用户名: 密码: 验证码:
肥胖型高血压的临床特征及血管紧张素Ⅱ受体拮抗剂干预的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     研究表明,肥胖人群更容易发生高血压,以各种肥胖指标(体重指数、腰围(WC)、腰-臀比等)评定的肥胖程度均与血压水平有较好的相关性。肥胖与高血压合并存在,更易发生糖尿病、高脂血症、冠状动脉、脑动脉粥样硬化及外周血管病变。腹内脂肪堆积是腹型肥胖的重要临床特征和病理生理基础,与胰岛素抵抗、高血压、代谢异常等心血管危险因素密切相关。但应用腹内脂肪指标专门观察对高血压患者的代谢影响的研究较少。
     腹型肥胖时,常伴有内脏脂肪大量堆积,其分泌的众多炎症介质、细胞和脂肪因子在心血管和代谢病的发病中起重要作用。研究证实,亚洲地区人群的腹内脂肪面积(Visceral fat area,VA)≥100cm2可诊断为内脏脂肪型肥胖(visceral fat obesity,VFO)。达到此切点,心血管代谢危险性明显增加。目前临床诊断腹型肥胖主要依据测量腰围和腰臀比,但这两个体脂指标与内脏脂肪量存在一定程度的不一致。因此,这将出现几种应用常规体脂参数测量不能准确评价的情况,如WC正常、VA超标或WC超标、而VA正常,我们将前者称之为“隐性内脏脂肪型肥胖”(Masked visceral fat obesity,隐性VFO),后者称之为“假性内脏脂肪型肥胖”(Pseudo visceral fat obesity,假性VFO),但这二种特殊的腹型肥胖与高血压患者心血管代谢危险性及靶器官损害的关系如何尚不清楚。
     对于高血压合并非糖尿病肥胖者,目前各国高血压指南均无推荐用药。血管紧张素II受体拮抗剂(ARB)类药物除了降压作用之外,还可以改善糖尿病患者、代谢综合征患者的代谢指标。激活过氧化物酶体增生物激活受体(PPAR)γ可引起脂肪分化和脂肪形成,增加体重;而激活PPARδ则可促进脂肪组织游离脂肪酸氧化分解,可预防高脂诱导的肥胖和体重增加。有报道某些ARB如替米沙坦、坎地沙坦可预防实验动物体重增加及高脂诱导的肥胖,但机制不明:已知ARB可激活PPARγ,尚不清楚替米沙坦是否通过激活PPARδ预防体重增加及高脂诱导的肥胖。此外,ARB干预对非糖尿病的肥胖型高血压患者是否也有改善脂肪代谢、减轻体重的作用,也不得而知。
     因此,本研究从临床到基础再到临床,分为三部分进行研究,首先探索腹内脂肪堆积对于高血压患者的代谢指标、心血管代谢危险性和靶器官损害的影响,进一步观察替米沙坦是否能预防实验动物体重增加及高脂诱导的肥胖并探索其机制,最后再回到临床,观察替米沙坦干预能否改善肥胖型高血压患者的肥胖程度及腹内脂肪堆积;为探索肥胖型高血压的优化治疗方案提供依据。
     方法:
     1、临床横断面研究:检测住院高血压患者的肥胖相关指标、腹部脂肪分布情况,通过统计分析,探索腹内脂肪堆积对代谢指标、心血管代谢危险性和靶器官损害的影响。
     2、动物实验研究:采用SHR大鼠、C57BL/6J小鼠及PPARδ基因敲除小鼠等多种动物模型,分别给予正常/高脂饮食,并给予替米沙坦/氨氯地平灌胃,观察ARB对实验动物体重和肥胖的影响;并采用实验动物肠系膜脂肪组织及皮下脂肪组织、正常及PPARδ过表达的3T3-L1细胞作为研究对象,对其分子机制作初步探讨。
     3、临床试验:开展随机对照、双盲双模拟的临床试验,纳入60例非糖尿病的肥胖型高血压患者,随机分为替米沙坦组和氨氯地平组,分别给予替米沙坦/氨氯地平干预12周,观察其血压、肥胖相关体脂指数及腹部脂肪分布情况变化,探索替米沙坦能否改善肥胖型高血压患者的肥胖程度及腹内脂肪堆积。
     主要研究结果
     1、临床横断面研究:
     1)腹内脂肪堆积对高血压患者代谢指标的影响:
     在年龄、性别、血压水平匹配的条件下,腰围超标组舒张压、体重指数(BMI)、腹内脂肪面积均显著高于腰围正常组,空腹血糖、负荷后2h血糖、糖化血红蛋白、总胆固醇(TC)、甘油三酯(TG)、空腹胰岛素和胰岛素抵抗指数(HOMA-IR)也显著高于腰围正常组(P<0.01);但其高密度脂蛋白胆固醇(HDL-c)、低密度脂蛋白胆固醇(LDL-c)与腰围正常组比较无显著差异。与腰围超标+腹内脂肪堆积组比较,单纯腹内脂肪堆积组和正常组的空腹血糖、负荷后2h血糖、HOMA-IR、TC均显著降低;单纯腰围超标组和正常组的TG与腰围超标+腹内脂肪堆积组比较也显著降低;空腹胰岛素水平则仅有正常组与腰围超标+腹内脂肪堆积组有显著差异。与正常组比较,其余三组的空腹胰岛素均显著增高,腰围超标+腹内脂肪堆积组和单纯腰围超标组HOMA-IR显著增高;其余指标(空腹血糖、负荷后2h血糖、糖化血红蛋白、TC、TG)仅腰围超标+腹内脂肪堆积组与正常组比较有显著差异。校正了年龄、性别之后,高血压患者腰围与空腹血糖、负荷后2h血糖、糖化血红蛋白、HOMA-IR和空腹胰岛素均呈显著正相关(P<0.05或0.01),腹内脂肪面积与HOMA-IR和空腹胰岛素也呈显著正相关(P<0.01)
     2)腹型肥胖的类型与高血压患者心血管代谢危险性的关系
     男性隐性内脏性肥胖(VFO)检出率(10.9%)显著高于女性(4.8%)。2)男性隐性VFO组和假性VFO组≥3项以上心血管代谢危险因素聚集率(43.1%,78.7%)显著高于非肥胖组(25.0%)。女性隐性VFO组≥3项以上危险因素聚集率(33.3%)与非肥胖组(31.2%)无显著差异,但显著低于假性VFO组(78.7%)和真性VFO组(90.9%)。腰围增加和腹内脂肪堆积是多重心血管代谢危险因素聚集的独立危险因素(OR 1.13(1.10-1.17),1.01(1.006-1.02))。
     3)内脏脂肪堆积对肥胖型高血压靶器官损害的影响
     假性VFO组和真性VFO组左室肥厚检出率(46.5%,53.6%)显著高于非肥胖组(32%),颈动脉壁病变检出率(22%)显著低于隐性VFO组(40.4%)和真性VFO组(35.0%);隐性VFO组肾功轻度受损检出率(20.9%)显著高于非肥胖组(11.1%)。隐性VFO组和真性VFO组的靶器官损害检出率(75%,75.2%)均比非肥胖组(52.5%)和假性VFO组(56.1%)显著增高。年龄和腹内脂肪是高血压患者是否合并靶器官损害的独立危险因素(OR: 1.021(95%CI:1.002-1.040),1.008(95%CI:1.002-1.014))。
     2、动物实验研究
     1)普食及高脂喂养SHR大鼠并接受ARB(替米沙坦和坎地沙坦)干预后体重均显著低于普食/高脂对照组和普食/高脂+氨氯地平组(P<0.05或P<0.01);各部位内脏脂肪总量及内脏脂肪量/体重显著低于普食/高脂+氨氯地平组(P<0.05或P<0.01)。ARB及氨氯地平干预后血压均明显低于普食/高脂对照组(P<0.01),但干预组间无显著差异。各组间代谢指标无显著差异。普食喂养SHR,加用ARB后其肠系膜及皮下脂肪脂肪细胞的平均面积均非常显著小于普食/高脂对照组和普食/高脂+氨氯地平组(P<0.01)。高脂喂养的SHR,加用替米沙坦或坎地沙坦后其肠系膜脂肪细胞面积小于高脂组及高脂+氨氯地平组(P<0.01)。
     2) C57BL/6J野生型小鼠(WT)予以普食+替米沙坦干预后,其体重、皮下脂肪、棕脂、各部位内脏脂肪及内脏脂肪总量和内脏脂肪量/体重、皮下脂肪量/体重以及血甘油三酯及游离脂肪酸、肠系膜脂肪、皮下脂肪细胞平均面积均明显低于普食组(P<0.05或P<0.01)。过氧化物酶体增殖体激活受体(PPAR)δ基因敲除小鼠(PPARδ-/-)普食组与普食+替米沙坦组无上述差异。各组间血压均无显著差异。
     3)替米沙坦(10μmol/L)和PPARδ激动剂GW0742干预3T3-L1细胞24小时后,可见PPARδ基因活性明显高于对照组。油红染色提示PPARδ过表达组细胞的脂滴沉积较3T3-L1对照组和3T3-L1空病毒组明显改善,PPARδ蛋白表达明显增加(P<0.05),三组间AT1R蛋白表达无明显差异。
     4) SHR喂养16周后,普食/高脂+替米沙坦组肠系膜脂肪组织PPARδ蛋白、mRNA表达显著高于普食/高脂对照组(P<0.05);皮下脂肪组织PPARδ蛋白表达有增高趋势,但无统计学意义;PPARγmRNA表达无明显差异。
     3、临床试验研究
     1)替米沙坦/氨氯地平干预12周后,与基线水平相比,两组收缩压、舒张压均显著降低(P<0.001),但干预后组间差异无统计学意义。
     2)干预12周后,与基线水平相比,替米沙坦组腹壁脂肪厚度无显著差异,腹内脂肪厚度显著减少(P=0.012),腹壁/腹内脂肪厚度比显著增加(P=0.009);但氨氯地平组上述各项指标均无显著差异。干预后组间比较,替米沙坦组腹内脂肪减少程度更为显著(-3.38±6.08cm vs -0.08±5.80cm,P=0.045)。替米沙坦组腹部脂肪分布情况显著改变(腹壁/腹内脂肪比变化:0.10±0.16),与氨氯地平组(-0.02±0.17)比较有显著差异。
     主要结论
     1.高血压患者同时伴有腹围超标和腹内脂肪堆积时,胰岛素抵抗、血糖异常、血脂异常最为严重。
     2.不同腹型肥胖类型高血压患者的心血管代谢危险和靶器官损害有显著差异;隐性内脏脂肪型肥胖和假性内脏脂肪型肥胖患者同样有较高的心血管代谢风险。男性隐性内脏脂肪型肥胖检出率显著高于女性。
     3.替米沙坦干预可减少C57BL/6J小鼠和SHR大鼠体重增加,减少其脂肪细胞面积和脂肪量,预防高脂诱导的肥胖,这一作用与过氧化物酶体增殖激活受体(PPAR)δ被激活有关。
     4.替米沙坦和氨氯地平干预非糖尿病、肥胖型高血压患者12周,均可显著降低血压,但仅替米沙坦可显著减少患者腹内脂肪。
BACKGROUDS
