列腺病变中的应用价值.医学影像学杂志.2009,19(11):1450-1453.
    12. Fazio F, Picchio M, Messa C. Is 11C-choline the most appropriate tracer for prostate cancer? [J]. For. Eur J Nucl Med Mol Imaging,2004,31:753-756.
    13. Basford JR, Jenkyn TR, An KN, et al. Evaluation of healthy and diseased muscle with magnetic elastography. Arch phys MED Rehab,2002,83:1530-1536.
    14. Heer G, Jenkyn T, Dresner MA, et al. Measurement of muscle activity with magnetic resonance elastography. Clin Biomechanics,2003,18:537-544.
    15. Jenkyn TR, Ehman RL, An K.N. Non-invasivemuscle lension measurement using the novel technique of magnetic resonance elastography. J Biomechan,2003,36:1917-1926.
    16. Ehman RL. Characterization of the dynamic shear properties of hyaline cartilage using high-frequency dynamic MR elastography. Magn Reson Med,2008,59:356-368.
    17. Goss BC, Ehman Ec, Ehman RL. Magnetic resonance elastography of the lung:technical feasibility. Magn Reson Med,2006,56:1060-1065.
    18. Ehman RL. MR elastography of the liver:preliminary results. Radiology,2006,240: 440-447.
    19. Yin M, Talwalkar JA, Ehman RL, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol,2007,5:1207-1214.
    20. Sudhakar VK, Yin M, James GF, et al. MR elastography of liver tumors:preliminary results. AJR,2008,190:1534-1540.
    21. Woodrum DA, Romano AT, Ehman RL, et al. Vascular wall elasticity measurement by magnetic resonance imaging. Magn Reson Med,2006,56:593-606.
    22. Kemper J, Sinkus R, Lorenzen J, et al. MR elastography of the prostate:initial in-vivo application. Rofo,2004,176:1094-1099.
    23. Roivainen A, Forsback S, Gronroos T, et al. Blood metabolism of 11C-choline; implications for in-vivo imaging with positron emission tomography. Eur J Nucl Med,2000. 27:25-32.
    24. Krause BJ, Souvatzoglou M, Tuncel M, et al. The detection rate of [11 C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging.2008;35(1):18-23.
    25. Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol.2008:18(1):87-97.
    [1]Jemal A, Murray T, Ward E, et al. Cancer statistics[J]. CA Cancer J Clin.2005,55:10-30.
    [2]贺大林,张林琳.前列腺癌的诊断,临床外科杂志[J],2008,16(2):91-93.
    [3]]王霄英.中国前列腺癌的MR研究现状和发展方向,中华放射学杂志[J],2006,40(7):677.
    [4]徐磊,高培毅.“影像触诊”——磁共振弹性成像[J].中华医学信息导报,2006,20:8.
    [5]McKnight AL, Kugel JL, Rossman PJ, et al. MR I elastography otbreast cancer:Preliminary results [J]. AJR,2002,178:1411-1417.
    [6]徐磊,高培毅,林燕,等.人脑MR弹性成像的初步研究.中华放射学杂志[J],2007,41(3):300-303.
    [7]Kruse SA, Rose GH, Glaser KJ, et al. Magnetic resonance elastography of the brain. Neuro Image,2008,39:231-236.
    [8]徐磊,高培毅,林燕,等.脑肿瘤MR弹性成像的初步临床研究.中华放射学杂志[J],2008,42(6):605-608.
    [9]Basford JR, Jenkyn TR, An KN, et al. Evaluation of healthy and diseased muscle with magnetic elastography[J]. Arch phys MED Rehab,2002,83:1530-1536.
    [10]Heer G, Jenkyn T, Dresner MA, et al. Measurement of muscle activity with magnetic resonance elastography[J]. Clin Biomechanics,2003,18:537-544.
    [11]Jenkyn TR, Ehman RL, An KN. Non-invasivemuscle lension measurement using the novel technique of magnetic resonance elastography[J]. J Biomechan,2003,36:1917-1926.
    [12]Ehman RL. Characterization of the dynamic shear properties of hyaline cartilage using high-frequency dynamic MR elastography[J]. Magn Reson Med,2008,59:356-368.
    [13]Goss BC, Ehman Ec, Ehman RL. Magnetic resonance elastography of the lung:technical feasibility[J]. Magn Reson Med,2006,56:1060-1065.
    [14]Ehman RL. MR elastography of the liver:preliminary results[J]. Radiology,2006,240: 440-447.
    [15]Sudhakar VK, Yin M, James GF, et al. MR elastography of liver tumors:preliminary results[J]. AJR,2008,190:1534-1540.
    [16]Woodrum DA, Romano AT, Ehman RL, et al. Vascular wall elasticity measurement by magnetic resonance imaging[J]. Magn Reson Med,2006,56:593-606.
    [17]Kemper J, Sinkus R, Lorenzen J, et al. MR elastography of the prostate:initial in-vivo application [J]. Rofo,2008,176:1094-1099.
    [18]Yoshida S, Nakagomi K, Goto S, et al. 11C-choline positron emission tomography in prostate cancer:primary staging and recurrent site staging[J]. Urol Int,2005,74:214-220.
    [19]Sven N. Reskel, Norbert M. Blumsteinl, Bernd Neumaier, et al. Imaging Prostate Cancer with 11C-Choline PET/CT[J]. J Nucl Med.2006,47:1249-1254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700