用户名: 密码: 验证码:
抗猪瘟病毒转基因猪的构建及初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟是一种传染性极强的急性、热性、高致死性传染病,发病率和死亡率很高,是威胁养猪业最重要的传染病,建立新的抗病毒方法,加快抗猪瘟动物育种研究,控制猪瘟的流行具有重要的现实意义。RNA干扰是广泛存在于生物体内,由双链RNA引发的转录后基因沉默机制,随着RNAi机制的逐步阐明及其应用技术的不断发展,现已成为最有潜力和应用价值的抗病毒感染方法之一。为了获得抗猪瘟病毒的新品种,本研究通过将RNAi技术和转基因猪制备技术相结合,培育出了稳定表达针对猪瘟病毒的shRNA的转基因克隆猪。
     首先根据RNAi的技术原理,基于载体PGKneotpAlox2,设计并构建了针对猪瘟病毒N~(pro)基因的shRNA表达载体PGKneotlaAlox2-shRNA-N1N2和阴性干扰shRNA表达载体PGKneotpAlox2-shRNA-N1N2-Ctrl,转染原代猪胚胎成纤维细胞,经G-418筛选,获得猪瘟病毒特异性siRNA稳定表达细胞株28株,阴性对照siRNA克隆稳定表达细胞株30株,感染猪瘟病毒72h的间接免疫荧光和病毒滴度测定结果显示,所得克隆中PEF-N1N2-6,PEF-N1N2-11,PEF-N1N2-15,PEF-N1N2-21,PEF-N1N2-25对猪瘟病毒复制的抑制率超过90%。
     分别以获得的上述抑制率超过90%的细胞株为核供体细胞,通过细胞核移植技术制备转基因克隆猪,共获得到15头克隆猪,分离培养转基因仔猪细胞和同品种仔猪细胞,扩大培养后感染猪瘟病毒Shimen株,间接免疫荧光实验和病毒滴度测定实验表明,与同日出生的同品种非转基因仔猪相比,所构建的转基因克隆猪细胞上猪瘟病毒的增殖受到明显抑制。
     上述研究成果为研制抗猪瘟病毒的转基因克隆猪奠定了基础,并为建立抗其它病毒的转基因动物育种提供了参考数据。
Classical swine fever(CSF,hog cholera) is a highly contagious disease in domestic pigs.Pigs at any age,of any species,can be infected in any season.The morbidity and mortality of CSF caused by virulent CSFV can be 100%.It is the most important infectious diseases of pig-raising industry.The World Organization for Animal Health(OIE) has classified CSF as one of sixteen kinds of class a legal communicable diseases,our country has set CSF as a class of serious infectious diseases.Some countries in Europe announced the elimination of swine fever after killing all animals on infected farms.But in recent years,these countries have also emerged with the outbreak of classical swine fever epidemic;there is the danger of spread of the epidemic.Our country has controlled the disease pandemic with large-scale vaccine inoculation or slaughter the infected pigs.Although this measure prevented the disease efficiently,failure of immunization and persistent infection of CSFV occur occasionally.It is still a serious threat to large-scale pig-raising industry.thus,the development of new antiviral approaches and research of new resistance breeding in swine to control swine fever epidemic effectively has important practical significance.
     RNA interference(RNAi) is a naturally occurring,sequence-specific mechanism for gene silencing.RNAi-related events were discovered in almost all eukaryotic organisms,including protozoa,flies,nematodes,insects,parasites,plants,and mouse and human cell lines.It refers to the phenomenon of post-translational silencing of gene expression that occurs in response to the introduction of double-stranded RNA into a cell.It is a process through which endogenous or exogenous double-stranded RNA(dsRNA) induces the sequence-specific post-transcriptional silencing of gene.Its related processes seem to be a cellular defense mechanism against gene invaders such as transposons and viruses.Researchers have developed post-transcriptional gene silencing technology to degrade the homologous single-stranded mRNAs through the introduction of the functional double-stranded RNA(siRNA) which is homologous to the target gene in cells. They think highly of this technology because a large number of studies have shown that siRNA may inhibit the proliferation of a variety of viruses efficiently in vivo study or in vitro study;It is has been used as a new powerful tool for gene-specific therapeutics for viral disease and showed a good application prospects.