     A large number of researches had showed that those obese people were more prone to hypertension and degree of obesity assessed by a variety of indicators (e.g. body mass index, waist circumference, waist-hip ratio, et al.) was correlated with blood pressure. Obesity and hypertension were often co-existed, which induced higher susceptibility to diabetes, hyperlipidemia, coronary and cerebral atherosclerosis and peripheral vascular disease. Intra-abdominal fat accumulation was an important clinical features and pathophysiological basis of abdominal obesity (AO) and closely related to the cardiovascular risk factors such as insulin resistance, hypertension, metabolic abnormalities, and so on. Nevertheless, the metabolic effects of visceral fat tissue in hypertensive patients were relatively seldom discussed.
     Abdominal obesity was often accompanied by visceral fat accumulation and increase of the secretion of the many inflammatory mediators, cytokines and adipocytokines, which played an important role in cardiovascular and metabolic disease. Many studies had confirmed that visceral fat area(VA)≥100cm2 can be diagnosed as visceral fat obesity (VFO) and predict higher cardiometabolic risk. At present, clinical diagnosis of abdominal obesity was mainly based on waist measurement (WC) and waist-hip ratio, but there is a degree of inconsistency between these two indicators of body fat and visceral fat volume. As a result, there will be several cohorts which can not be accurately classified, such as the patients with normal WC but elevated VA, or with abnormal WC but normal VA. We then defined the former as Masked visceral fat obesity (Masked VFO) and the latter as Pseudo- visceral fat obesity (Pseudo-VFO). But the relationships between these two special types of abdominal obesity and cardiometabolic risk and target organ damage in patients with hypertension remain still unclear.
     For non-diabetic, obese hypertensive patients, there is still no recommend medication in all current hypertension guidelines. In addition to its anti-hypertensive role, angiotensin II receptor blockers (ARB) can also improve metabolic profiles in patients with diabetes or metabolic syndrome, which made it a promising drug as the first choice for obesity related hypertension. ARBs were reported to activate peroxisome proliferator-activated receptor (PPAR)γ, which can induce the formation and differentiation of fat tissue and increase body weight. However, there were some reports showed some ARB, such as Telmisartan and Candesartan, could prevent weight gain and high-fat diet-induced obesity. On the other hand, PPARδcan promote free fatty acid oxidation in fatty tissue and prevent high-fat diet-induced obesity and weight gain when it be activated. Now we are interested in whether Telmisartan can prevent weight gain and high-fat diet-induced obesity by activating PPARδ; and whether Telmisartan can improve the fat metabolism and reduce body weight in non- diabetes obese patients with hypertension.
     The present study was divided into three parts to explore the impact of abdominal adiposity on metabolism profile, cardiometabolic risk and target organ damages in patients with hypertension and obesity, and to observe whether Telmisartan can prevent weight gain and obesity induced by high-fat diet in animals and explore its mechanism. Furthermore, a clinical trial was performed to observe whether Telmisartan could improve the degree of obesity and accumulation of visceral fat in obese hypertensive patients.
     METHODS
     1. Clinical cross-sectional study: A cross-sectional study was performed in hypertensive patients to explore effects of obesity-related indicators and abdominal fat distribution on metabolic profile, cardiometabolic risk and target organ damages.
     2. Experimental study: Several animal models, including SHR rats, C57BL/6J mice and PPARδ-knockout mice, were fed by the normal/high-fat diet, accompanied intragastric administration of Telmisartan or Amlodipine, to observed impact of Telmisartan on the weight and the degree of obesity. 3T3-L1 cells with normal and over-expression of PPARδ, SHR mesenteric adipose tissue and subcutaneous tissue were also used to explore the molecular mechanism of Telmisartan-induced metabolic effects.
     3. Clinical trial: A random, double-blinded, double-dummy, controlled trial was performed in 60 no-diabetes, obese hypertensive cases. The eligible patients were randomized into two groups, followed by a 12-week intervention of Telmisartan / Amlodipine. Blood pressure, obesity-related parameters and abdominal fat distribution were observed to explore whether Telmisartan can improve the degree of obesity and abdominal fat accumulation in patients with hypertension and obesity.
