用户名: 密码: 验证码:
转录因子c-Myb、AtERFs与靶顺式元件相互作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转录因子结构上主要由DNA结合结构域(DNA binding domain, DBD)、转录激活/抑制结构域和核定位信号三部分组成。DBD与靶基因转录调控区中顺式作用元件的特异性识别是转录因子对靶基因进行调控的前提和基础。本文对来自于老鼠和拟南芥的不同转录因子对各自顺式作用元件的识别机制进行了深入研究。
     鼠转录因子c-Myb的DBD由3个串联的重复结构域R1、R2和R3做成,能够特异性识别靶基因调控区中含有AACNG-基序的顺式作用元件,R2R3是Myb DBD能够完成特异性DNA识别的最小结构部分。靶基因mim-1的调控区中含有3个Myb特异性结合位点A、B、C,其中A位点具有独特的准回文结构双AACNG-基序,而B、C位点只含有单个的AACNG-基序。为了明确c-Myb识别双AACNG-基序的内在机制,我们通过体外实验和计算机模拟的方法对该结合反应进行了详细分析。体外结合实验表明,R2R3选择性识别A位点中位于正义链上的5’-TAACGG-3’基序,其反应机制符合Myb对其他PyAACNG-基序的识别机理,即R3对AAC核的保守性识别和R2对后半位点GG的可调性识别。同时,分子动力学模拟数据,如蛋白质局部构像变化分析、DNA局部结合诱导的弯曲性分析以及蛋白质-DNA直接作用分析的结果都与上述体外结合分析的结果相一致。DNA的局部构像和可变形性决定了正义链上的5’-TAACGG-3’基序更适合被R2R3特异性识别。这些结果表明c-Myb与该双AACNG-基序结合反应是通过不对称的识别机制完成的,而该识别机制对于c-Myb特异性调控靶基因具有重要意义。
     拟南芥ERF转录因子家族由约120个成员组成,每个成员都含有保守的ERF结构域。了解ERF家族成员的DNA结合特异性与DBD结构的关系,我们从ERF家族不同的系统发生组选取了4个成员:AtERF1、AtERF4、AtEBP和CBF1。其中AtERF1、AtERF4和AtEBP来自于ERF亚家族的不同进化分支,能够特异性识别乙烯效应元件GCC-box(核心基序GCCGCC, GCC-motif),而CBF1来自DREB亚家族,特异性结合脱水效应元件/C-repeat元件(核心基序为ACCGAC, DRE-motif)。电泳迁移率变化分析结果显示,这4个蛋白的ERF结构域都能特异性识别DRE-基序和GCC-基序,各ERF结构域的基序的偏好性与其系统发生分组呈直接对应关系。随机序列筛选确定了4个ERF结构域的特异性识别基序,AtERF1、AtERF4的特异性识别基序与GCC-基序具有较大的相似性, CBF1的特异性识别基序则与DRE基序相近,所有筛选得到的基序都含有共同的cCG*c核心序列。我们以DRE基序作为范例比较上述4个ERF结构域识别同一基序结合时的结合特征,体外和体内的分析结果都表明,4个ERF结构域对cCG*c基序核心序列CG识别具有共同特征,而对于其他位置侧翼序列碱基c的识别显示出不同的结合特征。结果表明,共同的CG识别特征可能是ERF结构域与其识别基序发生特异性结合的基础,是结构域中保守氨基酸残基赋予家族成员的共同特征;而不同的侧翼序列碱基偏好性能保证ERF成员区分具有相似基序结构的顺式元件,可能是由家族/亚家族特征性分布的氨基酸残基决定的。
Accomplishment of gene expression and regulation are essentially depending on the sequence specific recognition of transcription factor to the target DNA. Efforts have been made over the last decade to seek a general readout mechanism of the information encoded in DNA. However, specific protein-DNA interaction is a redundant process and usually involved both direct readout mechanism (direct protein-DNA contacts) and indirect readout mechanism (indirect protein contacts to the sugar phosphate backbone of DNA through polar contacts that is mediated by polar molecules such as water). Both the processes will contribute to the free energy changes and induced conformational variations of protein-DNA complex formation. Consequently, this situation has caused difficulties in clarification of a consensus DNA motif to a given protein, even when their precise complex structure is revealed.
     Myb transcription factors belong to a proto-oncogene product super family that has been identified in all kingdoms, namely animals, plants, and fungi etc. Vertebrates express three highly related Myb proteins, A-Myb, B-Myb, and c-Myb, among which c-Myb is the best characterized during the differentiation and proliferation of hematopoietic cells. All Myb proteins possess highly related DNA-binding domains (DBD) but distinct biological functions. The DBD of c-Myb consists of three imperfect tandem repeats of 51-52 amino acids, designated R1, R2 and R3 from the N terminus, and the last two repeats, R2 and R3, are the minimal unit for specific DNA binding. R2 and R3 are closely packed into the major groove of DNA, so that the two recognition helices contact each other directly to bind in a cooperative manner the specific DNA consensus, PyAACNG (where Py represents a pyrimidine), with the conserved residues of R3 and R2 contacting PyAAC and NG half sites respectively. Myb binding site one (MBS-1) from simian virus 40 enhancer, for example, possesses a singular AACNG motif that is involved in such a sequence specific recognition mechanism by c-Myb.