     In order to develop new ways of prevention and control of classical swine fever and explore the feasibility of breeding for disease resistance to classical swine fever virus with the production technique of transgenic pigs and RNAi,we designed and constructed shRNA expression vector PGKneotpAlox2-shRNA-N1N2,which contains two separate shRNA expression cassette according to the principle of DNA-vector-based RNAi technology.The shRNA expression cassette is under the control of respective H1 promoter.It will be recognized by polymeraseⅢof the cells and will be transcribed into shRNAs;it will be further processed into a classical swine fever virus-specific siRNAs whose target is the N~(pro) of CSFV When the vector is introduced into the cells.The negative control shRNA expressing plasmid was constructed in the same way and was named PG KneotpAlox2-shRNA-N1N2-Ctrl.
     Large-scale Endotoxin-free DNA were prepared and purified by using the Endotoxin-free plasmid DNA extraction kit and were digested with restriction enzyme ApaI and SacI,leaving only the DNA sequence of G-418 expression cassette flanked by loxP sequences and two shRNA expression cassettes as the transgenic construct.For transduction of fetal porcine fibroblasts, 1×10~5 cells porcine fetal fibroblasts that were obtained from 35-day-old fetuses were transferred to 35-mm culture dish(Corning).Gene transfer was carried out according to the manufacturer's instructions of transfection reagent FuGENE HD.According to the conventional methods,the cells recovered from the dish were seeded in 6-well plates(2×10~4cells/well).At 48 h after gene transfer,the cells were incubated in standard culture medium including 350μg/ml of G-418. Colonies resistant to G-418 appeared after cells were cultured in selection medium for an additional 7 days.The surviving cell colonies resistant to G-418 were obtained and subcultured in 24-well plates and propagated and the cells were frozen.In order to examine if the gene have integrated into genome of the cells,the genomic DNA of cell clones were used for PCR amplification.Twenty-eight cell strains expressing the CSFV-specific-shRNAs were obtained and thirty cell strains expressing the short hairpin RNAs of negative shRNA were obtained too.When the cells have grown to confluence in a well of 24-well plates,split them into 96-well plates and assay individual clones for antivirus effect.These cell strains in a 96-well tissue culture cluster were infected by 100TCID_(50) classical swine fever virus shimen strain respectively,and 72h later, the virus replication were detected and evaluated by undirected immunofluorescence assay(IFA). The results showed the infected cell were above 90%in all of the cell strains expressing the short hairpin RNAs of negative shRNA.But the inhibition ratio of the virus replication in cell strains PEF-N1N2-6,PEF-N1N2-11,PEF-N1N2-15,PEF-N1N2-21,PEF-N1N2-25 were above 90%. These results showed that siRNAs expressed in these cell strains specifically suppress CSFV gene expression.Further more,the TCID_(50) of CSFV of these cell strains were significantly reduced,in contrast.
     Based on the aforementioned studies,cell stains exhibiting noticeable inhibition effect were selected and were used as the nuclear donor cells.The reconstructed embryos were produced by somatic cell nuclear transfer technology and were surgically transferred into the oviducts of the recipients after making a mid-ventral incision under general anesthesia.Following transfer of cloned embryos;two recipients became pregnant and then delivered fiveteen piglets.Samples obtained from the transgenic-clone pigs,donor cells and recipients were analyzed by using STR-PCR method and the result confirmed that the piglets were clones of the donor cells. Detection of exogenous gene integration was conducted by using PCR and hiTail-PCR analysis. The PCR results together with the hiTail-PCR analysis of the piglets indicated that the transfected gene had integrated into genome of one pig.In order to make a preliminary assessment of antivirus ability of the transgenic piglet,cells were isolated from transgenic piglet and non transgenic piglet and were infected with 100TCID_(50) classic swine fever virus Shimen strain respectively,the results of indirected immunofluorescence assay(IFA) and titration determination test at 48h and 72h post-infection of CSFV showed that the amount of virus multiplication were reduced in cells of the transgenic-clone pig significantly.It indicates that the expression of siRNA in the cell of transgenic-clone pig can effectively inhibit the proliferation of classical swine fever virus.
     In the present study,we produced transgenic-clone pig which has the ability to express CSFV-specific siRNAs and accumulated essential experimental data of the application of RNAi in the researches of transgenic-clone pig which can resist CSFV infection.Our results provide a reference for the establishment of other anti-virus breeding of transgenic animals.
引文
[1] Cogoni C, Romano N, Macino G.Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek.1994; 65:205-209.
    [2] Raponi M, Arndt GM.Double-stranded RNA-mediated gene silencing in fission yeast. Nucleic Acid Res.2003; 31(15):4481-4489.
    [3] Martens H, Novotny J, Oberstrass J, et.al.RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase.Mol.Biol.Cell.2002; 13-.445-453.