     RESULTS
     1. Clinical cross-sectional study:
     1) Impact of visceral adipose on metabolic profiles in patients with hypertension
     After adjusted by age, gender and blood pressure, there were significant differences of diastolic blood pressure (DBP), BMI, VA between patients with abnormal (AO(+)) and normal (AO(-)) waist circunference. Compared with AO(-) group, fasting plasma glucose (FPG), post-prandial plasma glucose (2hPG), HbAlC, total cholesterol (TC), triglyceride (TG), fasting insulin (FIN) and HOMA-IR were significantly higher in AO(+) group. However, no significant difference of high density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) was detected between the two groups. Compared with the patients with increased WC and VA, FPG, 2hPG, HOMA-IR and TC level in patients with increased VA only and patients with normal WC and VA were significantly decreased, whereas TG level in patients with increased WC only or with normal WC and VA was significantly decreased.. As for FIN level, those patients with normal WC and VA showed lowest serum concentration than the other three groups. Compared with patients with normal WC and VA, HOMA-IR in patients with increased WC and VA and with increased WC only was significantly higher. Nevertheless, only patients with increased WC and VA were detected significantly higher FPG, 2hPG, HbA1C, TC, TG level than patients with normal WC and VA. After controlled by age and gender, partial correlation analysis showed that WC was significantly positively correlated with FPG, 2hPG, HbA1C, HOMA-IR and FIN level, whereas VA was significantly positively correlated with HOMA-IR and FINs.
     2) Relationship between different type of abdominal obesity and cardiometabolic risk
     Firstly, there was significantly higher prevalence of Masked VFO in male (10.9%) than that in female (4.8%). Secondly, those male patients in Masked and Psudo- VFO group had higher prevalence of clustering of more than 3 cardiometabolic risk factors (CMR) (43.1%, 78.7%) than those in Non-obesity group (25.0%). On the other hand, those female patients with Masked VFO had similar prevalence (33.3%) with those in Non-obesity group (31.2%), and lower prevalence than those with Pseudo- VFO (78.7%) and VFO (90.9%). Moreover, logistic regression analysis showed that WC and VA were independent risk factors for multiple risk factors clustering(OR(95%CI) was 1.13(1.10-1.17) ,1.01(1.01-1.02),respectively)。
     3) Relationship between the characteristics of target organ damage and visceral fat in patients with obesity-related hypertension
     There was significantly higher prevalence of left ventricular hypertrophy in Pseudo VFO (46.5%) and VFO group (53.6%) than that in Non-Obesity group (32%). The prevalence of left carotid artery wall lesions in Pseudo VFO group (22%) was significantly lower than that in Masked VFO group (40.4%) and VFO group (35.0%). There were also significantly lower prevalence of renal damage in Non-Obesity group (11.1%) than that in Masked VFO group (20.9%). The Masked VFO (75%) and VFO group (75.2%) had higher prevalence of TOD than Non-Obesity(52.5%) and Pseudo VFO group (56.1%). Also, the logistic regression analysis showed that age and VA were independent risk factors for TOD (OR (95%CI) was 1.021(1.002-1.040), 1.008(1.002-1.014), respectively).
     2. Experimental study
     1) SHR rats were fed by normal- (ND) or high-fat diet (HD) and intragastric administrated by ARB (Telmisartan (Tel) or Candesartan (Can)) or amlodipine (Aml). After the intervention, there is significantly lower body weight and less visceral fat in ND/HD+Tel group than that in ND/HD control and ND/HD+Aml group (P <0.05 or P < 0.01). Blood pressure was observed significantly lower in ARB groups and amlodipine group than that in after the intervention were significantly lower than that in ND/HD control group (P <0.01), but no significant difference was detected among the intervention groups. Metabolic parameters between the groups were also not significantly different. The average fat cell size of the mesentery and subcutaneous adipose were significantly smaller in ARB-intervention groups than that in ND control and ND+Aml group. On the other hand, similar decrease changes were only seen in mesentery adipose tissue in ARB groups compared with HD control and HD+Aml group.
     2) Wild-type C57 mice (WT) intervened with ND+Telmisartan showed significantly decreased weight, subcutaneous fat, brown fat, various visceral fat, total visceral fat and visceral fat / weight, subcutaneous fat / Weight, as well as serum triglyceride and free fatty acids, mesenteric fat, subcutaneous fat cell size than that in the ND group (P <0.05 or P <0.01). There were no same difference in PPARδknockout mice (PPARδ-/-). There was also no significant difference of blood pressure among all groups.
     3) PPARδgene activity was significantly higher after intervened with telmisartan (10μmol/L) than that with PPARδagonist GW0742., Oil Red O staining showed that deposition of lipid droplets in PPARδover-expressed cells was significantly reduced than that in 3T3-L1 Control and 3T3-L1 Vecto cells. PPARδprotein expression was observed significantly increased in PPARδover-expressed cells (P<0.05), but there were no significant differences in all three groups.
     4) PPARδprotein and mRNA expression in mesenteric adipose tissue was significantly higher in ND/HD+Tel group than that in ND/HD control group (P<0.05). Similar but not significant trend of PPARδprotein expression was observed in ND/HD+Tel group. There were no significant difference of PPARγmRNA expression in all groups.
     3. Clinical trial
     1) After intervention with Telmisartan or amlodipine for 12 weeks, systolic blood pressure, diastolic blood pressure were significantly lower (P<0.001) compared with the baseline level of the two groups, but no significant difference were observed between two groups after intervention.
     2) There were no significant differences of subcutaneous fat thickness but a significant reduction of visceral fat thickness (P = 0.012) and subcutaneous/visceral fat thickness (P= 0.009) between pre- and post-intervention in Telmisartan group. As for Amlodipine group, these indicators were no significant difference. After the intervention, Telmisartan group showed more decrease of visceral fat thickness compared with Amlodipine group (-3.38±6.08cm2 vs -0.08±5.80, P =0.045). There was also significantly improved abdominal fat distribution in Amlodipine group compared with Telmisartan group.
     CONCLUSIONS
     1. The most aggravated insulin resistance, hyperglycaemia and dyslipidemia are accompanied by abnormal waist circumference and visceral adiposity simultaneously in hypertensive patients.
     2. There is significantly impact of different types of abdominal obesity on cardiometabolic risk and target organ damages in patients with hypertension. Patients with masked visceral fat obesity (VFO) and pseudo- visceral fat obesity also have a considerably higher risk of cardiometabolic risk. The prevalence of masked VFO is significantly higher in men than that in women.
     3. Telmisartan reduces weight gain, fat cell area and fat volume in C57BL/6J mice and SHR rats and prevents high-fat diet-induced obesity mainly by activating the PPARδ.
     4. Either Telmisartan or Amlodipine can decrease blood pressure in non-diabetic, obese hypertensive patients after 12-week intervention, whereas only Telmisartan can reduce visceral fat thickness significantly.
引文
1.陈捷,赵秀丽,武峰,等.我国14省市中老年人肥胖超重流行现状及其与高血压患病率的关系.中华医学杂志, 2005, 85(40): 2830-2834.
    2. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring), 2008, 16(7): 1622-1635.
    3. Smith SC, Jr., Clark LT, Cooper RS, et al. Discovering the full spectrum of cardiovascular disease: Minority Health Summit 2003: report of the Obesity, Metabolic Syndrome, and Hypertension Writing Group. Circulation, 2005, 111(10): e134-139.
    4. Zhang R, Reisin E. Obesity-hypertension: the effects on cardiovascular and renal systems. Am J Hypertens, 2000, 13(12): 1308-1314.