     Chicken myeloid protein gene, mim-1, is one of the Myb target genes. It is activated by c-Myb exclusively in myelomonocytic cells and, therefore, has become an interesting model system to study how c-Myb activates a target gene in a lineage-specific manner. Analysis of the mimi-1 promoter region discovered a cluster of three PyAACNG consensuses (site A, B and C) with completely different flanking sequences. Interestingly, these three sites showed different binding affinities in vitro by the bacterially expressed v-Myb protein with site A exhibiting the strongest binding. It is noted from the appearance of these binding sites that, while the sites B and C contain only a single AACNG motif respectively, the site A (designated as Myb responsive element, MRE, in this paper ) contains a dual AACNG motif which is arranged into an imperfect palindrome sequence motif with the forward strand read 5’-TAACGGTTT-3’(designated as MRE of forward strand reading, MRE-f) and the reverse stand read 5’-AAACCGTTA-3’(designated as MRE of reverse strand reading, MRE-r). Questions have arisen as how c-Myb recognizes the dual binding site selectively and if the stronger binding affinity observed for this site is the consequence of c-Myb binding to the both strands of the site A. Although, extensive in vitro analyses were performed using c-Myb and oligonucleotides containing the core sequence from the site A of mim-1 gene, those binding experiments did not clarify the binding discrimination in a quantitative meaning.
     In present work, we compared the kinetic patterns of R2R3 binding to MRE as well as to MBS-1, and determined the binding specificity of R2R3 to MRE by analyzing the binding free energy changes upon single-base substitution. Although data obtained from kinetic pattern and free energy changes analyses revealed the specificity of protein-DNA interactions, it was difficult to monitor the dynamic process of the induced conformational changes in protein and DNA interaction. MD simulation provided us a convenient tool to explore the dynamic behavior of R2R3 and MRE, and the mechanism of protein-DNA interactions. The results had important implications for understanding the asymmetry mechanism of c-Myb recognition to its imperfect palindrome dual-AACNG-motif containing consensus.
     To define the mechanism of c-Myb binding to the dual-AACNG-motif, we carried out detailed studies on this binding using both filter binding assay and in silico analyses. The binding assay revealed that R2R3 recognized selectively to the forward strand 5’-TAACGG-3’of site A in mim-1 and, this binding obeyed the mechanism commonly reported with PyAACNG as the read out“coden”, i.e a strong binding of R3 at the AAC-core and a modulate binding of R2 at the second half binding site of GG. In molecular dynamics (MD) simulation, the analyses on protein conformational variation, DNA local structure and protein-DNA contacts supported the experimental observations that the forward strand of site A in mim-1 is the recognition motif of c-Myb. These results suggested that an asymmetry recognition mechanism of c-Myb to the inherent dual-AACNG-motif may be crucial for c-Myb regulations of specific target genes.
     The AP2/ERF gene superfamily of transcriptional factors is one of the largest TF gene families among the plants kingdom, characterized by the presence of AP2/ERF domain. The AP2 domain was first identified in Arabidopsis as a 68 amino acid repeated motif of protein AP2, which is functionally involved in the floral development. The ERF domain was first identified as a conserved 58-59 amino acid motif in four DNA-binding proteins from tobacco and was shown to bind to a GCC box specifically. In Arabidopsis, the AP2/ERF superfamily consists of the ERF, AP2 and RAV three families and, which have defined as follows. The TFs in AP2 family contain two repeated AP2 domains, the TFs in ERF family contain a single ERF domain and, the TFs in RAV family contain both a single AP2/ERF domain and a B3 domain, which is a DBD conserved in other plant-specific TFs. The ERF family is further divided into two major subfamilies the EREBP (ERF) subfamily and the DREB subfamily. After the completion of the sequencing of the Arabidopsis genome, 145 genes were predicted to encode proteins containing the AP2/ERF domain, with 83% (121 genes) of the genes belonging to the ERF family. The solution structure of the Arabidopsis AtERF1 ERF domain (PDB ID: 1GCC) was solved by heteronuclear multidimensional NMR. The domain consists of a three-stranded anti-parallelβ-sheet and anα-helix packed approximately parallel to theβ-sheet, with the seven thoroughly conserved amino acids (Arg150, Arg152, Trp154, Glu160, Arg162, Arg170 and Trp172) in theβ-sheet contacting uniquely with the bases of the target DNA at the major groove. The phylogenetic analyses on the ERF domains of all members within the ERF family show that the residues Arg-150, Glu-160, and Trp-172 are completely conserved among the 122 proteins in the ERF family and, more than 95% of the ERF family members contain Arg152, Arg-162, Arg-170 residues. From the results of a few AtERFs studied, however, the conserved ERF domains seem not to prefer identical DNA consensus. For instance, some AtERFs have been shown to bind in vitro to the ethylene-responsive element (ERE), a GCCGCC motif named as GCC-motif, and conduct GCC-motif-mediated transcription (activation or repression) in the leaves of Arabidopsis. This ERE was first reported to be a binding site (referred as to GCC-box) of some tobacco ERF proteins [8] and later presumed to be the target site of many other ERF proteins. The ERF protein, AtEBP, was also found to protect GCC-box in a Dnase I foot-printing analysis. In difference, the dehydration responsive element (DRE), the TACCGACAT motif, in the drought-responsive gene rd29A from Arabidopsis is proven to be the recognition site of DRE binding proteins (DREBs), the transcription factors having the authentic ERF domain and involving in the induction of the rd29A expression by low-temperature stress. A similar element to DRE, the C-repeat (TGGCCGAC) was identified in the cold-inducible gene cor15a and reported to function in cold-responsive regulation through binding by another ERF protein, the CBF1. The similarity of those ERF binding elements reported and the high homology of ERF domains among the members of the whole ERF family have led to a speculation that whether the ERF domains from various subgroup within the ERF family recognize a certain binding site with a sensitive common core and the divergent short flanking bases to govern the differential recognition. We had demonstrated that various ERF domain had divergence of DNA DNA recognition mode, however, this has to date been short of other supporting evidence. Indeed, little has been known how these differences are important for the functionalities of ERFs in this transcription family, among which the majorities of other ERFs have not yet been studied.