    [4] Winston WM, Molodowitch C, Hunter CP.Systemic RNAi in C.elegans requires the putative transmembrane protein SID-l.Science.2002; 295:2456-2459.
    [5] Brooks DR, Isaac RE.Functional genomics of parasitic worms: the dawn of a new era.Parasitol. Int.2002; 51:319-325.
    [6] Caplen NJ,Parrish S,Imani F,et.al.Specific inhibition of gene expression by small double stranded RNA in invertebrate and vertebrate systems.Proc.Natl.Acad.Sci.U S A.2001;98: 9742-9747.
    [7] Kim D, Rossi J.RNA interference: mechanisms and applications.Biotechniques.2008; 44 (5): 613-6.
    [8] Hammond SM,Berstein E,Beach D,et.al.An RNA-directed nuclease mediates post-transcri ptional gene silencing in Drosophila cells.Nature.2000;404:293-296.
    [9] Kennerdell JR, Carthew RW.Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway.Cell.1998; 95:1017-1026.
    [10]Misquitta L, Paterson BM.Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. Proc.Natl. Acad.Sci.U S A.1999; 96:1451-1456.
    [11]Stauber M,Taubert H,Schmidt-Ott U.Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia.Proc.Natl.Acad.Sci.U S A.2000;97:10844-10849.
    [12]Cottrell TR, Doering TL.Silence of the strands: RNA interference in eukaryotic pathogens. Trends Microbiol.2003; 11:37-43.
    [13]Mcrobert L, Mcconkey GA.RNA interference (RNAi) inhibits growth of Plasmodium falciparum.Mol.Biochem.Parasitol.2002; 119:273-278.
    [14]Ullu E, Tschudi C, Chakraborty T.RNA interference in protozoan parasites. Cell Microbiol. 2004;6(6):509-519.
    [15]Wargelius A, Ellingsen S, Fjose A. Double-stranded RNA induces specific developmental defects in zebra fish embryos.Biochem.Biophys.Res.Commun.1999; 263:156-161.
    [16]Caplen NJ,Parrish S,Imani F,et.al.Specific inhibition of gene expression by small double-stranded RNA in invertebrate and vertebrate systems.Proc.Natl.Acad.Sci.U S A.2001;98:9742-9747.
    [17]Chiu Y-L, Rana TM.RNAi in human cells and functional features of small interfering RNA. Mol.Cell.2002; 10:549-561.
    
    [18]Downward J.RNA interference.2004; 328:1245-1248.
    [19] Jorgensen R.Altered gene expression in plants due to transinteractions between homologous genes. Trends Biotechnol.1990, 8(12):340-344.
    [20]Van Blokland R, vander Geest N, Mol JNM, et al.Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 1994; 6:861-877.
    [21]lngelbrecht I,Van Houdt H.Van Montagu M,et.al.Post-transcriptional silencing of reporter transgenes in tobacco correlates with DNA methylation.Proc.Natl.Acad.Sci.U S A. 1994;91:10502-10506.
    [22]Vander Krol AR, Mur LA, Beld M, et.al.Flavanoid genes in petunia: addition of limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990, 2:291-299.
    [23]Brummelkamp T R.Bernards R and Agami R.A system for stable expression of short interfering RNAs in mammalian cells.Science.2002;296:550-553.
    [24]Cogoni C,Irelan JT.Schumacher M.Schmidhauser TJ,et.al.Transgene silencing of all-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interaction or DNA methylation.EMBO J.1996; 15:3153-3163.
    [25]Lindbo JA, Dougherty WG.Untranslatable transcripts of tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts.Virology.1992, 189:725-733.
    [26]Ratcliff F, Harrison BD,Baulcombe DC.A similarity between virus defense and gene silencing in plants.Science.1997; 276:1558-1560.
    [27]Guo S and Kemphues KJ.Par-1,a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell.1995; 81(4):611-620.
    [28]Fire A,Xu S.Montgomery MK.et al.Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans.Nature.l998;391:806-811.
    [29]HamiIton AJ, Baulcombe DC.A species of small antisense RNA in posttranscriptional gene silencing in plants.Science.1999; 286:950-952.
    [30]Tuschi T,Zamore P D,Lehmann R,et al.Targeted mRNA degradation by double-stranded RNA in vitro.Genes.l999;13:3191-3197.
    [31]Nykanen A, Haley B and Zamore PD.ATP requirements and small interfering RNA structure in the RNA interference pathway.Cell.2001; 107:309-321.