    5. Zindah M, Belbeisi A, Walke H, et al. Obesity and diabetes in Jordan: findings from the behavioral risk factor surveillance system, 2004. Prev Chronic Dis, 2008, 5(1): A17.
    6. de Boer IH, Sibley SD, Kestenbaum B, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol, 2007, 18(1): 235-243.
    7. Wild SH, Byrne CD. ABC of obesity. Risk factors for diabetes and coronary heart disease. Bmj, 2006, 333(7576): 1009-1011.
    8.陈静,田志强,张伟国,等.腹内脂肪面积切点与代谢综合征临床检出率的关系.中华医学杂志, 2006, 86(30): 2110-2113.
    9. Kadowaki T, Sekikawa A, Murata K, et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes (Lond), 2006, 30(7): 1163-1165.
    10. Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann Intern Med, 2004, 140(12): 992-1000.
    11. Piche ME, Weisnagel SJ, Corneau L, et al. Contribution of abdominal visceral obesity and insulin resistance to the cardiovascular risk profile of postmenopausal women.Diabetes, 2005, 54(3): 770-777.
    12. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract, 2005, 69(1): 29-35.
    13. Onat A, Avci GS, Barlan MM, et al. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int J Obes Relat Metab Disord, 2004, 28(8): 1018-1025.
    14. Sironi AM, Gastaldelli A, Mari A, et al. Visceral fat in hypertension: influence on insulin resistance and beta-cell function. Hypertension, 2004, 44(2): 127-133.
    15.中国高血压防治指南修订委员会.中国高血压防治指南(2005修订版) available at: www.healthyheart-china.com/Appendix/Information/335909725046875/中国高血压指南(2005年修订版)2006-3-6定稿.pdf.
    16. The IDF consensus worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf.
    17. Rankinen T, Kim SY, Perusse L, et al. The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes Relat Metab Disord, 1999, 23(8): 801-809.
    18.贾伟平,陆俊茜,项坤三,等.简易体脂参数估测腹内型肥胖的可靠性评价.中华流行病学杂志, 2002, 23(1): 20-23.
    19. New criteria for 'obesity disease' in Japan. Circ J, 2002, 66(11): 987-992.
    20. Tokunaga K, Matsuzawa Y, Ishikawa K, et al. A novel technique for the determination of body fat by computed tomography. Int J Obes, 1983, 7(5): 437-445.
    21. Jordan J, Engeli S, Redon J, et al. European Society of Hypertension Working Group on Obesity: background, aims and perspectives. J Hypertens, 2007, 25(4): 897-900.
    22. Bari MR, Ostgren CJ, Rastam L, et al. Abdominal obesity and insulin resistance in patients with type 2 diabetes in a Swedish community. Skaraborg hypertension and diabetes project. Scand J Prim Health Care, 2006, 24(4): 211-217.
    23. Crowther NJ, Ferris WF, Ojwang PJ, et al. The effect of abdominal obesity on insulin sensitivity and serum lipid and cytokine concentrations in African women. Clin Endocrinol (Oxf), 2006, 64(5): 535-541.
    24. Gong W, Ren H, Tong H, et al. A comparison of ultrasound and magnetic resonanceimaging to assess visceral fat in the metabolic syndrome. Asia Pac J Clin Nutr, 2007, 16 Suppl 1339-345.
    25. Tanaka S, Yoshiyama M, Imanishi Y, et al. MR measurement of visceral fat: assessment of metabolic syndrome. Magn Reson Med Sci, 2006, 5(4): 207-210.
    26.祝之明.代谢综合征病因探索与临床实践.北京:人民军医出版社, 2005.8.
    27.陈静,田志强,罗志丹,等.腹部脂肪分布与代谢综合征组分关系的研究.解放军医学杂志, 2005, 30(8): 683-686.
    28. Maurovich-Horvat P, Massaro J, Fox CS, et al. Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int J Obes (Lond), 2007, 31(3): 500-506.
    29. Chiba Y, Saitoh S, Takagi S, et al. Relationship between visceral fat and cardiovascular disease risk factors: the Tanno and Sobetsu study. Hypertens Res, 2007, 30(3): 229-236.
    30. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation, 2007, 116(1): 39-48.
    31.陈蕾,贾伟平,项坤三,等.肥胖者胰岛素抵抗与总体脂、局部体脂关系的研究.中华内分泌代谢杂志, 2001, 17(5): 276-279.
    32. Om, Kumar, Shrestha, et al. Critical visceral adipose tissue thresholds aassociated with type 2 dia betes mellitus in chinese population.南京医科大学学报·英文版, 2007, 21(1): 15-20.
    33. Saelens BE, Seeley RJ, van Schaick K, et al. Visceral abdominal fat is correlated with whole-body fat and physical activity among 8-y-old children at risk of obesity. Am J Clin Nutr, 2007, 85(1): 46-53.
    34. Jovanovic A, Laganovic M, Dika Z, et al. [Influence of visceral obesity on blood pressure values in patients with essential hypertension]. Lijec Vjesn, 2006, 128(11-12): 393-395.
    35. Nishina M, Kikuchi T, Yamazaki H, et al. Relationship among systolic blood pressure, serum insulin and leptin, and visceral fat accumulation in obese children. Hypertens Res, 2003, 26(4): 281-288.
    36. Hassan MO, Jaju D, Albarwani S, et al. Non-dipping blood pressure in the metabolic syndrome among Arabs of the Oman family study. Obesity (Silver Spring), 2007, 15(10): 2445-2453.
    37.方顺源,朱晓霞,金达丰,等.高血压与肥胖、高血脂、高血糖及高尿酸血症的关系.中国慢性病预防与控制, 2006, 14(1): 33-35.
    1. Watson K. Managing cardiometabolic risk: an evolving approach to patient care. Crit Pathw Cardiol, 2007, 6(1): 5-14.
    2. Schindler C, Bramlage P, Thoenes M, et al. Cardiovascular risk in obese hypertensive patients taking various antihypertensive drugs. Clin Drug Investig, 2007, 27(10): 707-717.
    3. Sowers JR. Update on the cardiometabolic syndrome. Clin Cornerstone, 2001, 4(2): 17-23.
    4. Stern N, Izkhakov Y. The metabolic syndrome revisited: "cardiometabolic risk" emerges as common ground between differing views of the ADA and AHA. J Cardiometab Syndr, 2006, 1(5): 362-363.
    5. Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J, 2007, 28(12): 1462-1536.
    6. Dandona P, Aljada A, Chaudhuri A, et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 2005, 111(11): 1448-1454.
    7.祝之明.代谢综合征病因探索与临床实践.北京:人民军医出版社, 2005.8.
    8. Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 2007, 56(4): 1010-1013.
    9.田志强,陈静,闫振成,等.代谢综合征患者腹内脂肪与心血管损害的关系.解放军医学杂志, 2005, 30(8): 687-689.
    10. New criteria for 'obesity disease' in Japan. Circ J, 2002, 66(11): 987-992.
    11. Jang Y, Kim OY, Ryu HJ, et al. Visceral fat accumulation determines postprandial lipemic response, lipid peroxidation, DNA damage, and endothelial dysfunction in nonobese Korean men. J Lipid Res, 2003, 44(12): 2356-2364.
    12.贾伟平,陆俊茜,项坤三,等.简易体脂参数估测腹内型肥胖的可靠性评价.中华流行病学杂志, 2002, 23(1): 20-23.
    13.中国成人血脂异常防治指南制定联合委员会.中国成人血脂异常防治指南.中华心血管病杂志, 2007, 35(5): 390-410.
    14.魏斌,赵志钢,田志强,等.腹内脂肪的超声定量检测及其临床价值.重庆医学, 2006, 35(9): 787-788.