     In this work, we selected four representatives from different functional subgroups (three from the EREBP subfamily and one from DREB subfamily) of the Arabidopsis ERF family, according to the functional classification of the ERF family by Nakano et al. We identified the core recognition motifs preferred by each of the four domains using random sequence selection method. Further, we characterized the binding specificities of the four domains to a DRE motif containing sequence in vitro and in vivo. The results revealed the common feature and the individual feature of various ERF domains in recognition of the same binding site and, demonstrated the importance in determination of the functional variation in the ERF TFs family. AtERF1, AtERF4, AtEBP and CBF1 are members from different phylogenetic group within the family. EMSA analyses revealed the ERF domains of these four proteins were capable of binding either GCC- or DRE-motif, the motif preference of individual ERF domain was related to the phylogenetic classification. The DNA binding motifs of four ERFs were identified and, the acquiring motifs of AtERF1 and AtERF4 were GCC-motif like, the motif of CBF1 was DRE-motif like and, all the motifs contained conserved cCG*c core. In vitro and in vivo binding assays to DRE-motif showed the four ERF domains exhibited similar binding pattern at CG core and, different bases preferences at flanking regions. It suggested that the common core CG may be the essential foundation of ERF domain binding to a certain motif, which was likely to be determined by the highly conserved residues among all ERF members and; the different preferences at flanking bases of individual ERF domain, which appears to be attributed to the subfamily- or group-specific residues, may be crucial for divergent ERF domains to discriminate its specific binding motif from various similar sequences. The results had important implications for understanding the mechanism of divergent members in the conserved ERF family discriminating various binding site specifically.
引文
[1] Luscombe, N.M., Laskowski, R.A., and Thornton, J.M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 2001 29, 2860–2874.
    [2] Church, G.M., Sussman, J.L., and Kim, S.H. Secondary structural complementarity between DNA and proteins. Proc. Natl. Acad. Sci. USA 1977 74, 1458-1462.
    [3] Anderson, W.F., Ohlendorf, D.H., Takeda, Y., and Matthews, B.W. Structure of the cro repressor from bacteriophageλand its interaction with DNA. Nature 1982 290, 754–758.
    [4] McKay, D.B., and Steitz, T. Structure of catabolite gene activator protein at 2.9? resolution suggests binding to left-handed B-DNA. Nature 1981 290, 744–749.
    [5] Pabo, C.O., and Lewis, M. The operator-binding domain ofλrepressor: Structure and DNA recognition. Nature 1982 298, 443–447.
    [6] Somers, W.S., and Phillips, S.E. Crystal structure of the met repressor-operator complex at 2.8? resolution reveals DNA recognition by beta-strands. Nature 1992 359, 387–393.
    [7] Ghosh, G., van Duyne, G., Ghosh, S., and Sigler, P.B. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 1995 373, 303-310.
    [8] Muller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L., and Harrison, S.C. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 1995 373, 311–317.
    [9] Chen, L., Glover, J.N., Hogan, P.G., Rao, A., and Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 1998 392, 42–48.
    [10] Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J.E., Jr., and Kuriyan, J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 1998 93, 827–839.
    [11] Jordan, S.R., and Pabo, C.O. (). Structure of the lambda complex at 2.5 ? resolution: Details of the repressor-operator interactions. Science 1988 242, 893-899.
    [12] Gehring, W.J., Qian, Y.Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A.F.,Resendez-Perez, D., Affolter, M., Otting, G., and Wutrich, K. Homeodomain-DNA recognition. Cell 1994 78, 211-223.