    [32]Elbashir S M.Martinez J,Patkaniowska A.et al.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryolysate.EMBO J.2001;20:6877-6888.
    [33]Bass BL.Double-stranded RNA as a template for gene silencing.Cell.2000; 101:235-238.
    [34]Elbashir SM, Lendeckel W, Tuschl T.RNA interference is mediated by 21- and 22-nucleotide RNAs.Genes Dev.2001; 15:188-200.
    [35]Bernstein E,Caudy AA,Hammond SM,Hannon GJ.Role for a bidentate nbonuclease in the initiation step of RNA interference.Nature.2001;409:363-366.
    [36]Nykanen A, Haley B,Zamore PD.ATP requirement and small interfering RNA structure in the RNA interference pathway.Cell.2001;107:309-321.
    [37] Kok KH,Ng MH,Ching YP,Jin DY.Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA.J Biol Chem.2007;282(24): 17649-17657.
    
    [38]Hannon G J.RNA interference.Nature.2002;418:244-251.
    [39]Hammond SM,Berstein E,Beach D,et.al.An RNA-directed nuclease mediate spost transcriptional gene silencing in Drosophila cells.Nature.2000;404:293-296.
    [40]Haley B, Zamore PD.Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol.2004;11(7):599-606.
    
    [41]Angela Reynolds, Emily M.Anderson, et.al.Induction of the interferon response by siRNA is cell type-and duplex length-dependent.RNA.2006.12:988-993.
    [42]Williams BR.Biochem Soc Trans, 1997; 25(2):509-513.
    [43]Citlin L, Karelsky S and Andino R.Short interfering RNA confers intracellular antiviral immunity in human cells.Nature.2002; 918:430-434.
    [44]Park W S,Miyano-Kurosaki N,Hayafune M,et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res.2002 30 (22):4830-4835.
    [45]Kapadia S B,Brideau-Andersen A and Chisari F V.Interference of hepatitis C virus RNA replication by short interfering RNAs.Proc.Natl.Acad.Sci.U S A.2003;100(4):2014-2018.
    [46]Bitko V and Barik S.Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses.BMC Microbiol.2001;l(I):34.
    [47]Gitlin L and Andino R.Nucleic acid-based immune system:the antiviral potential of mammalian RNA silencing.J.Virol.,2003;77(13):7159-7165.
    [48]Billy E,Brondani V,Zhang H,et.al.Specific interference with gene expression induced by long,double-stranded RNA in mouse embryonal teratocarcinoma cell lines.Proc Natl Acad Sci U S A .2001;Dec4;98(25):14428-33.
    [49]Elbashir S M,Harborth J,Lendeckel W,et al.Dupiexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature.2001; 411:494-498
    [50]Djikeng, a, H.Shi, C.Tschudi, et al.RNA interference in Trypanosoma bruci: cloning of small interfering RNA provides evidence for retroposon-derived 24~26 nucleotide RNA.RNA. 2001;7:1522-1530.
    [51]Overhoff M, Alken M, Far RK, et al.Local RNA target structure influences siRNA efficacy: asystematic global analysis.J Mol Biol.2005; 348:871-881.
    [52]Brown KM, Chu C, Rana TM.Target accessibility dictates thepotency of human RISC.Nat Struct Mol Biol.2005; 12:469-470.
    [53]Ding Y, Lawrence CE.A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acid Res.2003; 31:7280-7301.
    [54]Ding Y, Chan CY, Lawrence CE.Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acid Res.2004; 32: W135-W141.
    [55]Reynolds A, Leake D, Boese Q.et.al.Rational siRNA design for RNA interference. Nat Biotech.2004; 22:326-330.
    [56]CoumouI X, Li W, Wang RH, Deng C.Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res. 2005; 33(11):e102.
    [57]Kasim V, Miyagishi M, Taira K.Control of siRNA expression using the Cre-loxP recombination system.Nucleic Acids Res. 2004; 32(7):e66.
    [58]Szulc J,Wiznerowicz M.Sauvain MO,et.al.A versatile tool for conditional gene expression and knockdown. Nat Methods.2006;3:109-116.
    [59]Chang Y.Chang SS,Lee HH,et.al.Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference.J Gen Virol.2004;85:1371 -1379.
    [60]Jia Q and Sun R.Inhibition of gammaherperpesvirus replication by RNA interference.J. Virol.2003;77:3301-3306.
    [61]Hamasaki K.Nakao K,Matsumoto K,et al.Short interfering RNA-directed inhibition of hepatitis B virus replication.FEB.2003;543:51-54.