    15.陈静,田志强,张伟国,等.腹内脂肪面积切点与代谢综合征临床检出率的关系.中华医学杂志, 2006, 86(30): 2110-2113.
    16. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002, 106(25): 3143-3421.
    17. Tokunaga K, Matsuzawa Y, Ishikawa K, et al. A novel technique for the determination of body fat by computed tomography. Int J Obes, 1983, 7(5): 437-445.
    18. Rankinen T, Kim SY, Perusse L, et al. The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes Relat Metab Disord, 1999, 23(8): 801-809.
    19. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis, 2007, 17(4): 319-326.
    20. The IDF consensus worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf.
    21.邵新宇,贾伟平,陆俊茜,等.正常糖调节人群中腹内脂肪积聚与糖脂代谢的早期变化.上海医学, 2004, 27(12): 906-908.
    22. Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity and the risk of impaired glucose tolerance: a prospective study among Japanese Americans. Diabetes Care, 2003, 26(3): 650-655.
    23. Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann Intern Med, 2004, 140(12): 992-1000.
    24. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes, 2004, 53(8): 2087-2094.
    25. Onat A, Sari I, Hergenc G, et al. Predictors of abdominal obesity and high susceptibility of cardiometabolic risk to its increments among Turkish women: aprospective population-based study. Metabolism, 2007, 56(3): 348-356.
    26. Maurovich-Horvat P, Massaro J, Fox CS, et al. Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int J Obes (Lond), 2007, 31(3): 500-506.
    27. Sung SH, Chuang SY, Sheu WH, et al. Adiponectin, but not leptin or high-sensitivity C-reactive protein, is associated with blood pressure independently of general and abdominal adiposity. Hypertens Res, 2008, 31(4): 633-640.
    28. Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med, 2007, 120(3 Suppl 1): S12-18.
    29. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation, 2007, 116(1): 39-48.
    30. Rodriguez A, Catalan V, Gomez-Ambrosi J, et al. Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des, 2007, 13(21): 2169-2175.
    31. Tulloch-Reid MK, Hanson RL, Sebring NG, et al. Both subcutaneous and visceral adipose tissue correlate highly with insulin resistance in african americans. Obes Res, 2004, 12(8): 1352-1359.
    32. Liu KH, Chan YL, Chan JC, et al. Association of carotid intima-media thickness with mesenteric, preperitoneal and subcutaneous fat thickness. Atherosclerosis, 2005, 179(2): 299-304.
    33. Hoffstedt J, Forster D, Lofgren P. Impaired subcutaneous adipocyte lipogenesis is associated with systemic insulin resistance and increased apolipoprotein B/AI ratio in men and women. J Intern Med, 2007, 262(1): 131-139.
    34. Varma V, Yao-Borengasser A, Rasouli N, et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, and inflammation. J Clin Endocrinol Metab, 2007, 92(2): 666-672.
    35.蒲云飞,何洪波,赵志钢,等.腹型肥胖内脏脂肪定量检测的评估及其临床价值.中华医学杂志, 2008.
    1. Nakamura H, Ito H, Egami Y, et al. Waist circumference is the main determinant of elevated C-reactive protein in metabolic syndrome. Diabetes Res Clin Pract, 2008, 79(2): 330-336.
    2. Peixoto Mdo R, Benicio MH, Latorre Mdo R, et al. Waist circumference and body mass index as predictors of hypertension. Arq Bras Cardiol, 2006, 87(4): 462-470.
    3. Pang W, Sun Z, Zheng L, et al. Body mass index and the prevalence of prehypertension and hypertension in a Chinese rural population. Intern Med, 2008, 47(10): 893-897.
    4. Nyamdorj R, Qiao Q, Soderberg S, et al. Comparison of body mass index with waist circumference, waist-to-hip ratio, and waist-to-stature ratio as a predictor of hypertension incidence in Mauritius. J Hypertens, 2008, 26(5): 866-870.
    5. Schindler C, Bramlage P, Thoenes M, et al. Cardiovascular risk in obese hypertensive patients taking various antihypertensive drugs. Clin Drug Investig, 2007, 27(10): 707-717.
    6.祝之明.代谢综合征病因探索与临床实践.北京:人民军医出版社, 2005.8.
    7.田志强,陈静,闫振成,等.代谢综合征患者腹内脂肪与心血管损害的关系.解放军医学杂志, 2005, 30(8): 687-689.
    8. Dandona P, Aljada A, Chaudhuri A, et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 2005, 111(11): 1448-1454.
    9. Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 2007, 56(4): 1010-1013.
    10.贾伟平,陆俊茜,项坤三,等.简易体脂参数估测腹内型肥胖的可靠性评价.中华流行病学杂志, 2002, 23(1): 20-23.
    11.陈静,田志强,张伟国,等.腹内脂肪面积切点与代谢综合征临床检出率的关系.中华医学杂志, 2006, 86(30): 2110-2113.
    12. New criteria for 'obesity disease' in Japan. Circ J, 2002, 66(11): 987-992.
    13.中国成人血脂异常防治指南制定联合委员会.中国成人血脂异常防治指南.中华心血管病杂志, 2007, 35(5): 390-410.
    14.中国高血压防治指南修订委员会.中国高血压防治指南(2005修订版) avalable at: www.healthyheart-china.com/Appendix/Information/335909725046875/中国高血压指南(2005年修订版)2006-3-6定稿.pdf, 2005.
    15. Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J, 2007, 28(12): 1462-1536.
    16. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation, 1977, 55(4): 613-618.
    17. Jordan J, Engeli S, Redon J, et al. European Society of Hypertension Working Group on Obesity: background, aims and perspectives. J Hypertens, 2007, 25(4): 897-900.
    18.祝之明.关注肥胖型高血压诊治的特殊性.中华老年心脑血管病杂志, 2008, 10(2): 85.
    19.魏斌,赵志钢,田志强,等.腹内脂肪的超声定量检测及其临床价值.重庆医学, 2006, 35(9): 787-788.
    20.何洪波,赵志钢,蒲云飞,等.腹型肥胖的类型与代谢综合征发生风险的关系.中华医学杂志, 2008, 18: 1251-1254.
    21. Keller U. From obesity to diabetes. Int J Vitam Nutr Res, 2006, 76(4): 172-177.
    22. Whaley-Connell A, Sowers JR. Obesity, insulin resistance, and nocturnal systolic blood pressure. Hypertension, 2008, 51(3): 620-621.
    23. Silva EA, Flexa F, Zanella MT. Abdominal obesity, insulin resistance and hypertension: impact on left ventricular mass and function in women. Arq Bras Cardiol, 2007, 89(2): 77-82, 86-92.
    24. Sironi AM, Gastaldelli A, Mari A, et al. Visceral fat in hypertension: influence on insulin resistance and beta-cell function. Hypertension, 2004, 44(2): 127-133.
    25. Faria AN, Ribeiro Filho FF, Gouveia Ferreira SR, et al. Impact of visceral fat on blood pressure and insulin sensitivity in hypertensive obese women. Obes Res, 2002, 10(12): 1203-1206.
    26. Guagnano MT, Ballone E, Merlitti D, et al. Association between anthropometric and ultrasound measurements of fatness with ambulatory blood pressure monitoring in obese women. Int J Obes Relat Metab Disord, 1997, 21(8): 632-636.
    27. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation, 2007, 116(1): 39-48.
    28. Behre CJ. Adiponectin, obesity and atherosclerosis. Scand J Clin Lab Invest, 2007, 67(5): 449-458.
    29. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta, 2007, 380(1-2): 24-30.