    [13] Suzuki, M., and Gerstein, M. Binding geometry of alpha-helices that recognize DNA. Proteins 1995 23, 525-535.
    [14] Otwinowski, Z., Schevitz, R.W., Zhang, R.G., Lawson, C.L., Joachimiak, A., Marmorstein, R.Q., Luisi, B.F., and Sigler, P.B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature 1988 335, 321-329.
    [15] Pavletich, N.P., and Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991 252, 809-817.
    [16] Gajiwala, K.S., Chen, H., Cornille, F., Roques, B.P., Reith, W., Mach,B., and Burley, S.K. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 2000 403, 916-921.
    [17] Schultz, S.C., Shields, G.C., and Steitz, T.A. Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science 1991 253, 1001-1007.
    [18] Lewis, M., Chang, G., Horton, N.C., Kercher, M.A., Pace, H.C., Schumacher, M.A., Brennan, R.G., and Lu, P. (). Crystal structure of the lactose operon repressor and its complexes with DNA and in ducer. Science 1996 271, 1247-1254.
    [19] Ogata, K., Hojo, H., Aimoto, S., Nakai, T., Nakamura, H., Sarai, A., Ishii, S., Nishimura, Y. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc Natl Acad Sci U S A 1992 89, 6428-6432.
    [20] Finney, M. The homeodomain of the transcription factor LFB1 has a 21 amino acid loop between helix2 and helix 3. Cell, 1990 60, 5-6.
    [21] Kodandapani, R., Pio, F., Ni, C.Z., Piccialli, G., Klemsz, M., McKercher, S., Maki, R.A., and Ely, K.R. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 1996 380, 456–460.
    [22] O’Shea, E.K., Klemm, J.D., Kim, P.S., and Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991 254, 539-544.
    [23] Ellenberger, T., Fass, D., Arnaud, M., and Harrison, S.C. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 1994 8, 970-980.
    [24] Weiss, M.A., Ellenberger, T., Wobbe, C.R., Lee, J.P., Harrison, S.C., and Struhl, K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 1990 347, 575-578.
    [25] Ferre-D’Amare, A.R., Prendergast, G.C., Ziff, E.B., and Burley, S.K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993 363, 38-45.
    [26] Ma, P.C., Rould, M.A., Weintraub, H., and Pabo, C.O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 1994 77, 451-459.
    [27] Schumacher, M.A., Choi, K.Y., Zalkin, H., and Brennan, R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science 1994 266, 763-770.
    [28] Murphy, F.V., IV, Sweet, R.M., and Churchill, M.E. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence specific DNA recognition. EMBO J. 1999 18, 6610-6618.
    [29] Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. Initial sequencing and analysis of the human genome. Nature 2001 409, 860-921.
    [30] Wolfe, S.A., Nekludova, L., and Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struc. 2000 29, 183-212.
    [31] Pavletich, N.P., and Pabo, C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 1993 261, 1701-1707.
    [32] Nolte, R.T., Conlin, R.M., Harrison, S.C., and Brown, R.S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 1998 95, 2938-2943.
    [33] Mangelsdorf, D.J., and Evans, R.M. The RXR heterodimers and orphan receptors. Cell 1995 83, 841-850.
    [34] Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S.C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 1992 356, 408-414.
    [35] Raumann, B.E., Rould, M.A., Pabo, C.O., and Sauer, R.T. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 1994 367, 754-757.
    [36] Gomis-Ruth, F.X., Sola, M., Acebo, P., Parraga, A., Guasch, A., Eritja, R., Gonzalez, A., Espinosa, M., del Solar, G., and Coll, M. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J. 1998 17, 7404-7415.
    [37] Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484-5496
    [38] Kim, Y., Geiger, J.H., Hahn, S., and Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 1993 365, 512-520.
    [39] Kim, J.L., Nikolov, D.B., and Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 1993 365,520-527.
    [40] Tahirov, T.H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., Shiina, M., Sato, K., Kumasaka, T., Yamamoto, M., et al. Structural analyses of DNA recognition by the AML1/ Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 2001 104, 755-767.
    [41] Cho, Y., Gorina, S., Jeffrey, P.D., and Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994 265, 346-355.
    [42] Chen, F.E., Huang, D.B., Chen, Y.Q., and Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998 391, 410-413.
    [43] Matthews, B.W. Protein-DNA interaction. No code for recognition. Nature 1988 335, 294-295.
    [44] Mandel-Gutfreund, Y., Schueler, O., and Margalit, H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA complexes: in search of common principles. J. Mol. Biol. 1995 253, 370-382.
    [45] Pabo, C.O., and Nekludova, L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J. Mol. Biol. 2000 301, 597–624.
    [46] Kono, H., and Sarai, A. Structure-based prediction of DNA target sites by regulatory proteins. Proteins 1999 35, 114-131.
    [47] Garvie, C.W., Wolberger, C. Recognition of specific DNA sequences. Mol Cell.2001 8, 937-946.