    [62]Hall AH, Alexander KA.RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells.J Virol.2003; 77:6066-6069.
    [63]Butz K,Ristriani T,Hengstermann A,Denk C,Scheffner M,Hoppe-Seyler F.siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells.Oncogene. 2003;22:5938-5945.
    [64]Dector MA,Romero P,Lopez S.Arias CF.Rotavirus gene silencing by small interfering RNAs.EMBO Rep.2002;3:1175-1180.
    [65]Arias CF,Dector MA,Segovia L.Lopez T.Camacho M,Isa P.et al.RNA silencing of rotavirus gene expression.Virus Res.2004; 102:43-51.
    [66]Kahana R,Kuznetzova L.Rogel A.et al.Inhibition of foot-and-mouth disease virus replication by small interfering RNA.J Gen Virol.2004;85:3213-3217.
    [67]Kronke J,Kittler R,Buchholz F.et al.Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs.J Virol.2004;78:3436-3446.
    [68]Abdel Rahman N Zekri, Abeer A Bahnassy, Hanaa M Alam El-Din.et.al.Consensus siRNA for inhibition of HCV genotype-4 replication.Virology Journal.2009,6:13.
    [69]Banerjea A,Li MJ,Bauer G.et al.Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages.Mol Ther.2003;8:62-71.
    [70]Bennasser Y,Le SY,Benkirane M,Jeang KT.Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing.Immunity.2005;22:607-619.
    [71]Anderson J,Banerjea A,Akkina R.Bispecific short hairpin siRNA constructs targeted to CD4,CXCR4,and CCR5 confer HIV-1 resistance.Oligonucleotides.2003;13:303-312.
    [72]McCown M,Diamond MS,Pekosz A.The utility of siRNA transcripts produced by RNA polymerase i in down regulating viral gene expression and replication of negative- and positivestrand RNA viruses.Virology.2003;313:514-524.
    [73]Tompkins SM,Lo CY,Tumpey TM,Epstein SL.Protection against lethal influenza virus challenge by RNA interference in vivo.Proc Natl Acad Sci U S A.2004;101:8682-8686.
    [74]Hu W Y,Myers C P,Kilzer J M,et al.Inhibition of retroviral pathogenesis by RNA interference.Curr Biol.2002; 12:1301 -1311.
    [75]Barik S.Control of nonsegmented negative-strand RNA virus replication by siRNA.Virus Res.2004; 102:27-35.
    [76]Bitko V,Musiyenko A,Shulyayeva O,Barik S.Inhibition of respiratory viruses by nasally administered siRNA.Nat Med.2005;l 1:50-55.
    [77]He ML, Zheng B, Peng Y.et al.Inhibition of SARS-associated coronavirus infection and replication by RNA interference.JAMA.2003; 290:2665-2666.
    [78]Zheng BJ,Guan Y,Tang Q.et al.Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus.Antivirus Ther.2004;9:365-374.
    [79]Li T, Zhang Y, Fu L.et al.siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Therapy.2005; 12:751-761.
    [80]Zhao P,Qin ZL,Ke JS,et al.Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in cultured cells and mouse muscles.FEBS Lett.2005;579:2404-2410.
    [81]Butz K,Ristriani T,Hengstermann A,et al.siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells.Oncogene,2003;22:5938-5945.
    [82]Hall AH,Alexander KA.RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells.J Virol.2003;77:6066-6069.
    [83]Fowler T,Bamberg S,Moller P.et al.Inhibition of Marburg virus protein expression and viral release by RNA interference.J Gen Virol.2005;86:l 181-1188.
    [84]Jacque JM.Triques K,Stevenson M.Modulation of HIV-1 replication by RNA interference.Nature.2002;418:435-438.
    [85]Giladi H,Ketzinel-Gilad M,Rivkin L,Felig Y,Nussbaum O,Galun E.Small interfering RNA inhibits hepatitis B virus replication in mice.Mol Ther.2003;8:769-776.
    [86]Wu HL,Huang LR,Huang CC.et al.RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant.Gastroenterology.2005;128:708-716.
    [87]Jan Kronke, Ralf Kittler, Frank Buchholz,et al.Alternative Approaches for Efficient Inhibition of Hepatitis C Virus RNA Replication by Small Interfering RNAs.J Virol.2004 April;78(7): 3436-3446.
    [88]Zhang J.Yamada O,Sakamoto T.et al.Down-regulation of viral replication by adenoviralmediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology.2004;320:135-143.