    30. de Simone G, Palmieri V, Bella JN, et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens, 2002, 20(2): 323-331.
    31. Dalton M, Cameron AJ, Zimmet PZ, et al. Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J Intern Med, 2003, 254(6): 555-563.
    32. Zhu S, Wang Z, Heshka S, et al. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr, 2002, 76(4): 743-749.
    33. Lear SA, Humphries KH, Kohli S, et al. Visceral Adipose Tissue, a Potential Risk Factor for Carotid Atherosclerosis. Results of the Multicultural Community Health Assessment Trial (M-CHAT). Stroke, 2007.
    34. Rodriguez A, Catalan V, Gomez-Ambrosi J, et al. Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des, 2007, 13(21): 2169-2175.
    35. Liu KH, Chan YL, Chan JC, et al. Association of carotid intima-media thickness with mesenteric, preperitoneal and subcutaneous fat thickness. Atherosclerosis, 2005, 179(2): 299-304.
    36. Hoffstedt J, Forster D, Lofgren P. Impaired subcutaneous adipocyte lipogenesis is associated with systemic insulin resistance and increased apolipoprotein B/AI ratio in men and women. J Intern Med, 2007, 262(1): 131-139.
    37. Bodary PF, Iglay HB, Eitzman DT. Strategies to reduce vascular risk associated with obesity. Curr Vasc Pharmacol, 2007, 5(4): 249-258.
    38. Kintscher U, Bramlage P, Paar WD, et al. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol, 2007, 612.
    39. Shimabukuro M, Tanaka H, Shimabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens, 2007, 25(4): 841-848..
    1. Iwai M, Chen R, Imura Y, Horiuchi M. TAK-536, a new AT1 receptor blocker, improves glucose intolerance and adipocyte differentiation. Am J Hypertens. 2007;20(5):579-586.
    2. Sharma AM. The obese patient with diabetes mellitus: from research targets to treatment options. Am J Med. 2006;119(5 Suppl 1):S17-23.
    3. Kurtz TW. New treatment strategies for patients with hypertension and insulin resistance. Am J Med. 2006;119(5 Suppl 1):S24-30.
    4. Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol. 2007;6:12.
    5. Shimabukuro M, Tanaka H, Shimabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens. 2007;25(4):841-848.
    6. Araki K, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet-induced obese mice. Hypertension. 2006;48(1):51-57.
    7. Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J, Saavedra JM. Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. Eur J Pharmacol. 2006;552(1-3):112-122.
    8. Moriuchi A, Yamasaki H, Shimamura M, Kita A, Kuwahara H, Fujishima K, Satoh T, Fukushima K, Fukushima T, Hayakawa T, Mizuguchi H, Nagayama Y, Abiru N, Kawasaki E, Eguchi K. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-gamma activation. Biochem Biophys Res Commun. 2007;356(4):1024-1030.
    9. Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology. 2005;146(8):3481-3489.
    10. Pershadsingh HA. Treating the metabolic syndrome using angiotensin receptor antagonists that selectively modulate peroxisome proliferator-activated receptor-gamma. Int J Biochem Cell Biol. 2006;38(5-6):766-781.
    11. Schupp M, Clemenz M, Gineste R, Witt H, Janke J, Helleboid S, Hennuyer N, Ruiz P, Unger T, Staels B, Kintscher U. Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes. 2005;54(12):3442-3452.
    12. Sugimoto K, Qi NR, Kazdova L, Pravenec M, Ogihara T, Kurtz TW. Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis. Hypertension. 2006;47(5):1003-1009.
    13. Janke J, Schupp M, Engeli S, Gorzelniak K, Boschmann M, Sauma L, Nystrom FH, Jordan J, Luft FC, Sharma AM. Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-gamma activation. J Hypertens. 2006;24(9):1809-1816.
    14. Fu M, Sun T, Bookout AL, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol Endocrinol. 2005;19(10):2437-2450.
    15. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355-361.
    16. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003;113(2):159-170.
    17.祝之明.代谢综合征-病因探索与临床实践[M].北京:人民军医出版社,2005.279.
    18. Mori Y, Itoh Y, Tajima N. Angiotensin II receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens. 2007;20(4):431-436.
    19. Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, Higashiura K, Shimamoto K. Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens. 2004;22(10):1977-1982.
    20. Di Filippo C, Lampa E, Tufariello E, Petronella P, Freda F, Capuano A, D'Amico M. Effects of irbesartan on the growth and differentiation of adipocytes in obese zucker rats. Obes Res. 2005;13(11):1909-1914.
    21. Zanchi A, Dulloo AG, Perregaux C, Montani JP, Burnier M. Telmisartan prevents the glitazone-induced weight gain without interfering with its insulin-sensitizing properties. Am J Physiol Endocrinol Metab. 2007;293(1):E91-95.
    22. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest. 2006;116(3):590-597.
    23. Choi KC, Lee SY, Yoo HJ, Ryu OH, Lee KW, Kim SM, Baik SH, Choi KM. Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2007;357(1):62-67.
    24. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A. 2006;103(9):3444-3449.
    25. Chang F, Jaber LA, Berlie HD, O'Connell MB. Evolution of peroxisome proliferator-activated receptor agonists. Ann Pharmacother. 2007;41(6):973-983.
    26. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003;144(6):2201-2207.
    27. Nakamura T, Funahashi T, Yamashita S, Nishida M, Nishida Y, Takahashi M, Hotta K, Kuriyama H, Kihara S, Ohuchi N, Nishimura T, Kishino BI, Ishikawa K, Kawamoto T, Tokunaga K, Nakagawa C, Mineo I, Watanabe F, Tarui S, Matsuzawa Y. Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation--double-blind placebo-controlled trial. Diabetes Res Clin Pract. 2001;54(3):181-190.
    1.陈捷,赵秀丽,武峰,等.我国14省市中老年人肥胖超重流行现状及其与高血压患病率的关系.中华医学杂志, 2005, 85(40): 2830-2834.
    2. Nakamura K, Okamura T, Hayakawa T, et al. The proportion of individuals with obesity-induced hypertension among total hypertensives in a general Japanese population: NIPPON DATA80, 90. Eur J Epidemiol, 2007.
    3. Liu L, Ikeda K, Chen M, et al. Obesit, EMERGING RISK IN CHINA: TREND OF INCREASING PREVALENCE OF OBESITY AND ITS ASSOCIATION WITH HYPERTENSION and HYPERCHOLESTEROLAEMIA AMONG THE CHINESE. Clin Exp Pharmacol Physiol, 2004, 31 Suppl 2S8-S10.
    4. Is central obesity a better discriminator of the risk of hypertension than body mass index in ethnically diverse populations?. J Hypertens, 2008, 26(2): 169-177.
    5. Banegas JR, Lopez-Garcia E, Graciani A, et al. Relationship between obesity, hypertension and diabetes, and health-related quality of life among the elderly. Eur J Cardiovasc Prev Rehabil, 2007, 14(3): 456-462.
    6. Mufunda J, Mebrahtu G, Usman A, et al. The prevalence of hypertension and its relationship with obesity: results from a national blood pressure survey in Eritrea. J Hum Hypertens, 2006, 20(1): 59-65.
    7. Mishra V, Arnold F, Semenov G, et al. Epidemiology of obesity and hypertension and related risk factors in Uzbekistan. Eur J Clin Nutr, 2006, 60(12): 1355-1366.
    8. Zindah M, Belbeisi A, Walke H, et al. Obesity and diabetes in Jordan: findings from the behavioral risk factor surveillance system, 2004. Prev Chronic Dis, 2008, 5(1): A17.
    9. de Boer IH, Sibley SD, Kestenbaum B, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol, 2007, 18(1): 235-243.