    [48] Pabo, C.O., Aggarwal, A.K., Jordan, S.R., Beamer, L.J., Obeysekare, U.R., and Harrison, S.C. Conserved residues make similar contacts in two repressor-operator complexes. Science 1990 247, 1210-1213.
    [49] Woda, J., Schneider, B., Patel, K., Mistry, K., and Berman, H.M. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J. 1998 75, 2170-2177.
    [50] Lawson, C.L., and Carey, J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 1993 366, 178-182.
    [51] Steffen, N.R., Murphy, S.D., Tolleri, L., Hatfield, G.W., Lathrop, R.H. DNA sequence and structure: direct and indirect recognition in protein-DNA binding. Bioinformatics 2002 18, S22-30.
    [52] Dickerson, R.E. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983 166, 419-41.
    [53] Sarai, A., Kono, H. Protein-DNA recognition patterns and predictions. Annu Rev Biophys Biomol Struct. 2005 34, 379-98.
    [54] El Hassan, M.A., Calladine, C.R. Two distinct modes of protein-induced bending in DNA. J Mol Biol. 1998 282, 331-43.
    [55] Matthews, B.W. Protein-DNA interaction. No code for recognition. Nature 1988 335, 294-5.
    [56] Lamoureux, J.S., Stuart, D., Tsang, R., Wu, C., Glover, J.N. Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J. 2002 21, 5721–5732.
    [57] Lamoureux, j.s., Maynes, J.T., Glover, J.N. Recognition of 5'-YpG-3' sequences by coupled stacking/hydrogen bonding interactions with amino acid residues. J Mol Biol. 2004 335, 399-408.
    [58] Napoli, A.A., Lawson, C.L., Ebright, R.H., Berman, H.M. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J Mol Biol. 2006 357, 173-83.
    [59] Chen S., Gunasekera, A., Zhang, X., Kunkel, T.A., Ebright, R.H., Berman, H.M. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: alteration of DNA binding specificity through alteration of DNA kinking. J Mol Biol. 2001 314, 75-82.
    [60] Hegde, R.S. Targeting and beyond: new roles for old signal sequences. Mol Cell 2002 10, 697-698.
    [61] Huang, D.B, Phelps, C.B., Fusco, A.J., Ghosh, G. Crystal structure of a free kappaB DNA: insights into DNA recognition by transcription factor NF-kappaB. J Mol Biol. 2005 346,147-60.
    [62] Hall W.J., Bean C.W. and Pollard M. Am. J. Vet. Res. 1941 2, 272-279.
    [63] Ivanov, X., Mladenov, Z., Nedyalkov, S., Todorov, T.G., Yakimov, M.. Experimental. investigations into avian leucoses. V. Transmission, haematology and morphology of avian. myelocytomatosis. Bull. Inst. Pathol. Comp. Animaux Domest. (Sofia) 1964 10, 5-38.
    [64] Nedyalkov, S.T., Bozhkov, S.P., Todorov, G. Acta Vet. (Brno) 1975 44, 75-78.
    [65] Baluda, M.A., Reddy, E.P. Anatomy of an integrated avian myeloblastosis provirus: structure and function. Oncogene 1994 9, 2761-2774.
    [66] Nunn, M.F., Seeburg, P.H., Moscovici, C., Duesberg, P.H. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 1983 306, 391-395.
    [67] Leprince, D., Gegonne, A., Coll, J., de Taisne, C., Schneeberger, A., Lagrou, C., Stehelin, D. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 1983 306, 395-397.
    [68] Lipsick, J.S. One billion years of Myb. Oncogene 1996 13, 223-235.
    [69] Nomura, N., Takahashi, M., Matsui, M., Ishii, S., Date, T., Sasamoto, S., Ishizaki, R. Isolation of human cDNA clones of myb-related genes, A-myb and B-myb. Nucl. Acids Res. 1988 16, 11075-11089.
    [70] Bouwmeester, T., van Wijk, I., Wedlich, D., Pieler, T. Functional aspects of B-Myb in early Xenopus development. Oncogene 1994 9, 1029-1038.
    [71] Lam, E.W., Robinson, C., Watson, R.J. Characterization and cell cycle-regulated expression of mouse B-myb. Oncogene 1992 7, 1885-1890.
    [72] Mettus, R.V., Litvin, J., Wali, A., Toscani, A., Latham, K., Hatton, K, Reddy, E.P. Murine A-myb: evidence for differential splicing and tissue-specific expression. Oncogene 1994 9, 3077-3086.
    [73] Trauth, K., Mutschler, B., Jenkins, N.A., Gilberts, D.J., Copeland, N.G., Klempnauer, K.H. Mouse A-myb encodes a trans-activator and is expressed in mitotically active cells of the developing central nervous system, adult testis andB lymphocytes. EMBO J. 1994 13, 5994-6005.
    [74] Foos, G., Grimm, S., Klempnauer, K.H. Functional antagonism between members of the myb family: B-myb inhibits v-myb-induced gene activation. EMBO J. 1992 11, 4619-4629.
    [75] Sleeman J.P. Xenopus A-myb is expressed during early spermatogenesis. Oncogene 1993 8, 1931-1941.