    [89]Ge Q,McManus MT,Nguyen T.et al.RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription.Proc Natl Acad Sci U S A.2003;100:2718-2723.
    [90]Schwarz DS.Hutvagner G,Du T.Xu Z,Aronin N,Zamore PD.Asymmetry in the assembly of the RNAi enzyme complex.Cell.2003;l 15:199-208.
    [91]Lee NS,Dohjima T.Bauer G.et al.Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat Biotechnol.2002;20:500-505.
    [92]Unwalla HJ,Li MJ,Kim JD.et al.Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA.Nat Biotechnol.2004;22:1573-1578.
    [93]Gitlin L.Karelsky S,Andino R.Short interfering RNA confers intracellular antiviral immunity in human cells.Nature.2002;418:430-434.
    [94]GitIin L,Stone JK,Andino R.Poliovirus escape from RNA interference:short interfering RNA-target recognition and implications for therapeutic approaches.J Virol. 2005;79:1027-1035.
    [95]Wilson JA,Richardson CD.Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region.J Virol.2005;79:7050-7058.
    [96]Anderson J,Banerjea A,Akkina R.Bispecific short hairpin siRNA constructs targeted to CD4,CXCR4,and CCR5 confer HIV-1 resistance.Oligonucleotides.2003;13:303-312.
    [97]Kameoka M.Nukuzuma S.Itaya A,et al.RNA interference directed against polymerase I efficiently suppresses human immunodeficiency virus type I replication in human cells.J Virol.2004;78:8931-8934.
    [98]Chiu YL,Cao H,Jacque JM,Stevenson M.Rana TM.Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1).J Virol.2004;78:2517-2529.
    [99]Koga H,Ohshima T,Shimotohno K.Enhanced activation of taxdependent transcription of human T-cell leukemia virus type I (HTLV-I) long terminal repeat by TORC3.J Biol Chem. 2004;279:52978-52983.
    [100]Wilmut I.Schnieke AE,McWhir J,Kind AJ,Campbell KH.Viable offspring derived from fetal and adult mammalian cells.Nature.385(6619):810-3.
    
    [101]Hasuwa H.Kaseda K,Einarsdottir T,Okabe M.Small interfering RNA and gene silencing in transgenic mice and rats.FEBS Lett.2002;532:227-230.
    [102]Rubinson DA,Dillon CP,Kwiatkowski AV,et al.Lentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference.Nat Genet.2003;33:401 -406..
    [103]Kunath T,Gish G,Lickert H,et.al.Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype.Nat Biotechnol.2003;21 :559-561.
    [104]R.Kuhn S.Streif.W.Wurst.RNA Interference in Mice.HEP.2007; 178:149-176.
    [105]Carmell MA, ZhangL, Conklin DS, et.al.Germline transmission of RNAi in mice. Nat Struct Biol.2003; 10:91-92.
    [106]KunathT, GishG, LickertH, et.al.Transgenic RNA interference In ES cell-derived embryos recapitulates a geneticnull phenotype.NatBiotechnol.2005; 21:559-561.
    [107]RubtnsonDA, DillonCP, KwiatkowskiAV, et.al.A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet.2003; 33:401-406.
    [108]Tiscornia G.Singer O,Ikawa M,Verma IM.A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA.Proc Natl Acad Sci U S A.2003;100:1844-1848.
    [109]Chang HS,Lin CH,Chen YC,Yu WC.Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdownAm Jol.2004; 165:1535-1541.
    [110]FedoriwAM,Stein P.Svoboda P.Schultz RM,BartolomeiMS.TransgenicRNAi reveals essential function for CTCF in H19 gene imprinting.Science.2004:303:238-240.
    [111]Ventura A,Meissner A,Dillon CP,McManus M,Sharp PA,van Parijs L,Jaenisch R,Jacks T.Cre-lox-regulated conditional RNA interference from transgenes.Proc Natl Acad Sci U S A.2004;101:10380-10385.
    [112]Coumoul X,Shukla V,Li C,Wang RH,Deng CX .Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference.Nucleic Acids Res.2005;33:02.
    [113]Knott JG,Kurokawa M,Fissore RA,et.al.Transgenic RNA interference reveals role for mouse sperm phospholipase C zeta in triggering Ca2+ oscillations during fertilization.Biol Reprod.2005;72:992-996.
    [114]Lickert H.Cox B,Wehrle C,Taketo MM,Kemler R,Rossant J .Dissecting Wnt/betacatenin signaling during gastrulation using RNA interference inmouse embryos.Development.2005; 132:2599-2609.