    10. Wild SH, Byrne CD. ABC of obesity. Risk factors for diabetes and coronary heart disease. Bmj, 2006, 333(7576): 1009-1011.
    11. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High BloodPressure. Hypertension, 2003, 42(6): 1206-1252.
    12. Kintscher U, Bramlage P, Paar WD, et al. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol, 2007, 612.
    13. Karagiannis A, Mikhailidis DP, Athyros VG, et al. The role of renin-angiotensin system inhibition in the treatment of hypertension in metabolic syndrome: are all the angiotensin receptor blockers equal?. Expert Opin Ther Targets, 2007, 11(2): 191-205.
    14. Sugimoto K, Qi NR, Kazdova L, et al. Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis. Hypertension, 2006, 47(5): 1003-1009.
    15. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest, 2006, 116(3): 590-597.
    16.祝之明.关注肥胖型高血压诊治的特殊性.中华老年心脑血管病杂志, 2008, 10(2): 85.
    17. Sharabi Y, Grotto I, Huerta M, et al. Susceptibility of the influence of weight on blood pressure in men versus women: lessons from a large-scale study of young adults. Am J Hypertens, 2004, 17(5 Pt 1): 404-408.
    18. Zhao WH, Xu HQ, Zhang X, et al. The association of BMI and WHR on blood pressure levels and prevalence of hypertension in middle-aged and elderly people in rural China. Biomed Environ Sci, 2000, 13(3): 189-197.
    19. Burke GL, Bertoni AG, Shea S, et al. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. Arch Intern Med, 2008, 168(9): 928-935.
    20. Kadota A, Hozawa A, Okamura T, et al. Relationship between metabolic risk factor clustering and cardiovascular mortality stratified by high blood glucose and obesity: NIPPON DATA90, 1990-2000. Diabetes Care, 2007, 30(6): 1533-1538.
    21. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf), 2006, 64(4): 355-365.
    22. Cassis LA, Police SB, Yiannikouris F, et al. Local adipose tissue renin-angiotensin system. Curr Hypertens Rep, 2008, 10(2): 93-98.
    23. Ailhaud G, Fukamizu A, Massiera F, et al. Angiotensinogen, angiotensin II and adipose tissue development. Int J Obes Relat Metab Disord, 2000, 24 Suppl 4S33-35.
    24. Shimabukuro M, Tanaka H, Shimabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens, 2007, 25(4): 841-848.
    25. Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens, 2007, 25(6): 1105-1187.
    26. A Randomized, Double-Blind, Active Control Trial Comparing Effects of Telmisartan, Candesartan and Amlodipine, Alone or Plus Metformin, on Non-Diabetic, Obese Hypertensive Patients (HOT-ACME). Available at: http://clinicaltrial -s .gov/ct2/show/NCT00538486.
    1.李立明,饶克勤,孔灵芝,等.中国居民2002年营养与健康状况调查.中华流行病学杂志, 2005, 26(7): 478-484.
    2.李岩,赵冬,王薇,等.中国11省市35~64岁人群应用不同代谢综合征诊断标准的比较.中华流行病学杂志, 2007, 28(1): 83-87.
    3.祝之明.关注肥胖型高血压诊治的特殊性.中华老年心脑血管病杂志, 2008, 10(2): 85.
    4. Engeli S, Bohnke J, Gorzelniak K, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension, 2005, 45(3): 356-362.
    5. Kurtz TW. New treatment strategies for patients with hypertension and insulin resistance. Am J Med. 2006;119(5 Suppl 1):S24-30.
    6. Iwai M, Chen R, Imura Y, Horiuchi M. TAK-536, a new AT1 receptor blocker, improves glucose intolerance and adipocyte differentiation. Am J Hypertens. 2007;20(5):579-586.
    7. Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens, 2007, 25(6): 1105-1187.
    8.李奎宝,姚崇华,董磊,等.高血压患者超重和非超重与心血管病危险性关系的前瞻性研究.中国预防医学杂志, 2001, 2(2): 118-119.
    9. Sharabi Y, Grotto I, Huerta M, et al. Susceptibility of the influence of weight on blood pressure in men versus women: lessons from a large-scale study of young adults. Am J Hypertens, 2004, 17(5 Pt 1): 404-408.
    10. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring), 2008, 16(7): 1622-1635.
    11. Zindah M, Belbeisi A, Walke H, et al. Obesity and diabetes in Jordan: findings from the behavioral risk factor surveillance system, 2004. Prev Chronic Dis, 2008, 5(1): A17.
    12. de Boer IH, Sibley SD, Kestenbaum B, et al. Central obesity, incidentmicroalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol, 2007, 18(1): 235-243.
    13. Wild SH, Byrne CD. ABC of obesity. Risk factors for diabetes and coronary heart disease. Bmj, 2006, 333(7576): 1009-1011.
    14. Watson K. Managing cardiometabolic risk: an evolving approach to patient care. Crit Pathw Cardiol, 2007, 6(1): 5-14.
    15. Aucott L, Poobalan A, Smith WC, et al. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension, 2005, 45(6): 1035-1041.
    16. Scholze J, Grimm E, Herrmann D, et al. Optimal treatment of obesity-related hypertension: the Hypertension-Obesity-Sibutramine (HOS) study. Circulation, 2007, 115(15): 1991-1998.
    17. Namikoshi T, Tomita N, Satoh M, et al. Pioglitazone enhances the antihypertensive and renoprotective effects of candesartan in Zucker obese rats fed a high-protein diet. Hypertens Res, 2008, 31(4): 745-755.
    18. Nasr CE, Hoogwerf BJ, Faiman C, et al. United Kingdom Prospective Diabetes Study (UKPDS). Effects of glucose and blood pressure control on complications of type 2 diabetes mellitus. Cleve Clin J Med, 1999, 66(4): 247-253.
    19. Chazova I, Almazov VA, Shlyakhto E. Moxonidine improves glycaemic control in mildly hypertensive, overweight patients: a comparison with metformin. Diabetes Obes Metab, 2006, 8(4): 456-465.
    20. Charles MA, Eschwege E, Grandmottet P, et al. Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial. Diabetes Metab Res Rev, 2000, 16(1): 2-7.
    21. Manzella D, Grella R, Esposito K, et al. Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens, 2004, 17(3): 223-227.
    22. Snorgaard O, Kober L, Carlsen J. The effect of metformin on blood pressure and metabolism in nondiabetic hypertensive patients. J Intern Med, 1997, 242(5): 407-412.
    23. Negro R, Formoso G, Hassan H. The effects of irbesartan and telmisartan onmetabolic parameters and blood pressure in obese, insulin resistant, hypertensive patients. J Endocrinol Invest, 2006, 29(11): 957-961.
    24. Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr, 2007, 10(10A): 1151-1155.
    25. Sarzani R, Salvi F, Dessi-Fulgheri P, et al. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens, 2008, 26(5): 831-843.
    26. Goossens GH, Jocken JW, Blaak EE, et al. Endocrine role of the renin-angiotensin system in human adipose tissue and muscle: effect of beta-adrenergic stimulation. Hypertension, 2007, 49(3): 542-547.
    27. Juan CC, Chien Y, Wu LY, et al. Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology, 2005, 146(5): 2246-2254.
    28. Usui I, Fujisaka S, Yamazaki K, et al. Telmisartan reduced blood pressure and HOMA-IR with increasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Pract, 2007,77:210-214.
    29. Erbe DV, Gartrell K, Zhang YL, et al. Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. Vascul Pharmacol, 2006, 45(3): 154-162.
    30. Rabin KR, Kamari Y, Avni I, et al. Adiponectin: linking the metabolic syndrome to its cardiovascular consequences. Expert Rev Cardiovasc Ther, 2005, 3(3): 465-471.