    [76] Gonda, T.J., Shieness, D.K., Bishop, J.M. Transcripts from the cellular homologs of retroviral oncogenes: distribution among chicken tissues. EMBO J. 1982 4, 1767-1775.
    [77] Westin, E.H., Gallo, R.C., Arya, S.K., Eva, A., Souza, L.M., Baluda, M.A., Aaronson, S.A., Wong-Staal, F. Differential expression of the amv gene in human hematopoietic cells. Proc. Natl. Acad. Sci. USA 1982 79, 2194- 2198.
    [78] Dudek, H., Reddy, E.P. Murine myeloid leukemias with aberrant myb loci show heterogeneous expression of novel myb proteins. Oncogene 1989 4, 1489-1495.
    [79] Dasgupta, P., Linnenbach, A.J., Giaccia, A.J., Stamato, T.D., Reddy, E.P. Oncogene Molecular cloning of the breakpoint region on chromosome 6 in cutaneous malignant melanoma: evidence for deletion in the c-myb locus and translocation of a segment of chromosome 12.1989 4, 1201-1205.
    [80] Rosson, D., Dugan, D., Reddy, E.P. Aberrant splicing events that are induced by proviral integration: implications for myb oncogene activation.Proc. Natl. Acad. Sci. USA 1987 84, 3171-3175.
    [81] Shen-Ong, G.L., Potter, M., Mushinski, J.F., Lavu, S., Reddy, E.P. Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 1984 226, 1077-1080.
    [82] Sakura, H., Kanei-Ishii, C., Nagase, T., Nakagoshi, H., Gonda, T.J., Ishii, S. Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc. Natl. Acad. Sci. USA 1989 86, 5758-5762.
    [83] Weston, K., Bishop, J.M. Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb. Cell 1989 58, 85-93.
    [84] Saikumar, P., Murali, R., Reddy, E.P. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc. Natl. Acad. Sci. USA 1990 87, 8452-8456.
    [85] Howe, K.M., Reakes, C.F., Watson, R.J. Characterization of the sequence-specific interaction of mouse c-myb protein with DNA. EMBO J. 1990 9, 161-169.
    [86] Tanikawa, J., Yasukawa, T., Enari, M., Ogata, K., Nishimiura, Y., Ishii, S., Sarai, A. Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain. Proc. Natl. Acad. Sci. USA 1993 90, 9320-9324.
    [87] Gabrielson, O.S., Sentenac, A., Fromageot, P. Specific DNA binding by c-Myb: evidence for a double helix-turn-helix-related motif. Science 253, 1140-1143.
    [88] Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R., Herr, W., Wright, P.E. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Cell 1993 73, 193-205.
    [89] Clarke, M.F., Kukowska-Latallo, J.F., Westin, E., Smith, M., Prochownik, E.V. Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol Cell Biol. 1988 8, 884-892.
    [90] Dekker, N., Cox, M., Boelens, R., Verrijzer, C.P., van der Vliet, P.C., Kaptein, R. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 1993 362, 852-855.
    [91] Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., Sarai, A., Ishii, S. and Nishimura, Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 1994 79, 639 - 648.
    [92] Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol. 1996 3, 178-87.
    [93] Introna M, Luchetti M, Castellano M, Arsura M and Golay J. The myb oncogene family of transcription factors: potent regulators of hematopoietic cell proliferation and differentiation. Seminar. Cancer Biol. 1994 5, 113-124.
    [94] Kanei-Ishii, C., Nomura, T., Ogata, K., Sarai, A., Yasukawa, T., Tashiro, S., Takahashi, T,, Tanaka, Y., Ishii, S. Structure and function of the proteins encoded by the myb gene family. Curr. Topic. Microbiol. Immun. 1996 211, 89-98.
    [95] Biedenkapp, H., Borgmeyer, U., Sippel, A.E., Klempnauer, K.H. Viral myboncogene encodes a sequence-specific DNA-binding activity. Nature 1988 335, 835- 837.
    [96] Ness, S.A., Marknell, A. and Graf, T. The v-myb oncogene product binds to and activates the promyelocyte-specific mimi-1 gene. Cell 1989 59, 1115-1125.
    [97] Nakagoshi, H., Nagase, T., Kanei-Ishii, C., Ueno, Y. and Ishii, S. Binding of the c-myb proto-oncogene product to the simian virus 40 enhancer stimulates transcription. J. Biol. Chem. 1990 265, 3479-3483.
    [98] Ibanez, C.E., Lipsick, J.S. trans activation of gene expression by v-myb. Mol. Cell. Biol. 1990 10, 2285-2293.
    [99] Lane, T., Ibanez, C., Garcia, A., Graf, T., Lipsick, J. Transformation by v-myb correlates with trans-activation of gene expression. Mol. Cell. Biol. 1990 10, 2591-2598.
    [100] Kalkbrenner, F., Guehmann, S., Moelling, K. Transcriptional activation by human c-myb and v-myb genes. Oncogene 1990 5, 657-661.