    [115]Oberdoerffer P,Kanellopoulou C,Heissmeyer V,Paeper C,Borowski C,Aifantis I.Rao A, Rajewsky K.Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages.Mol Cell Biol.2005;25:3896-3905.
    [116]Seibler J,Kuter-Luks B,Kern H,et.al.Single copy shRNA configuration for ubiquitous gene knockdown inmice.Nucleic Acids Res.2005;33(7)::e67.
    [117]Lickert H,Takeuchi JK,Von Both I,Walls JR,McAuliffe F,Adamson SL,Henkelman RM, Wrana JL,Rossant J,Bruneau BG.Baf60c is essential for function of BAF chromatin remodelling complexes in heart development.Nature.2004:432:107-112.
    [118]Dieckhoff B,Petersen B,Kues WA.et al.Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs.Xenotransplantation. 2008:15:36-45.
    [119]Ramsoondar J,Vaught T,Bali S,et.al.Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs.Xenotransplantation.2009; 16:164-180.
    [120]Milen Kirilov.Minqiang Chai.Frank vander Hoeven., et.al.Germ line transmission and expression of an RNAi cassette in mice generated by a lentiviral vector system. Transgenic Res.2007; 16:783-793.
    [121]Everett CA, West JD.The influence of ploidy on the distribution of cells in chimaeric mouse blastocysts.Zygote.1996; 4:59-66.
    [122]Peli J.Schmoll F.Laurincik J,Brem G,et al.Comparison of aggregation and injection techniques in producing chimeras with embryonic stem cells in mice.Theriogenology.1996; 45:833-842.
    [123]Gordon JW,Scangos GA,Plotkin DJ,et al.Genetic transformation of mouse embryos by microinjection of purified DNA.[J].Proc Natl Acad Sci U S A.1980,77(12):7380-7384.
    [124]Palmiter RD BR Hammer RE,Trumbauer ME.et al.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.[J].Nature. 1982,300 (5893):611-615.
    
    [125]Pfeifer A.Hofmann A.Lentiviral transgenesis.Methods Mol Biol.2009;530:391-405.
    [126]Park F.Lentiviral vectors:are they the future of animal transgenesis.Physiol Genomics. 2007; 31(2):159-73.
    [127]Lavitrano M CA,Fazio VM.Dolci S,et.al.Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice.Cell.1989,57(5):717-723.
    [128]Lavitrano M,Camaioni A,Fazio VM,et.al.Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice.Cell.l989;57(5):717-23.
    [129]Muramatsu T,Shibata O,Ryoki S,et al.Foreign gene expression in the mouse testis by localized in vivo gene transfer .Biochem Biophys Res Commun.1997;233,233 :45-49.
    [130]Markert CL.Fertilization of mammalian eggs by sperm injection.J Exp Zool.1983; 228 (2): 195-201.
    [131]Kimura Y,Yanagimachi R.Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring.Development.l995;121(8):2397-405.
    [132]Perry AC WT Kishikawa H.Kasai T,Okabe M,Toyoda Y,Yanagimachi R.Mammalian transgenesis by intracytoplasmic sperm injection[J].Science.1999;284 (5417): 1180-1183.
    [133]Chan AW Ck,Martinovich C,Simerly C,Scharten G.Transgenic monkeys produced by retroviral gene transfer into mature oocytes.Science.2001;291 (5502):226.
    [134]K.H.Update on equine ICS1 and cloning.Theriogenology.2005; 64 (3):535-541.
    [135]Kurome M UH,Tomii R.Naruse K.Nagashima H.Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer.Transgenic Res.2006;15(2):229-240.
    [136]Schnieke AE KA,Ritchie WA,Mycock et.al..Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science.1997; 278 (5346):2130-2133.
    [137]Zakhartchenko V, Alberio R, Stojkovic M, et.al.Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures. Mol Reprod Dev.1999; Nov; 54(3):264-72.
    [138]Polejaeva IA, Chen SH, Vaught TD, et.al.Cloned pigs produced by nuclear transfer from adult somatic cells.Nature.2000; 407(6800):86-90.
    [139]Rudolph NS.Biopharmaceutical production in transgenic livestock. Trends Biotechnol. 1999; 17(9):367-74.
    
    [140]Houdebine LM.Transgenic animal ioreactors.Transgenic Res.2000;9(4-5):305-20.
    [141]Houdebine LM.Production of pharmaceutical proteins by transgenic animals.2009; 32(2):107-121.