    31. Kjeldsen SE, Julius S, Mancia G, et al. Effects of valsartan compared to amlodipine on preventing type 2 diabetes in high-risk hypertensive patients: the VALUE trial. J Hypertens, 2006,24:1405-1412.
    32. Aguilar D, Solomon SD. ACE inhibitors and angiotensin receptor antagonists and the incidence of new-onset diabetes mellitus: an emerging theme. Drugs, 2006, 66(9): 1169-1177.
    33. Maji D, Roy RU, Das S. Prevention of type 2 diabetes in the prediabetic population. J Indian Med Assoc, 2005, 103(11): 609-611.
    34. Abuissa H, Jones PG, Marso SP, et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol, 2005, 46(5): 821-826.
    35. Andraws R and Brown DL. Effect of inhibition of the renin-angiotensin system ondevelopment of type 2 diabetes mellitus (meta-analysis of randomized trials). Am J Cardiol, 2007,99:1006-1012.
    36. Kintscher U, Bramlage P, Paar WD, et al. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol, 2007, 612.
    37. Fogari R, Derosa G, Zoppi A, et al. Effect of delapril/manidipine vs olmesartan/ hydrochlorothiazide combination on insulin sensitivity and fibrinogen in obese hypertensive patients. Intern Med, 2008, 47(5): 361-366.
    38. Namikoshi T, Tomita N, Satoh M, et al. Olmesartan ameliorates renovascular injury and oxidative stress in Zucker obese rats enhanced by dietary protein. Am J Hypertens, 2007, 20(10): 1085-1091.
    39. Suzuki J, Iwai M, Li Z, et al. Effect of combination of calcium antagonist, azelnidipine, and AT1 receptor blocker, olmesartan, on atherosclerosis in apolipoprotein E-deficient mice. J Hypertens, 2005,23:1383-1389.
    40. Shimabukuro M, Tanaka H, Shimabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens, 2007, 25(4): 841-848.
    1. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE et al. Visceral adiposity and the prevalence of hypertension in Japanese Americans. Circulation 2003; 108(14): 1718-1723.
    2. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116(1): 39-48.
    3. Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 2007; 27(11): 2276-2283.
    4. Anjana M, Sandeep S, Deepa R, Vimaleswaran KS, Farooq S, Mohan V. Visceral and central abdominal fat and anthropometry in relation to diabetes in Asian Indians. Diabetes care 2004; 27(12): 2948-2953.
    5. Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 2007; 101(1): 27-39.
    6. Murakami H, Ura N, Furuhashi M, Higashiura K, Miura T, Shimamoto K. Role of adiponectin in insulin-resistant hypertension and atherosclerosis. Hypertens Res 2003;26(9): 705-710.
    7. Church TS, Kuk JL, Ross R, Priest EL, Biltoft E, Blair SN. Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology 2006; 130(7): 2023-2030.
    8. Horie N, Komiya H, Mori Y, Tajima N. New body mass index criteria of central obesity for male Japanese. The Tohoku journal of experimental medicine 2006; 208(1): 83-86.
    9. Jia W, Lu J, Xiang K, Bao Y, Lu H, Chen L. [Evaluation of abdominal visceral obesity from anthropometric parameters using receiver operating characteristic curves]. Zhonghua Liu Xing Bing Xue Za Zhi 2002; 23(1): 20-23.
    10. Kim JA, Choi CJ, Yum KS. Cut-off values of visceral fat area and waist circumference: diagnostic criteria for abdominal obesity in a Korean population. J Korean Med Sci 2006; 21(6): 1048-1053.
    11. Shigematsu Y, Norimatsu S, Ohtsuka T, Okayama H, Higaki J. Sex-related differences in the relations of insulin resistance and obesity to left ventricular hypertrophy in Japanese hypertensive patients. Hypertens Res 2006; 29(7): 499-504.
    12. Tanaka S, Togashi K, Rankinen T, Perusse L, Leon AS, Rao DC et al. Sex differences in the relationships of abdominal fat to cardiovascular disease risk among normal-weight white subjects. Int J Obes Relat Metab Disord 2004; 28(2): 320-323.
    13. Joint committee for developing Chinese guidelines on prevention and treatment of dyslipidemia in adults. Chinese guidelines on prevention and treatment of dyslipidemia in adults (Chi). Chinese J of Cardiology 2007; 35(5): 390-419.
    14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412-419.
    15. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes 1983; 7(5): 437-445.
    16. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 2007; 100(7): 1063-1070.
    17. Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB et al. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisomeproliferator-activated receptor-delta. Biochem Biophys Res Commun 2007; 354(2): 427-433.
    18. Ingelsson E, Pencina MJ, Tofler GH, Benjamin EJ, Lanier KJ, Jacques PF et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation 2007; 116(9): 984-992.
    19. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 2007; 116(11): 1234-1241.
    20. Avelar E, Cloward TV, Walker JM, Farney RJ, Strong M, Pendleton RC et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension 2007; 49(1): 34-39.
    21. Zhao Z, Nie H, He H, Yan Z, Liu D, Luo Z et al. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome. Metabolism: clinical and experimental 2007; 56(12): 1612-1619.
    22. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 2004; 79(3): 379-384.
    23. Ross R, Leger L, Morris D, de Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 1992; 72(2): 787-795.
    24. Hirooka M, Kumagi T, Kurose K, Nakanishi S, Michitaka K, Matsuura B et al. A technique for the measurement of visceral fat by ultrasonography: comparison of measurements by ultrasonography and computed tomography. Internal medicine (Tokyo, Japan) 2005; 44(8): 794-799.
    25. Eguchi M, Tsuchihashi K, Saitoh S, Odawara Y, Hirano T, Nakata T et al. Visceral obesity in Japanese patients with metabolic syndrome: reappraisal of diagnostic criteria by CT scan. Hypertens Res 2007; 30(4): 315-323.
    26. Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension 2008; 51(1): 8-14.
    27. Gualillo O, Gonzalez-Juanatey JR, Lago F. The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends incardiovascular medicine 2007; 17(8): 275-283.
    28. Nannipieri M, Bonotti A, Anselmino M, Cecchetti F, Madec S, Mancini E et al. Pattern of expression of adiponectin receptors in human adipose tissue depots and its relation to the metabolic state. International journal of obesity (2005) 2007.
    29. Park KG, Park KS, Kim MJ, Kim HS, Suh YS, Ahn JD et al. Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes research and clinical practice 2004; 63(2): 135-142.
    30. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin--a key adipokine in the metabolic syndrome. Diabetes, obesity & metabolism 2006; 8(3): 264-280.
    31. Bluher M, Williams CJ, Kloting N, Hsi A, Ruschke K, Oberbach A et al. Gene expression of adiponectin receptors in human visceral and subcutaneous adipose tissue is related to insulin resistance and metabolic parameters and is altered in response to physical training. Diabetes care 2007; 30(12): 3110-3115.
    32. Iglesias MJ, Eiras S, Pineiro R, Lopez-Otero D, Gallego R, Fernandez AL et al. [Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue. Findings in patients undergoing cardiac surgery]. Rev Esp Cardiol 2006; 59(12): 1252-1260.
    33. Park YW, Allison DB, Heymsfield SB, Gallagher D. Larger amounts of visceral adipose tissue in Asian Americans. Obesity research 2001; 9(7): 381-387.
    34. Tittelbach TJ, Berman DM, Nicklas BJ, Ryan AS, Goldberg AP. Racial differences in adipocyte size and relationship to the metabolic syndrome in obese women. Obesity research 2004; 12(6): 990-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700