    [101] Foos, G., Grimm, S. Klempnauer, K.H. The chicken A-myb protein is a transcriptional activator. Oncogene 1994 9, 2481-2488.
    [102] Golay, J., Loffarelli, L., Luppi, M., Castellano, M., Introna, M. The human A-myb protein is a strong activator of transcription. Oncogene 1994 9, 2469-2479.
    [103] Takahashi, T., Nakagoshi, H., Sarai, A., Nomura, N., Yamamoto, T., Ishii, S. Human A-myb gene encodes a transcriptional activator containing the negative regulatory domains. FEBS Letts. 1995 358, 89-96.
    [104] Oh, I.H., Reddy, E.P. Murine A-myb gene encodes a transcription factor, which cooperates with Ets-2 and exhibits distinctive biochemical and biological activities from c-myb. J. Biol. Chem. 1997 272, 21432-21443.
    [105] Watson, R.J., Robinson, C., Lam, E.W. Transcription regulation by murine B-myb is distinct from that by c-myb. Nucl. Acids Res. 1993 21, 267-272.
    [106] Foos, G., Natour, S., Klempnauer, K.H. TATA-box dependent trans-activation of the human HSP70 promoter by Myb proteins. Oncogene 1993 8, 1775-1782.
    [107] Grasser, F.A., Graf, T., Lipsick, J.S. Protein truncation is required for the activation of the c-myb proto-oncogene. Mol. Cell. Biol. 1991 11, 3987-3996.
    [108] Gonda, T.J., Buckmaster, C., Ramsay, R.G. Activation of c-myb by carboxy-terminal truncation: relationship to transformation of murinehaemopoietic cells in vitro. EMBO J. 1989 8, 1777-1783.
    [109] Hu, Y.L., Ramsay, R.G., Kanei-Ishii, C., Ishii, S., Gonda, T.J. Transformation by carboxyl-deleted Myb reflects increased transactivating capacity and disruption of a negative regulatory domain. Oncogene 1991 6, 1549-1553.
    [110] Ramsay, R.G., Ishii, S., Gonda, T.J. Increase in specific DNA binding by carboxyl truncation suggests a mechanism for activation of Myb. Oncogene 1991 6, 1875-1879.
    [111] Duprey, S.P., Boettiger, D. Developmental regulation of c-myb in normal myeloid progenitor cells. Proc. Natl. Acad. Sci.USA 1985 82, 6937-6941.
    [112] Gewirtz, A.M., Calabretta, B. A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 1988 242, 1303-1306.
    [113] Gewirtz, A.M., Anfossi, G., Venturelli, D., Valpreda, S., Sims, R., Calabretta, B. G1/S transition in normal human T-lymphocytes requires the nuclear protein encoded by c-myb. Science 1989 245, 180-183.
    [114] Anfossi, G., Gewirtz, A.M., Calabretta, B. An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc. Natl. Acad. Sci. USA 1989 86, 3379-3383.
    [115] Citro, G., Perrotti, D., Cucco, C., D'Agnano, I., Sacchi, A., Zupi, G., Calabretta, B. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 1992 89, 7031-7035.
    [116] Citro, G., Szczylik, C., Ginobbi, P., Zupi, G., Calabretta, B. Inhibition of leukaemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells. Br. J. Cancer 1994 69, 463-467.
    [117] Gonda, T.J., Metcalf, D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 1984 310, 249-251.
    [118] Kuehl, W.M., Bender, T.P., Stafford, J., McClinton, D., Segal, S., Dmitrovsky, E. Expression and function of the c-myb oncogene during hematopoietic differentiation. Curr. Topic. Microbiol. Immun. 1988 141, 318-323.
    [119] Ramsay, R.G., Ikeda, K., Rifkind, R.A., Marks, P.A. Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes,globin genes, and cell division. Proc. Natl. Acad. Sci. USA 1986 83, 6849-6853.
    [120] Thiele, C.J., Cohen, P.S., Israel, M.A. Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation. Mol. Cell. Biol. 1998 8, 1677-1683.
    [121] Smarda, J., Sugarman, J., Glass, C., Lipsick, J. Retinoic acid receptor alpha suppresses transformation by v-myb. Mol.Cell. Biol. 1995 15, 2474-2481.
    [122] Wolff, L. Myb-induced transformation. Crit. Rev. Oncogenesis 1996 7, 245- 260.
    [123] Zabel, B.U., Naylor, S.L., Grzeschik, K.H., Sakaguchi, A.Y. Regional assignment of human protooncogene c-myb to 6q21----qter. Somatic Cell Genet. 1984 10, 105-108.
    [124] Alitalo, K., Winqvist, R., Lin, C.C., de la Chapelle, A., Schwab, M., Bishop, J.M. Aberrant expression of an amplified c-myb oncogene in two cell lines from a colon carcinoma. Proc. Natl. Acad. Sci. USA 1984 81, 4534-4538.
    [125] Barletta, C., Pelicci, P.G., Kenyon, L.C., Smith, S.D., Dalla-Favera, R. Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas. Science 1987 287, 1064-1067.