    [142]Shultz, LD; Ishikawa, F; Greiner, DL.Humanized mice in translational biomedical research. Nat Rev Immunol.2007; 7:118-130.
    [143]RL.N.Lessons from transgenic mouse lines expressing sickle hemoglobin [J].Proc Soc Exp Biol Med.1994; 205 (4):274-281.
    [144]Plump AS, Smith JD,Hayek T,et al.Severe Hypercholesterolemia and atherosclerosisin apolipoprotein E-deficient mice created by homologous recombination Es cells. Cell. 1992, 71:3432353.
    [145]Grubb BR, Boucher RC.Pathophysiology of gene-targeted mouse models for cystic fibrosis.Physiol.Rev. 1999; 79:S193-S214.
    [146]Guilbault C, Saeed Z, Downey GP, et al.Cystic fibrosis mouse models.Am.J.Respir.Cell Mol.Biol.2007.36:l-7.
    [147]Vodicka P,Smetana K Jr,Dvorankova B,et al.The miniature pig as an animal model in biomedical research.Ann N Y Acad Sci.2005; 1049:161-71.
    [148]Schook,L;Beattie,C;Beever,J;et al.Swine in biomedical researchxreating the building blocks of animal models.Anim Biotechnol.2005; 16:183-90.
    [149]Pinkert,CA.Pursel,V G.Miller K,F.Production of transgenic pigs harboring growth hormone(MTbGH) or growth hormone releasing fa ct or (MThGRF) genes.Anim.Sci. Suppl. 1987; 65:260
    [150]Damak S,Su H,Jay NP,Bullock DW.Improved wool production in transgenic sheep expressing insulin-like growth factor 1.Biotechnology. 1996;Feb; 14(2): 185-8.
    [151]Lai L K-SD,Park KW,Cheong HT,et al.Production of alpha- 1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science.2002;295(5557): 1089-1092.
    [152]Charlier C,Coppieters W, Farnir F.et al.The mh gene causing double-muscling in cattle maps to bovine Chromosome 2.Mamm Genome. 1995;6( 11):788-792.
    [153]Grobet L, Martin LJ, PonceletD. et al.A deletion in the bovine Myostatin gene causes the double-muscled phenotype in cattle. Nat Genet.1997; 1(1)7:71-74.
    [154]Garber EA,Chute HT,Condra JH,Gotlib L,Colonno RJ,Smith RGAvian cells expressing the murine Mxl protein are resistant to influenza virus infection.Virology.l991;Feb;180 (2):754-62.
    [155]Kerr DE.Plaut K.Bramley AJ,et.al.Lysostaphin expression in mammary glands confers protecion against staphylococcal infection in transgenic mice.NatBiotechnol.2001;(1):66-70.
    [156]Wall RJ, Powell AM, Paape MJ, et.al.Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol.2005; 23(4):445-451.
    [157]Hasuwa H,Kaseda K.Einarsdottir T,Okabe M.Small interfering RNA and gene silencing in transgenic mice and rats.FEBS Lett.2002;532(l-2):227-30.
    [158]Golding MC.Long CR,Carmell MA,et.al.Suppression of prion protein in livestock by RNA interference.Proc Natl Acad Sci U S A.2006;103(14):5285-90.
    [159]Golovan SP MR,Ajakaiye A,Cottrill M,et al.Pigs expressing salivary phytase produce low-phosphorus manure.Nat Biotechnol.2001;19(8):741-745.
    [160]Lai L,Kolber-Simonds D.Park KW,et al.Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science.2002;295(5557): 1089-1092.
    [161]Meyers G,RumenAmpf T.Thiel HJ.Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989,171:555-567.
    [162]Robert Stark,Gregor Meyers,Tillmann Rumenapf,et.al.Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical Swine Fever Virus.Virology. 1993,67( 12):7088-7095.
    [163]Nicolas Ruggli,Jon-Duri Tratschin,Matthias Schweizer,et al.Classical swine fever virus interferes with cellular antiviral defense:Evidence for a Novel Function of N~(pro).[J].Virology, 2003;77(13):7645-7654.
    [164]Xu X,Guo H,Xiao C,et.al.In vitro inhibition of classical swine fever virus replication by siRNAs targeting N~(pro) and NS5B genes.Antiviral Res.2008;Jun;78(3): 188-93.
    [165]Yu X,Tu C,Li H,et.al.DNA-mediated protection against classical swine fever virus. Vaccine.2001; 19(11-12): 1520-5.
    [166]Lai L, Prather RS. Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells.2003; 5(4):233-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700