    [126] Pelicci, P.G., Lanfrancone, L., Brathwaite, M.D., Wolman, S.R., Dalla-Favera, R. Amplification of the c-myb oncogene in a case of human acute myelogenous leukemia. Science 1984 224, 1117-1121.
    [127] Dasgupta, P., Reddy, E.P. Identification of alternatively spliced transcripts for human c-myb: molecular cloning and sequence analysis of human c-myb exon 9A sequences. Oncogene 1989 4, 1419-1423.
    [128] Guerin, M., Sheng, Z., Riou, G. Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 1990 5, 131-135.
    [129] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000 408, 796-815.
    [130] Riechmann, J. L., Heard, j., Martin, G., Reuber, L., Jiang, C.–Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., Yu, G–L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000 15, 2105-2110.
    [131] Jofuku, K.D, Denboer, B.G.W., Vanmontagu, M. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 1994 6, 1211-1225.
    [132] Ohme-Takagi, Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995 7,173-182.
    [133] Weigel, D. The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995 7, 388-389.
    [134] Moose, S.P., Sisco, P.H. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity.Genes & Development 1996 10, 3018- 3027.
    [135] Gu, Y.Q., Wildermuth, M.C., Chakravarthy, S., et al. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 2002 14, 817-831.
    [136] Kagaya, Y., Ohmiya, K., Hattori, T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 1999 27, 470–478.
    [137] Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydrationand cold-inducible gene expression. Biochem Biophys Res. Commun. 2002 290, 998-1009.
    [138] Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006 140, 411-432.
    [139] Okamuro, J.K., Caster, B., Villarroel, R., Van Montagu, M., Jofuku, K.D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 1997 94, 7076-7081.
    [140] Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 2000 12, 393–404.
    [141] Hao, D., Ohme-Takagi, M. and Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 1998 273, 26857-26861.
    [142] Hao, D., Yamasaki, K., Sarai, A., and Ohme-Takagi, M. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochem. 2002 41, 4202-4208.
    [143] Buttner, M., and Singh, K. B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA. 1997 94, 5961-5966.
    [144] Zhou, J., Tang, X., and Martin, G.B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997 16, 3207–3218.
    [145] Yamaguchi-Shinozaki, K. and Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 1994 6, 251-264.
    [146] Stockinger, E. J. Gilmour, S. J., and Thomashow, M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U SA. 1997 94, 1035-1040.
    [147] Baker, S. S., Wilhelm, K. S., and Thomashow, M. F. The 59-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 1994 24, 701-713.
    [148] Jiang, C., Iu, B., and Singh, J. Requirement of a CCGAC cisacting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 1996 30, 679–684.
    [149] Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999 50, 571–599.
    [150] Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Toa, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., Zhu, T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 200214, 559–574.
    [151] Park, J.M., Park, C.J. Lee, S.B., Ham,B.K., Shin, R., Paek, K.H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 2001 13, 1035–1046.
    [152] Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Setsuko, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998 10, 1391-1406.
    [153] Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998 16:433–442.
    [154] Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F. () Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000 124, 1854–1865.
    [155] Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physio.l 2002 130, 639–648.
    [156] Medina, J., Bargues, M., Terol, J., P′erez-Alonso, M., Salinas, J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol. 1999 119, 463–469.
    [157] Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 1998 250,161–170.
    [158] Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Interaction between two cis-element, ABRE and DRE, in ABA-dependent expression of Arabidopsis RD29A gene in response to dehydration and high-salinity stress.Plant J. 2003 34, 137-148.
    [159] Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 2006 18,1292–1309.
    [160] Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Colloquium paper: dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress- responsive gene expression. Proc. Natl. Acad. Sci. USA. 2006 103, 18822- 18827.
    [161] Chini, A., Grant, J.J., Seki, M., Shinozaki, K., Loake, G.J. Drought tolerance established by enhanced expression of the CC-NBSLRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 2004 38, 810–822.
    [162] Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M. The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys. 1978 185, 584-591.
    [163] Berendsen, H.J.C., D.van.der.Spoel, and R.van.Drunen. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995 91, 43–56.
    [164] Lindahl ,E,B., Hess, and D.van.der.Spoel. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 2001 7, 306–317.
    [165] Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A. A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids and Organic-Molecules. J. Am. Chem. Soc. 1995 117, 5179-5197.
    [166] Lu, X.J., Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003 31, 5108-5121.
    [167] Humphrey, W., Dalke, A. and Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996 14, 27–38.
    [168] Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. Comparison of simple potential function for simulating liquid water. J. Chem.Phys. 1983 79, 926-935.
    [169] Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.G.E.M. () LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18, 1463–1472.
    [170] Shuichi, M.PAK (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. In., vol. 13; 1992: 952-962.
    [171] Berendsen, H.J.C., Postma, J.P.M., DiNola, A. and Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81, 3684–3690.
    [172] Essman, U., Perela, L., Berkowitz, M.L., Darden, T., Lee, H. and Pederse, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995 103, 8577–8592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700